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Abstract

In this paper, we propose an improved region-based active contour model in a vari-

ational level set formulation. We define an energy functional with a local intensity

fitting term, which induces a local force to attract the contour and stops it at ob-

ject boundaries, and an auxiliary global intensity fitting term, which drives the

motion of the contour far away from object boundaries. Therefore, the combination

of these two forces allows for flexible initialization of the contours. This energy is

then incorporated into a level set formulation with a level set regularization term

that is necessary for accurate computation in the corresponding level set method.

The proposed model is first presented as a two-phase level set formulation and then

extended to a multi-phase formulation. Experimental results show the advantages

Preprint submitted to Computerized Medical Imaging and Graphics13 March 2009



of our method in terms of accuracy and robustness. In particular, our method has

been applied to brain MR image segmentation with desirable results.

Key words: Image segmentation; Intensity inhomogeneity; Active contour model;

Level set method; Variational method

1 Introduction

Since the introduction by Kass et al. [1], active contour models have been

widely used in image segmentation with promising results. The models are

able to provide smooth and closed contours to recover object boundaries with

subpixel accuracy, which is typically not possible in classical methods, such as

edge detection and thresholding. The existing active contour models can be

categorized into two classes: edge-based models [1–7] and region-based models

[8–17].

In general, edge-based models typically use image gradient as an image-based

force to attract the contour toward object boundaries. These models have been

successfully used for general images with strong object boundaries, but they

may suffer from boundary leakage problem for brain MR images, which typi-

cally contain weak boundaries between gray matter and white matter due to

low contrast and partial volume effect. Region-based models have better per-

formance than edge-based models in the presence of weak boundaries. How-

ever, region-based models [8,9,12,10,13,14] tend to rely on intensity homogene-

ity. For example, the well-known piecewise constant (PC) models [12,10,14]

∗ Corresponding author.
Email address: chunming.li@vanderbilt.edu (Chunming Li).
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are based on the assumption that image intensities are statistically homo-

geneous in each region, and therefore they fail to segment MR images with

intensity inhomogeneity. In [10] and [11], two similar region-based active con-

tour models were proposed for the segmentation of more general images. These

models are based on a piecewise smooth description of the images, and thus

have been known as piecewise smooth (PS) models. Therefore, the PS mod-

els have exhibited certain capability of handling intensity inhomogeneity. The

computational cost of the PS models is, however, rather expensive due to

the complicated procedures involved [18,17]. This limitation, along with their

somewhat complex parameter settings, has made the PS models barely useful

for MR brain image segmentation.

In fact, intensity inhomogeneity occurs in many real-world images from differ-

ent modalities [19,20]. In particular, it is often seen in medical images, such

as X-ray radiography/tomography and magnetic resonance (MR) images. For

example, the intensity inhomogeneity in MR images often appears as an in-

tensity variation across the image, which arises from radio frequency (RF)

coils or acquisition sequences. Thus the resultant intensities of the same tissue

vary with the locations in the image. Similar artifacts also occur in CT images

due to the beam hardening effect, as well as in ultrasound images caused by

non-uniform beam attenuation within the body.

Recently, Li et al. proposed a local binary fitting (LBF) model to overcome

the difficulty in segmentation caused by intensity inhomogeneity [17,21]. The

LBF model draws upon spatially varying local region information and thus is

able to deal with intensity inhomogeneity. By using local region information,

specifically local intensity mean, the LBF model is able to provide desirable

segmentation results even in the presence of intensity inhomogeneity. Some
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related methods were recently proposed in [18,22], which have similar capa-

bility of handling intensity inhomogeneity as the LBF model. These methods

[17,21,18,22] are, however, to some extent sensitive to initialization, which

limits their practical applications.

In this paper, we propose an improved region-based active contour model in a

variational level set formulation. We define an energy functional 1 with a local

intensity fitting term, which is dominant near object boundaries and respon-

sible for attracting the contour toward object boundaries, and an auxiliary

global intensity fitting term, which incorporates global image information to

improve the robustness of the proposed method. In addition, this energy is

then incorporated into a level set formulation with a level set regularization

term that is necessary for accurate computation in the corresponding level set

method. In the associated curve evolution, the motion of the contour is driven

by a local intensity fitting force and a global intensity fitting force, induced

by the local and global terms in the proposed energy functional, respectively.

The influence of these two forces on the curve evolution is complementary.

When the contour is close to object boundaries, the local intensity fitting

force becomes dominant, which attracts the contour toward and finally stops

the contour at object boundaries. This force plays a key role in accurately lo-

cating object boundaries, especially for images with intensity inhomogeneity.

The global intensity fitting force is dominant when the contour is far away

from object boundaries, and it allows more flexible initialization of contours

by using global image information. The proposed model is first presented as

a two-phase level set formulation and then extended to a multi-phase formu-

1 In calculus of variations, an energy functional refers to an energy whose variables

are functions (e.g. f1, f2, φ in our model).
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lation for brain MR image segmentation.

Note that part of results in this paper were reported in our recent conference

paper [23]. The remainder of this paper is organized as follows. In Section 2,

we review some well-known region-based models and their limitations. The

proposed method is introduced in Section 3. The implementation and results

are given in Section 4, followed by some discussions in Section 5. This paper

is summarized in Section 6.

2 Background

2.1 Piecewise constant models

Chan and Vese [12] proposed an active contour approach to the Mumford-

Shah problem [24] for a special case where the original image is a piecewise

constant function. Let Ω ⊂ �2 be the image domain, I : Ω → � be a given

gray level image. The variable x in I(x) is a point in Ω. They proposed the

following energy:

ECV(c1, c2, C)= λ1

∫
outside(C)

|I(x) − c1|2dx

+ λ2

∫
inside(C)

|I(x) − c2|2dx + ν|C| (1)

where outside(C) and inside(C) represent the regions outside and inside the

contour C, respectively, and c1, c2 are two constants that approximate the

image intensity in outside(C) and inside(C). |C| is the length of the contour

C. The parameters λ1, λ2 and ν are nonnegative constants. We call the first

two terms in (1) the global data fitting energy. One of the most attractive
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properties of the CV model is that it is much less sensitive to the initialization.

Such optimal constants c1 and c2 can be far different from the original data, if

the intensities within outside(C) and inside(C) are inhomogeneous. Without

taking local image information into account, the CV model generally fails to

segment images with inhomogeneity. For example, Fig. 1(a) shows a synthetic

image with intensity inhomogeneity. The contour is initialized as a circle. The

CV model fails to segment this image, as shown in Fig. 1(b). It is clearly seen

that some part of the background/foreground is incorrectly identified as the

foreground/background. Likewise, more general piecewise constant models in

a multi-phase level set framework [10,13,14] are not applicable for such images

either.

(a) (b)

{f
1
=67.9,f

2
=101.1}

{f
1
=154.9,f

2
=175.2}

I=63

I=104

I=171

I=157

(c)

Fig. 1. Experiments for a synthetic image with intensity inhomogeneity. (a) Original

image and initial contour. (b) Result of the CV model. (C) Result of the LBF model,

with intensities at four points (shown in blue) and values {f1, f2} at two points

(shown in green) indicated.

2.2 The local binary fitting model

The local binary fitting (LBF) model [17] was recently proposed to segment

images with intensity inhomogeneity, utilizing the local intensity information
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efficiently, and has achieved promising results. Two fitting functions f1(x) and

f2(x) that locally approximate the intensities outside and inside the contour

are introduced in the LBF model. In contrast to the two constants c1 and c2

in the CV model, the functions f1(x) and f2(x) are spatially varying fitting

functions. They proposed to minimize the following energy

ELBF(C, f1, f2)= λ1

∫ [∫
outside(C)

Kσ(x − y)|I(y) − f1(x)|2dy
]
dx

+ λ2

∫ [∫
inside(C)

Kσ(x − y)|I(y) − f2(x)|2dy
]
dx

+ ν|C| (2)

where Kσ is a Gaussian kernel with standard deviation σ. The first two terms

are the local intensity fitting energy, denoted by FLBF. This energy can be rep-

resented by a level set formulation, and then the energy minimization problem

can be converted to solving a level set evolution equation [17].

Due to the localization property of the kernel function, the contribution of

the intensity I(y) to the LBF energy decreases to zero as the point y moves

away from the center point x. Therefore, the LBF energy is dominated by the

intensity I(y) of points y in a neighborhood of x. This localization property

plays a key role in segmenting the images with intensity inhomogeneity. For

example, we apply the LBF model to segment the image shown in Fig. 1(a),

which has shown that the CV model fails to segment the object correctly.

Fig. 1(c) shows the correct result of the LBF model. It is clearly seen that

spatially varying fitting functions f1 and f2 approximate the local intensities

on the two sides of the contour very well. For example, the values of f1 and

f2 at the green point in the upper left part of the image are 67.9 and 101.1

respectively, which are consistent with the local intensities.
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However, such localization property may introduce many local minimums of

the energy functional. Consequently, the result is more dependent on the ini-

tialization of contour. This can be seen from a simple experiment for a binary

image with a special initial contour as shown in Fig. 2(a). Note that this spe-

cial initial contour is generated manually. The intensities of the background

and foreground are 100 and 150 respectively. Fig. 2(b) shows the final segmen-

tation result of the LBF model. It can be seen that the contour is stuck in the

middle of both background and foreground regions. This can be explained by

investigating the values of f1 and f2 at some points. For example, the values

of f1 and f2 at three points p1, p2, and p3 are shown in Fig. 2(b). For points

p1 and p2, the values are equal to the intensities of the background and fore-

ground respectively. As a result, the fitting energy FLBF at the points p1, p2

is minimized to zero, which results in the contour being stuck in the middle

of both background and foreground regions. For the point p3, the values of

f1 and f2 approximate the local intensities on both sides of the contour very

well. As a result, the local fitting energy FLBF is minimized, and therefore the

contour is stopped at the object boundaries.

(a)
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Fig. 2. Result of the LBF model. (a) Original image and initial contour. (b) Final

contour and values of {f1, f2} for three points p1, p2, and p3.
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3 Method

Our method combines the advantages of the CV model and the LBF model by

taking the local and global intensity information into account. In this section,

we will detail our active contour model based on local and global intensity

fitting (LGIF) for image segmentation.

3.1 Two-Phase Level Set Formulation

The local intensity fitting (LIF) energy [17] is defined as follows, which is the

same as the first two terms in Eq. (2):

ELIF(φ, f1, f2) =λ1

∫ [∫
Kσ(x − y)|I(y) − f1(x)|2H(φ(y))dy

]
dx

+λ2

∫ [∫
Kσ(x − y)|I(y) − f2(x)|2(1 − H(φ(y)))dy

]
dx (3)

where φ is the level set function, H(·) is the Heaviside function [12].

We use the CV model’s global intensity fitting (GIF) energy

EGIF(φ, c1, c2)= λ1

∫
|I(x) − c1|2H(φ(x))dx

+ λ2

∫
|I(x) − c2|2(1 − H(φ(x)))dx (4)

Now, we define the following energy functional:

ELGIF(φ, f1, f2, c1, c2) = (1 − ω)ELIF(φ, f1, f2) + ωEGIF(φ, c1, c2) (5)

where ω is a positive constant (0 ≤ ω ≤ 1). When the images are corrupted

by intensity inhomogeneity, the parameter value ω should be chosen small

enough. The selection of the parameter ω is discussed in Section 5.
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For more accurate computation involving the level set function and its evolu-

tion, we need to regularize the level set function by penalizing its deviation

from a signed distance function [6], which can be characterized by the following

energy functional

P(φ) =
∫
Ω

1

2
(|∇φ(x)| − 1)2dx (6)

As in typical level set methods [12,10], we need to regularize the zero level set

by penalizing its length to derive a smooth contour during evolution:

L(φ) =
∫
Ω

|∇H(φ(x))|dx (7)

Now, we define the entire energy functional

F(φ, f1, f2, c1, c2) = ELGIF(φ, c1, c2, f1, f2) + νL(φ) + μP(φ) (8)

where ν > 0 and μ > 0 are constants as the weights of the term L(φ) and the

term P(φ), respectively.

In practice, Heaviside function H is approximated by a smooth function Hε

defined by

Hε(x) =
1

2
[1 +

2

π
arctan(

x

ε
)] (9)

where ε is a positive constant. The derivative of Hε is the smoothed Dirac

delta function

δε(x) = H ′
ε(x) =

1

π

ε

ε2 + x2
(10)

The parameter ε in Hε and δε is set to 1.0 as in [12,10,17]. This parameter can
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be fixed as this value in practice.

Thus, the energy functional F(φ, f1, f2, c1, c2) in Eq. (8) is approximated by

Fε(φ, f1, f2, c1, c2) = ELGIF
ε (φ, f1, f2, c1, c2) + νLε(φ) + μP(φ) (11)

We use the standard gradient descent (or steepest descent) method to min-

imize the energy functional (11). For a fixed level set function φ, we mini-

mize the energy functional Fε(φ, f1, f2, c1, c2) in Eq. (11) with respect to the

functions f1(x), f2(x) and constants c1, c2. By calculus of variations, it can

be shown that the functions f1(x), f2(x) and constants c1, c2 that minimize

Fε(φ, f1, f2, c1, c2) satisfy the following Euler-Lagrange equations:

∫
Kσ(x − y)(I(y) − f1(x))Hε(φ(y))dy = 0 (12)

∫
Kσ(x − y)(I(y) − f2(x))(1 − Hε(φ(y)))dy = 0 (13)

∫
(I(x) − c1)Hε(φ(x))dx = 0 (14)

∫
(I(x) − c2)(1 − Hε(φ(x)))dx = 0 (15)

From Eqs. (12) - (15), we obtain

f1(x) =
Kσ(x) ∗ [Hε(φ(x))I(x)]

Kσ(x) ∗ Hε(φ(x))
(16)

f2(x) =
Kσ(x) ∗ [(1 − Hε(φ(x)))I(x)]

Kσ(x) ∗ [1 − Hε(φ(x))]
(17)

c1 =

∫
I(x)Hε(φ(x))dx∫

Hε(φ(x))dx
(18)

c2 =

∫
I(x)(1 − Hε(φ(x)))dx∫

(1 − Hε(φ(x)))dx
(19)
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Minimization of the energy functional Fε(φ, f1, f2, c1, c2) in Eq. (11) with re-

spect to φ can be achieved by solving the gradient descent flow equation

∂φ

∂t
= δε(φ)(F1 + F2) + νδε(φ)div

( ∇φ

|∇φ|
)

+ μ

(
∇2φ − div

( ∇φ

|∇φ|
))

(20)

where

F1 = (1 − ω)[−λ1

∫
Kσ(y − x)|I(x) − f1(y)|2dy

+ λ2

∫
Kσ(y − x)|I(x) − f2(y)|2dy] (21)

and

F2 = ω[−λ1|I(x) − c1|2 + λ2|I(x) − c2|2] (22)

We call F1 and F2 the local intensity fitting (LIF) force and global intensity

fitting (GIF) force, respectively.

The influence of the LIF force and GIF force on the curve evolution is com-

plementary. When the contour is near object boundaries, the LIF force is

dominant, which attracts the contour toward object boundaries and finally

stops the contour there. Therefore, the location of the final contour is deter-

mined by the LIF force. When the contour is far away from object boundaries,

the GIF force is dominant, while the LIF force is close to zero. This can be

illustrated by an example shown in Fig. 3. The initial contour and the contour

after 10 iterations are plotted in yellow and green respectively. The blue and

red arrows represent the LIF and GIF forces 2 , respectively. It can be seen that

2 According to the general relation between curve evolution and level set evolution

[25,6], the direction of the LIF and GIF forces is −∇φ (see Appendix for detailed

explanation).
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the LIF force is dominant near the object boundaries, while the GIF force is

dominant at locations far away from the object boundaries.

GIF force

LIF force

Initial contour

Intermediate contour

Fig. 3. Influence of LIF and GIF forces.

3.2 Extension to Multi-phase Level Set Formulation

The model proposed above is a two-phase level set formulation, which is not

able to segment multiple regions that are adjacent to each other (a situation

often referred to as multiple junctions). For example, in brain MR images,

the regions of white matter (WM), gray matter (GM), and cerebrospinal fluid

(CSF) may be adjacent to each other. In this section, we extend the LGIF

model to a multi-phase level set formulation to segment multiple junctions.

An important application of this multi-phase formulation is for the segmen-

tation of WM, GM and CSF. In multi-phase level set formulation, n level set

functions can represent 2n regions [10]. The multi-layer level set formulation

can also represent multiple regions [26]. In this paper, we focus on four-phase

formulation, which is sufficiently to segment brain MR images. Two level set

functions φ1, φ2 are used to define the partition of image domain into four

disjoined regions [10]: {φ1 > 0, φ2 > 0}, {φ1 > 0, φ2 < 0}, {φ1 < 0, φ2 > 0},
{φ1 < 0, φ2 < 0}. We define the following energy functional,
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F(φ1, φ2, f1, f2, f3, f4, c1, c2, c3, c4)

= (1 − ω)
4∑

i=1

λi

∫ ∫
Kσ(x − y)|I(y) − fi(x)|2Mi(y)dydx

+ω
4∑

i=1

λi

∫
|I(x) − ci|2Mi(x)dx

+ ν(Lε(φ1) + Lε(φ2)) + μ(P(φ1) + P(φ2)) (23)

where M1 = Hε(φ1)Hε(φ2), M2 = Hε(φ1)(1−Hε(φ2)), M3 = (1−Hε(φ1))Hε(φ2),

M4 = (1 − Hε(φ1))(1 − Hε(φ2)), and Lε(φi) =
∫

|∇Hε(φi(x)|dx, and P(φi) =∫
1

2
(|∇φi(x)|−1)2dx. We fix λi = 1 in our implementation for the multi-phase

formulation of LGIF model. Therefore, we omit λi for simplicity of notation.

Minimizing Eq. (23), we obtain f1, · · · , f4, c1, · · · , c4 as follows:

fi(x) =
Kσ(x) ∗ [MiI(x)]

Kσ(x) ∗ Mi
, ci =

∫
I(x)Midx∫

Midx
, i = 1, · · · , 4 (24)

Minimizing the energy functional F in Eq. (23) with respect to φ1, we derive

the gradient descent flow:

∂φ1

∂t
= δε(φ1)

(
F13 + F24

)
+ νδε(φ1)div

( ∇φ1

|∇φ1|
)

+μ

(
∇2φ1 − div

( ∇φ1

|∇φ1|
))

(25)

where

F13 = Hε(φ2)(e3 − e1) (26)

F24 = (1 − Hε(φ2))(e4 − e2) (27)

and ei is a function

ei(x) = (1 − ω)
∫

Kσ(y − x)|I(x) − fi(y)|2dy + ω|I(x) − ci|2 (28)
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Likewise, minimizing the energy functional F with respect to φ2, we derive

the gradient descent flow:

∂φ2

∂t
= δε(φ2)

(
F12 + F34

)
+ νδε(φ2)div

( ∇φ2

|∇φ2|
)

+μ

(
∇2φ2 − div

( ∇φ2

|∇φ2|
))

(29)

where

F12 = Hε(φ1)(e2 − e1) (30)

F34 = (1 − Hε(φ1))(e4 − e3) (31)

4 Implementation and results

4.1 Two-phase segmentation

The level set function φ can be simply initialized as a binary step function [6]

which takes a negative constant value −c0 inside a region R0 and a positive

constant value c0 outside. We choose c0 = 2 in the experiments shown in this

paper. The proposed method has been tested with synthetic and real images

from different modalities. Unless otherwise specified, we use the following de-

fault setting of the parameters in our method: σ = 3.0, λ1 = λ2 = 1.0, time

step �t = 0.1, μ = 1.0, ω = 0.01, and ν = 0.001 × 255 × 255.

We first apply our method to segment a synthetic image shown in Fig. 4. Note

that this image is the same as Fig. 1 but with the initialization as shown in

Fig. 4(a), which has shown that the LBF model fails to segment the object

correctly with such initialization. The results of the CV model, LBF model
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and our method are shown in Fig. 1(b), Fig. 4(b) and 4(c), respectively. It

is clearly seen that the CV model cannot handle intensity inhomogeneity as

explained in Section 2.1, and the LBF model got trapped into a local minimum

without taking global image information into account. By contrast, our model,

driven by the LIF and GIF forces, successfully extracts the object boundaries.

(a) (b) (c)

Fig. 4. Experiment for a synthetic image with intensity inhomogeneity. (a) Initial

contour. (b) Result of the LBF model. (c) Result of our method.

Intensity inhomogeneity often occurs in medical images, such as the images

shown in Fig. 5. All of them are typical images with intensity inhomogeneity.

The first row shows the results for a vessel image. In this image, part of the

vessel boundaries are quite weak, which renders it a nontrivial task to segment

the vessel from the background. The second row shows the result for a brain

MR image. As can be seen in this image, some intensities of the WM in the

upper part are even lower than those of the GM in the lower part. For this

image, we used the parameters λ1 = 1.0, λ2 = 2.0, and ν = 0.003× 255× 255.

The bottom row shows the result for a CT image of heart. The contour is

placed across the interventricular septum of the heart. In next subsection,

we show an example that the LBF model fails to extract ventricles with this

initialization (see Fig. 6). Nevertheless, satisfactory segmentation results have
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been obtained for these images, as shown in the last column of Fig. 5.

Fig. 5. Application to medical images. The curve evolution process from the initial

contour (in the first column) to the final contour (in the fourth column) is shown

in every row.

Since PS model is computationally expensive due to its complex procedure

[18], we focus on the comparison of our model with the PC model [12] and

the LBF model on the images shown in the Fig. 5. Fig. 6 shows the results of

the PC model (the left column), the LBF model (the middle column) and our

method (the right column). For the vessel image (the first row), our method

and the LBF model have similar final results, while the PC model fails to

extract the object boundaries. The second row shows the results on the brain

MR image. It can be seen that small portions of the WM are missing. For

the heart image (the third row), our method extracts the ventricle bound-

aries accurately, while the contour of the LBF model is somewhat noisy and

finally fails to extract the object boundaries. With the same initializations,

our method can achieve satisfactory results while other methods fail, which
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demonstrates the advantage of our model in term of robustness to the initial-

ization.

Fig. 6. Comparison of our method with the PC model and LBF model. The initial

contours and the final contours are plotted as the dashed green contours and solid

red contours, respectively. Column 1: Results of the PC model; Column 2: Results

of the LBF model; Column 3: Results of our method.

4.2 Multi-phase segmentation of brain MR images

The segmentation of the brain MR images into WM, GM, and CSF has been

an important task in medical image analysis. A major difficulty in segmenta-

tion of MR images is the intensity inhomogeneity due to the radio-frequency

coils or acquisition sequences. Our method is able to address the difficulty. In

this subsection, we will show an application of our multi-phase model to the

segmentation of brain MR images.

We first apply our multi-phase model to segment a 2D MR image from McGill
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Brain Web [27] with noise level 3%, and intensity non-uniformity (INU) 40%

as shown in Fig. 7(a). We have increased INU to test the validity of our method

to handle intensity inhomogeneity. In fact, the intensity of WM in the lower

part is even lower than that of the GM in the upper part. The contours are

initialized as two circles shown in Fig. 7(a). The curve evolution is depicted

in the top row of Fig. 7. It can be observed that WM, GM, and CSF are well

segmented by our method. Total number of iterations is 182.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7. Application to brain MR image segmentation. The red curve and blue curve

are zero level sets of φ1 and φ2. (a) and (f): Initial contours. (b-e) and (g-j): Inter-

mediate results of our method. Upper row: results with user interaction. Lower row:

results with automatic initialization.

In practice, to reduce the number of iterations, we can initialize the contour

close to the true boundaries by a preliminarily segmentation. In our imple-

mentation, we use a simple thresholding to obtain two regions: one as the

preliminarily segmented region of background and CSF, the other as the pre-

liminarily segmented region of GM and WM, denoted by R. Then, we perform

the dilation and erosion operations to expand and shrink the region R, respec-

tively. As a result, we obtain a expanded version of R, denoted by Rexpanded,
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and a shrunk version of R, denoted by Rshrunk. Following the initialization

scheme in [28], the level set functions φ1,0 and φ2,0 are initialized as

φ1,0(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c0, if x 	∈ R;

−c0, else;

(32)

φ2,0(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c0, if x 	∈ Rexpanded or x ∈ Rshrunk;

−c0, else;

(33)

where c0 is a constant. Then the contours are initialized near the boundaries

of WM, GM and CSF. Thus, less iterations are needed to obtain the final

segmentation result. For example, the lower row of Fig. 7 shows the results

with the new initialization scheme. The initial contours are shown in Fig. 7(f).

The curve evolution is depicted in the lower row. The final segmentation is

similar with the one shown in the top row, but only 45 iterations are needed.

Note that new contours can emerge during the curve evolution shown in Fig. 7.

The emergence of new contours speeds up the curve evolution toward final

results. The emergence of new contours can be explained as follows. Note that

the terms δε(φ1)
(
F13 + F24

)
in Eq. (25) and δε(φ2)

(
F12 + F34

)
in Eq. (29)

have influence on the change of φ1 and φ2 in the entire image domain, since

the factor δε is non-zero by the definition of δε in Eq. (10). For points x far

away from the zero level contour but near an object boundary, the values

of
(
F13 + F24

)
and

(
F12 + F34

)
may still be large. Although the factor δε

takes small values far away from the zero level set, the terms δε(φ1)
(
F13 +

F24

)
and δε(φ2)

(
F12 + F34

)
are not zero and cannot be ignored, which can
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eventually change the values of φ1 and φ2. When the level set functions φ1

and φ2 are initialized to be small values, such as the binary step function used

in our implementation, new contours can emerge easily and quickly, even at

locations far away from current zero level set. This is because the factor δε

takes relatively larger values for small values of φ1 and φ2 (in our experiments,

the initial level set functions as binary step functions take values of c0 and

−c0 with c0 = 2).

Fig. 8 shows the surfaces of the GM and WM segmentation of real 3D brain

MR images with obvious intensity inhomogeneity. The upper and lower row

show the results obtained by the PC model [10] and our model, respectively.

It can be seen that GM obtained by the PC model is a little bit thinner at the

top of the brain and WM is seriously misclassified as GM. While the surfaces

obtained by our method are more accurate. To demonstrate the advantage of

our method clearly, we show four sagittal slices and the corresponding contours

obtained by the PC model and our method in Fig. 9. It can be clearly seen that

the PC model does not correctly segment images: part of the WM is incorrectly

identified as the GM, while part of the GM is labeled as the WM. By contrast,

our method recovers the boundaries of WM, GM, and CSF accurately.

4.3 Validation and Method Comparison

Fig. 10 shows the comparison of the proposed method with the methods of

Wells et al. [29] and Leemput et al. [30] on five brain MR images. These

two methods are based on expectation-maximization (EM) algorithm for in-

terleaved bias field correction and segmentation. The first column shows the

original images. The ground truth segmentation of the first image (the top-
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Fig. 8. Results for 3D brain MR images. Row 1: GM and WM surfaces obtained by

the PC model; Row 2: GM and WM surfaces obtained by our model.

Fig. 9. Results of sagittal slices from 3D segmentation of Fig. 8. The red curve and

blue curve are zero level sets of φ1 and φ2. Row 1: Original image slices; Row 2:

Results of PC model; Row 3: Results of our method.

left) was obtained from Brain Web [27]. The other four images are real images

and the corresponding ground truth of these images were obtained from ex-

pert manual segmentation, as shown in the second column. The segmentation

results obtained by the methods of Wells et al. , Leemput et al. and the pro-

posed method are shown in columns 3, 4 and 5, respectively. The segmentation

results are visualized by displaying
∑4

i=1 ciMi. It can be observed that the re-
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sults of our model and the methods of Wells et al. and Leemput et al. look

similar by visual comparison. However, we can show by quantitative compar-

ison that our model produces more accurate results. The metric adopted in

this paper for comparison is the Dice Similarity Coefficient (DSC) [31], which

is defined as

DSC =
2N(S1

⋂
S2)

N(S1) + N(S2)
(34)

where S1 and S2 represent the obtained segmentation and ground truth, re-

spectively, and N(·) indicates the number of voxels in the enclosed set. The

closer the DSC value to 1, the better the segmentation. Fig. 11 shows the DSC

values for WM and GM of these methods. It can be seen that our method

achieves more accurate results.

5 Discussion

5.1 The parameter ω

In this paper, the parameter ω is a constant, which controls the influence of

the LIF force and GIF force. When the intensity inhomogeneity is severe, the

accuracy of segmentation relies on the LIF force. In such case, we shall choose

small ω as the weight of the GIF force; otherwise the GIF force may prevent

the LIF force stopping at object boundaries. When the intensity inhomogene-

ity is not severe, for example, an extreme case of intensity homogeneity, we

can choose large ω as the weight of the GIF force, due to the GIF force is

sufficient to detect object boundaries, therefore, flexible initialization of the

contour is allowed. In the experiment, we need to choose appropriate value for
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Fig. 10. Comparison of our method with the methods of Wells et al. , Leemput et

al. on brain MR images. Column 1: Original images (The first image is the same

as the image shown in Fig. 7. The other four images are real images); Column 2:

Ground truth; Column 3: Wells et al. ; Column 4: Leemput et al. ; Column 5: Our

method.
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Fig. 11. DSC values for WM (left) and GM (right). The x-axis represents five images

in Fig. 10 in the same order.
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ω according to the degree of inhomogeneity. Fortunately, we find that ω = 0.01

is appropriate for all the images in this paper.

5.2 Effect of level set regularization term

The level set regularization term P defined in (6) is necessary in the proposed

variational level set formulation 3 . Without the level set regularization term

(i.e., μ = 0), the level set function φ typically grows to very large positive

or negative values on both sides of the zero level set, resulting in arbitrarily

large gradients there. This irregularity of φ causes errors in the computation

for the numerical solution to the evolution equation and affects the accuracy

of final segmentation results. Therefore, an extra numerical remedy, known

as re-initialization, is usually required to periodically stop the evolution and

reshape the degraded level set function as a signed distance function for further

evolution and accurate computation. By contrast, the regularity of the level

set function in our method is inherently maintained by the level set evolution

itself due to the regularization mechanism of the level set regularization term.

Fig. 12 shows three experimental results for the MR image in Fig. 5 for the fol-

lowing three cases: a) with level regularization; b) without level set regulariza-

tion, and re-initialization is not performed; c) without level set regularization

but re-initialization is performed. Note that the initial contour is the same as

shown in Fig. 5. For comparison, we show the segmentation results and the

final level set functions for this figure. For the case a), it can be clearly seen

3 The level set regularization term can be defined as P =
∫

p(|∇φ(x)|)dx, where p is

a function. For example, we can choose P =
∫

(|∇φ(x)|−1)2dx or P =
∫ |∇φ(x)|2dx.

More general level set regularization term is proposed by Li et al. in [28]
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from the result in Fig. 12(d) that the regularity of φ is well preserved, and

the segmentation result is desirable. For the case b) (the second column), the

irregularity of φ affects the accuracy in the segmentation and creates some

unwanted noisy features as shown in Fig. 12(e). For the case c) (the third

column), the regularity of φ is preserved, however, the segmentation result is

inaccurate, which can be clearly seen in Fig. 12(c).

(a) (b) (c)

(d) (e) (f)

Fig. 12. Effect of level set regularization. (a) and (d) Segmentation result and final

level set function φ with level set regularization. (b) and (e) Segmentation result

and final level set function φ without level set regularization, and without re-initial-

ization. (c) and (f) Segmentation result and final level set function φ without level

set regularization, but with re-initialization.

We also test our multi-phase model for the cases a), b), and c) as shown

in Fig. 13. It is evidently that the segmentation result of our method with

level set regularization is desirable as shown in Fig. 13(a). The result is quite

consistent with the brain anatomy. In contrast, for the cases b) and c), the

results (Figs. 13(b) and 13(c)) are not consistent with the anatomy of brain in

some areas, such as those pointed by the dashed green arrows. For example,

WM is mislabeled as GM in those areas.
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(a) (b) (c)

Fig. 13. Effect of level set regularization. (a) Result with level set regularization.

(b) Result without level set regularization, and without re-initialization. (c) Result

without level set regularization, but with re-initialization.

6 Conclusion

In this paper, we propose a new region-based active contour model in a varia-

tional level set formulation. We define an energy functional with a local inten-

sity fitting term, which is dominant near object boundaries and responsible

for attracting the contour toward object boundaries, and an auxiliary global

intensity fitting term, which incorporates global image information to improve

the robustness of the proposed method. Our model can handle intensity inho-

mogeneity, and allows for flexible initialization. In addition, the regularity of

the level set function is intrinsically preserved by the level set regularization

term to ensure accurate computation and thus avoid expensive reinitialization

procedures. We further extend our two-phase LGIF model into a multi-phase

level set formulation. Experimental results demonstrate desirable performance

of our extension method for brain MR images with intensity inhomogeneity.

27



Appendix

The level set method is a numerical technique for tracking interfaces and

shapes. The motion of the interfaces can be described by an curve evolution

equation of a parameterized curve C in the form

∂C
∂t

= FN (35)

where F is the speed function, and N is the inward normal vector to the curve

C. The basic idea of the level set method is to embed the dynamic curve C(p, t)

as the zero level set of a time dependent function φ(x, y, t), and then convert

the curve evolution in Eq. (35) to the evolution of the embedding level set

function φ. If the embedding level set function φ takes negative values inside

the zero level contour and positive values outside, then the inward normal

vector can be expressed as N = − ∇φ
|∇φ| . By simple calculus manipulations, the

curve evolution equation (35) can then be converted to the following level set

evolution equation

∂φ

∂t
= F |∇φ| (36)

which is a Hamilton-Jacobi equation.
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