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Abstract

We consider resonance phenomena, for the scalar wave equation in an inhomogeneous
medium. Resonance is a solution to the wave equation which is spatially localized while
its time dependence is harmonic except for decay due to radiation. The decay rate,
which is inversely proportional to the qualify factor, depends on the material properties
of the medium. In this work, the problem of designing a resonator which has high
quality factor (low loss) is considered. The design variable is the index of refraction of
the medium. High quality resonators are desirable in a variety of applications, including
photonic band gap devices.

Finding resonance in a linear wave equation with radiation boundary condition in-
volves solving a nonlinear eigenvalue problem. The magnitude of the ratio between real
and imaginary part of the eigenvalue is proportional to the quality factor ). The op-
timization we perform is finding a structure which possesses an eigenvalue with largest
possible (. We present a numerical approach for solving this problem. The method
consists of first finding a resonance eigenvalue and eigenfunction for a non-optimal struc-
ture. The gradient of () with respect to index of refraction at that state is calculated.
Ascent steps are taken in order to increase the quality factor Q. We demonstrate how
this approach can be implemented and present numerical examples of high @ structures.

1 Introduction

This work is motivated by recent research in photonic band gap devices. Photonic band gap
refers to the existence of frequency bands in which no light can propagate. This effect can be
realized in an infinite medium whose dielectric constant is spatially periodic [20, 11]. When
a defect is introduced into such a medium, it is possible to create standing waves which are
localized near the defect 7, 12]. A defect mode can be exploited in different applications.

Lossless defect modes exist only in theory since medium of infinite extents is an idealiza-
tion. When a photonic band gap medium is finite, waves can escape from the structure to
the surrounding medium. Interestingly, one is still able to create fields which are localized.
However, due to the losses to radiation, instead of a standing wave of constant amplitude,
one is left with a standing wave whose amplitude decays in time. Such a solution to the
time-dependent wave equation is called a resonance.

Resonance calculations for the wave equation involve finding a solution whose behavior
is not physical but approximates well the time dependent nature of the resonance phenom-
enon [10, 13]. Consider the initial value problem for the 1-D time-dependent Schrédinger’s
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equation
U = Ugy — V(2)u, —00 <z < 00,
and initial conditions
u(z,0) = ug, w(x,0)=wuy.

We assume that the potential satisfies V(z) = 0 for |x| > z¢, and that V(x) has a well at
the origin. Then energy will be trapped by the well, but because the well has finite wall
thickness, energy tunnels out of the well and radiates to infinity. Therefore, the system loses
energy.

To solve this problem, one recasts the problem in finite domain and apply radiation
boundary conditions

U = Ugy — V(2)u, || < x0,
uy —up =0, = —xp,

Uy +ur =0, = x0.
We seek a solution of the form u(x,t) = p(x)e™™", which leads us to consider

"+ V(z)p =wp, |z| <z,
¢ +iwp =0, = -,
¢ —iwp =0, = =ux.

Solutions to this problem are found for a countable number of complex w, denoted here by
{wn}, with the following property [13]

wp = 10y, — Bp, where a,, < 0.

The ordering is ap4+1 < ay. The eigenfunctions, are referred to as ‘quasi normal modes’,
while their eigenvalues are called resonances. Note that ¢, (x) grows exponentially

Pn(z) ~ e~omlel
so they are non-physical. Never-the-less, we have the following estimate [13]. Choose to, a,
b, and e. Then there exist a constant C' depending on ¢y, a, b, and € such that

N
u(x, t) — Z Ane(an“l‘lﬂn)t(pn(x) S Ce(—|OZN+1|+e)t’
n=1

holds for every ¢t > tg, and a < x < b. This means that after some time, the solution is
well described by a superposition of (non-physical) modes that oscillate at frequency £, die
away exponentially in time at the rate of «,,. In particular, if we have an eigenvalue w,, such
that |ay,| is very small, the solution behaves like a damped standing wave after large times.
We note another way to characterize these quasi-normal modes is by looking at the
spectral problem
—"+V(x)p =w?p, z€R,

with V(x) as previously described. For any real w, we can write two linearly independent
solutions to the differential equation. We can in fact write the Green’s function as products



of these solutions divided by the Wronskian in the usual way. The resonance corresponds
to values of w for which the Wronskian vanishes. This happens when we continue the
Wronskian into the complex plane. The quasi-normal mode can be identified as one of the
solutions (which are linearly dependent) of the differential equation at this value of w.

The subject of this paper is to create a medium which is efficient at trapping waves; i.e.,
a good resonator. That is, we seek a medium which has a resonance w, = ia, — G, with
very small |ay,|. To give a measure of the decay, we use the notion of quality factor Q. It
is defined as the ratio between total energy stored and the energy dissipated per cycle. We
can understand this concept by studying a damped mass-spring system, whose motion x(t)
is governed by [14] ,

% + 27% +wizr =0, (1)

where v > 0 and wg is the natural frequency. The general solution of this second-order
ordinary equation for small damping (- < 1) is

z(t) = Ae " cos(wit + 9),

where w; = \/‘W is the damped frequency and ¢ is the phase shift. The constants A
and ¢ are uniquely determined by the initial conditions. Since the total energy

2
B =5 |G| + pebteto

and the period is T' = 27 /w1, we easily find that

The quality factor

Total energy stored at beginning of the cycle

=2
@=2r |Energy lost during a cycle|
E(O) 1 w1
2T =2 = — .
E(0) — E(T) 1—e 25 2y

The independent solutions of (1) are of the form e™! where w = 4w + iy. Therefore an
alternate interpretation for () is

1 Real part of w

12

Q 2)

2 | Imaginary part ofw |’
This simple derivation illustrates how we compute the quality factor for a damped mass-
spring system. The energy loss here is due to the mechanical damping which shows up in
the imaginary part of w. If there is little damping, i.e. - is small, @) is high.

For the wave equation, the quality of a resonator () can be defined in exactly the same
manner as that for the damped oscillator. That is, if the medium possesses quasi-normal
modes, each of these modes has a quality factor ) which is one half the real part of the
complex eigen frequency divided by the imaginary part. In this paper, we are interested
in designing a medium, that is, a distribution of the material properties in that medium in



order to achieve a high quality for a particular mode. We devise a gradient ascent method for
the procedure by starting from an initial medium. The medium is then changed iteratively,
each time improving the quality factor of a mode. Each iteration involves computation of
the quality factor and its gradient with respect to the medium. These involve solution of
a nonlinear eigenvalue problem, which could be quite large depending on the size of the
medium and the wavelength of the eigenfunction. In Section 2, we decribe a way to find
the quasi normal modes and resonances. We show how to calculate the gradient of the
quality ) with respect to the material property in Section 3. The gradient allows us to
formulate an algorithm for maximizing (), which we describe in Section 4. In Section 5,
we give numerical simulations to illustrate our approach. The paper ends with a discussion
section. An appendix contains a discussion of the one-dimensional problem which exhibits
special features.

2 Resonance calculation via integral equation

The method we describe below can be applied to resonance problems in any dimension, and
for Maxwell’s equations. However, we will focus the discussion to a two-dimensional scalar
wave problem. Consider Helmholtz’s equation

Au+w (14 p(x))u=0, zcR%L (3)

The medium, which is inhomogeneous, is characterized by the function p(x), which we
assume to satisfy 0 < p(z) < p4. That is, we assume that the material with which we
construct has index of refraction greater than that of air. Moreover, p(z) is supported
inside a bounded region 2. It can be seen that p is the square of the index of refraction.
Throughout this paper, we may refer to p as the index.

The field u satisfies the Sommerfeld radiation boundary condition

rli)rgo\/? (g:f — iwu) =0. (4)
Since (4) is not a local boundary condition, (3) with this boundary condition is not a stan-
dard boundary value problem. One can replace the radiation condition with an approximate
absorbing boundary condition such as the Engquist-Majda [6] boundary condition, the per-
fectly matched layer (PML) [3], or a truncated Dirichlet-to-Neumann series [8]. Applying
any of these conditions with (3) turns the problem into a boundary value problem from
which the quasi-normal modes can be determined. Here we choose an alternate approach.

The Green’s function for the scalar wave equation in a homogeneous infinite medium
satisfies

AG + WG =6(x — ).
In two dimensions, we have .
Gw,x) = - Hy(wlal),

where H!} is the Hankel function of the first kind. It is clear that G(w,r) satisfies the
Sommerfeld radiation condition. We can now rewrite the solution to (3)—(4) in integral form

ulz) + /Q Glw, — y)p(y)uly)dy = 0. (5)
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To find the quasi-normal modes, we seek values of w in (5) that yield nontrivial solutions
u(x). This problem can be seen as a nonlinear eigenvalue problem since the ‘eigenvalue’ w
appears not only as a multiplier but also in the kernel G(w,-). One can also see that the
eigenvalue must be complex by multiplying the equation with complex conjugate of wu(x)
and integrating over 2. We will also have use for the left quasi-normal mode defined by the
equation

o(2) + wPp(z) /Q Gw,z — y)o(y)dy = 0. (6)

Next, we will discretize the equations.

In order to compute the convolution in the integral term efficiently, we use the Fast
Fourier Transform (FFT). Since the integral term has weak singularity, a corrected trape-
zoidal quadrature rule, described below, will be used to take this into account. The domain
Q = [0,27)? is discretized with equal spaced points (z,, z4) with p,q =0,1,2,..., N, x; = hj
and h = 27/N.

Define the operator A(w) as

Alw)u = u(x) + w? /Q Gl(w, = — y)p(y)uly)dy, (7)

and its adjoint operator A*(w) is

A (@) = v(x) + wPp(z) /Q G,z — y)o(y)dy. (®)

The Green’s function G(w, ) has a logarithmic singularity at z = 0

1 1 w 1
Gu(x) ~ o Inz + g(ln 3 + 0.5772156649015328606) — —.
Thus, special care must be taken when applying a quadrature rule to evaluate the integrals
above.

The discrete approximations of A(w) and A*(w) in (7) and (8) by the trapezoidal rule
are

N-1
[Ah(w)u]p,q = u(zp, T4) + w?h® Z 9(W)p—r,g—sp(Tr, Ts)u(@r, T5), 9)
r,s=0
and
N-1
[AZ(W)U]p,q = v(@p, Tq) + thzp(xpa Zq) Z 9(@)p—rg—sv(Tr, Ts). (10)
r,s=0

The function g(w)p,q in (9)—(10) are samples of the Green’s function when it is regular, and
corrected versions to take into account the weak singularity when p = ¢ = 0. The correction
is devised to obtain O(h*) accuracy in the integration when the function integrated against
G(w,z — y) is smooth [1, 2]. The function g(w),q is given by

[ EE WO k) (0= 00
9\W)p,q _iH(%(w\/m) if pP+¢*>0 7

with v = 0.5772156649015328606 and c¢; = —1.2133459579012365.



Given p(x), we have a nonlinear eigenvalue problem
An(w)u =0, (11)

to solve for eigenvalues w and eigenfunctions u. A classical method for solving the nonlinear
eigenvalue problem is the inverse iteration. It amounts to applying Newton’s method to
solve a system of nonlinear equations [16].

The inverse iteration finds one eigenvalue starting with an initial guess for the eigen-
function. We will need the derivative of the operators Aj(w) and Ay (w) with respect to w,
which we denote by A} (w) and A}'(w). We can solve for both the left and right eigenvectors
simultaneously. The iterative process is as follows. For s =0,1,2,---,

1. Solve for ﬂffﬂ) and f}ésﬂ) in

Ap(@ i = 4, @)y,
A (@)oY = A7 (@090,
2. Update the eigenvalue according to

ST 4 (6D
L) o _ O ) An(@),

3. Normalize according to

~(s+1 ~(s+1
ugsﬂ) _ U; ) vl('LS+1) _ U;(L )
~(s+1) "’ ~(s+1),°
a0 [l

We need to obtain a good initial guess for the inverse iterations. To do this we start by
choosing a frequency wg which is close to the desired frequency of the quasi-normal mode.
Then we solve the linear eigenvalue problem

N—-1
1
—h? Z g(wo)p—r,q—sp(xznxq)u($p733q) = Eu(xznxq)a

r,s=0

for eigenpairs (w,u). We then pick the eigenvectors u whose eigenvalue is closest to wy and
set this as the initial guess for u(?). Let us denote this eigenvalue by wg. The initial guess
for the right eigenvector v(9) is obtained by solving the linear system

N—-1
0 = v(aps20) + (3)h20(2p70) 3 G(60)pmrgosv(ar, as).

r,5=0

There is absolutely no guarantee that the inverse iterations will yield an eigenvalue close to
wo, although we do observe this in our computations.

We note that we do not need to explicitly evaluate the matrices corresponding to A (w)
and A} (w). Instead, we use the FFT to evaluate their action of given vectors through (9)-
(10). This fact leads us to use generalized minimal residual (GMRES) [9] to solve the linear
systems involved in Step 1 of the inverse iterations.



In the inverse iteration, we need to compute the derivative of A(w) with respect to w.
We use the definition of the operator in (7) and differentiate both sides to obtain

W - 2“’/G(W= z —y)p(y)u(y)dy + MQ/Gw(w,a: —y)p(y)u(y)dy.

Here G, (w, z) = LH{(w|z|)|z|. We note that
1

2nw’

Gu(w,0)

which is not singular. Therefore we can use the FFT and regular trapezodial rule to compute
the second integral term. We have

N-1
[A} (w)ulpy = 2wh? Z 9(W)p—r g—sp(Tr, Ts)u(xy, T4) (12)

r,s=0
N-1

+w2h2 z g,(w)pfr,qfsp(xra ZL'S)U(JJT, xs)a

r,s=0

where

/ B — if (p,q) =(0,0)
9 (Whpq = THl(wy /22 +$g)\/x12, +a2 if pPP+¢*>0

A similar expression is derived for A}'(w). We now have all the ingredients needed to perform
the inverse iterations to calculate a quasi-normal mode given a medium, described by p(z).

We note that the calculation can proceed in a similar way in three dimensions. The
calculation is a little more involved if one is to consider Maxwell’s equation. For the 1-D
problem, exact absorbing boundary conditions are local. We find that the quasi-normal
mode calculation in this case amounts to a quadratic eigenvalue problem. We discuss this
in detail in the Appendix.

3 Q-factor maximization

The procedure by which the Q-factor is optimized is as follows. We start with a medium
p(x) and calculate a quasi-normal mode associated with the medium. Then we proceed by
changing p(z) in order to increase the Q-factor associated with that quasi-normal mode. The
medium is assumed to satisfy 0 < p(x) < p4. We note that this is not a rigorous optimization
but rather it is a continuation method. The difficulty in posing a mathematically correct
optimization problem associated with eigenvector optimization has been pointed out in [5].
Indeed the computational method described here is fashioned after that described in [5].

In order to devise a maximization method, we need to calculate the gradient of the Q-
factor with respect to the medium p(x). The basic method to do this is a perturbational
calculus. Consider the nonlinear eigenvalue problem (11) involved in finding a quasi-normal
mode

Ap(w, p)u = 0.

We have explicitly denoted the dependence of the operator Ay on w and p; its dependence
is described in (9). Suppose the pair (w,u) satisfy the above nonlinear equation. Next we



introduce a small perturbation to the medium ép. What we want to know is how w and u
change under this perturbation.
We can formally write the following

Ap(w +dw, p+dp)(u+ du) = 0.
Expanding and keeping only first order terms in the expansion we get
[Ap(w, p) + A} (w, p)dw + § AL (w)] (u+ du) ~ 0. (13)

Here we denote by 0Aj(w) the change in the matrix Ay (w, p) caused by the perturbation
dp. Upon further expansion, and again keeping only first order terms, we obtain

A(w, p)ou + dw A} (w, p)u + §Ap(w)u = 0.
Let v be the left eigenvector satisfying
AZ(w, p)U =0, or UTAh(wap) =0.

See (10) for the definition of the adjoint operator. Then, Multiplying (13) by v’ and
rearranging, we get
vl § AL (W) u
T A (w, p)u
This equation shows how a nonlinear eigenvalue changes when the matrix is perturbed. This
perturbational problem has been studied in [18].

Our interest is in the Q-factor. Recall from (2) the definition of @), which we rewrite as

dw = — (14)

i(w+w)

=30 -a)

If the eigenvalue is perturbed by dw, the Q-factor perturbation is

(Wow — wiw)
R

0Q =1 (15)

Having obtained the expression for how () changes as the material p is perturbed by dp, we
can proceed to obtain a formula for the gradient of () with respect to p.
We note that from (9) we can calculate

N—-1
[0 AL (W)u]py = w?h? Z 9(W)p—r.q—s0p(xy, Ts)u(zy, Ts).

r,5=0
We can now fill in the formula for dw in (14). Let

B =T A} (w,p)u

N—-1 N-1
= 2w?h? Z Z W)p—rg—sP(Tr, Ts)u(zy, x5)0(Tp, T4q)
p,q=0r,5=0
N—1 N-1
+wh? Z Z 9 (W)p—rg—sp(@r, s u(r, 5)0(Tp, Tq).
p,g=07,5=0



The value of B is known as soon as we have found the right and left eigenvectors u and v.
The formula for dw is

N—-1 N—-1
1 -
dw = szhQ E E 9(W)p—r.g—s0p(Xr, Ts)U(Tp, T5)V(Xp, Tq). (16)
p,q=07,5=0

Thus, given dp, one can easily calculate dw from (16). Let us define

N-1

1 -
K s= EthQ Z 9(W)p—r g—st(zy, T5)v(xp, 4), (17)
p,q=0
so that we can write
N-1
ow = Z K, s0p(zy, xs).
r,s=0
Let us rewrite 0@ in (15) as
i _
= —  (Wow — wow) .
0Q (Tmw)? (w Ww—w w)

Combining this with the last expression for dw leads to

. N-1
—1

9@ = fimwpr 2 [P — K] Splar, )

r,5=0

From this expression, we make the identification that the formal gradient of @ with respect

to the medium is )
—1 -
[gradQ]r,s = m [wKr,s - WKT,S] ) (18)

where K, ; is given in (17). We note that the terms on the right-hand side produce a real
number since (WK, ; — wK, | is imaginary.
We can now devise a simple steepest ascent algorithm to increase @Q:

1. Begin with a medium p.

2. Find a quasi-normal mode u and the left eigenvector v.
3. Calculate quality factor @) and its gradient grad@.

4. Update p <+ p + 7grad@.

5. Project candidate p so that it falls in the interval [0, p].
6. Return to step 2.

As we iterate, we note that not only the medium p changes, the resonance frequency w and
the quasi-normal mode also changes. If we take 7 sufficiently small, we should be able to
track the same resonance through the iterations, and that ) will be increased at each step.
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Figure 1: On the left is the initial index profile and the absolute value squared of a quasi-
normal mode with eigenvalue w = 2.0209 —0.06057. This mode is optimized for large ). The
maximized profile is shown on the right. It possesses a quasi-normal mode with eigenvalue
w = 2.0215 — 7.2877 x 10~°i; the absolute value squared of the quasi-normal mode is shown.

4 Numerical examples

We begin with 1-D calculations. For simplicity, we seek quasi-normal modes which are
symmetric about x = 0. The integral equation is, c.f. (5)

L
ulz) + w? /0 Glw, . 9)p(y)uly)dy = 0.

We seek w such that the above yields a nontrivial solution satisfying w(0) = 0. The index
p(x) is supported in the interval [0, L]. The Green’s function is simply

—= (eMY 4 eTY) T x>y >0
G(wamvy) - { _z% Eeiwx +eiwx)) eiwy O<z< y
Alternatively, we could use the formulation presented in the Appendix and solve for the
eigenmodes of a non-self-adjoint two-point boundary value problem.

In each of the experiment, we take L. = 27 and start with p = 2. We also require
0 < p(x) < 4. A quasi-normal mode near a given frequency is calculated. In Figure 1
(left), we show plots of p(z) and the absolute value squared of a quasi-normal mode, |u(z)|?,
whose eigenvalue is w = 2.0209 — 0.0605¢. The mode can be interpreted as a resonance with
frequency 2.0209 and decay rate of 0.0605. We remind the reader that this is a quasi-normal
mode, which is not physical. This fact can be seen by the growth of the mode amplitude as
Z increases.

We apply the maximization algorithm described in Section 4. The index profile shown
in Figure 1 (right) is the result of the maximization, and shown below it is the quasi-normal
mode amplitude squared. The frequency of this resonance has shifted slightly to 2.0215
while the decay rate has been reduced to 7.2877 x 107°. Notice that the resulting medium
consists of a periodic structure with a ‘defect’ near x = 0. The quality factor associated
with this resonance is Q = 1.3870 x 10%.

In the second example, we look for a resonance with a higher frequency. The medium
shown in Figure 2 (left) supports a resonance with frequency 2.8872 and decay rate 0.0605.
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Figure 2: On the left is the initial index profile and the absolute value squared of a quasi-
normal mode with eigenvalue w = 2.8872 — 0.0605:;. The maximized profile is shown on the
right. It possesses a quasi-normal mode with eigenvalue w = 2.9085 — 1.7973 x 107%; the
absolute value squared of the quasi-normal mode is shown.

The quasi-normal mode associated with this resonance is shown. The maximized profile
is given on the right, with the associated quasi-normal mode shown below. The resonance
frequency has shifted to 2.9085 while the decay rate has been reduced to 1.7973 x 1075. The
quality factor associated with this resonance is Q = 8.0914 x 10°.

In two dimensions, we face the computational challenge of large problem size. To resolve
a wave, it is desirable to have at least 12 to 15 points per wavelength. The structure we
are seeking varies at the scale of 1/4 to 1/2 the wavelength. Together, these requirements
force us to consider low frequency resonances (relative to the domain size). The domain
on which the index p(z,y) is allowed to vary is chosen to be the square [0,27]?. In the
two experiments we present, the initial distribution is a constant p(z,y) = 3. We require
0 < p(x,y) < 5. Two quasi-normal modes are calculated for this material distribution, one
with eigenvalue w = 1.0245 — 0.08244, and the other, with eigenvalue w = 1.2092 — 0.0584;.

Figure 3 summarizes the result of the first 2-D calculation. The left column shows the
index distribution p(z,y) at various stages of optimization, while the right column shows the
associated quasi-normal modes. The white parts on the left column are of value 5 while the
black part are of value 1. The quasi-normal modes have been normalized so that they are
of the same norm within the 27-by-27 domain to emphasize the localization effects. As can
be seen from the figure, the larger the quality factor (), the more localized the mode. The
final eigenvalue is w = 1.4340 — 0.0022, showing that the frequency has shifted slightly from
its initial value. What is more significant is that the imaginary part has been made smaller,
giving Q = 321.95. The quality factor of the initial, constant medium was () = 6.2158.

Next we considered the problem of maximizing @) for a slightly higher frequency reso-
nance. With the initial index of set at p(z,y) = 3, we considered a quasi-normal mode with
eigenvalue w = 1.2092 — 0.05844, and quality factor @ = 20.71. The results of our computa-
tion is summarized in Figure 4. Displayed again are p(z,y) and |u(x,y)|? at various stages
of maximization. The maximized resonance has Q = 2136.98, corresponding to frequency
1.5211 and decay rate 0.0007. In both cases, the optimized media are lace-like structures.
We conjecture that had we done the computation on a finer mesh and maximized a higher
frequency mode, the resulting medium will resemble a photonic bandgap structure — periodic
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Figure 3: The column on the left displays the index distribution p(z,y) through the max-
imization steps (black=5, white=0). The distribution is initially set to p(z,y) = 3. The
column on the right shows the absolute value squared of the quasi-normal mode being max-
imized. Note that high ) mode is very localized. The mode being maximized started with
resonance frequency 1.0245 and decay rate 0.08241. After maximization, the frequency is
1.4340, whereas the decay rate has been reduced to 0.0022, resulting in @ = 321.15.
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Figure 4: In this example, we maximize () for a slightly higher frequency resonance. The
column on the left displays the index of distribution p(x,y) through the maximization steps
(black=5, white=0). The distribution is initially set to p(z,y) = 3. The column on the right
shows the absolute value squared of the quasi-normal mode being maximized. The mode
being maximized started with resonance frequency 1.2092 and decay rate 0.0584. After
maximization, the frequency is 1.5211, whereas the decay rate has been reduced to 0.0007,

resulting in @ = 2136.98. 13



medium with a defect.

We note that a medium may admit multiple (nonlinear) eigenvalues. We have observed
that as maximization steps are taken, the quasi-normal mode that is being followed as the
medium changes may become one of two (or more) quasi-normal modes with the same
eigenvalue. When the process encounters such a point, it is not capable of determining
which quasi-normal mode to follow. We provided a ‘fix’ for such a situation in the case
of eigenvalue maximization [5]. Unfortunately the remedy does not work for the present
situation because we are calculating only a single quasi-normal mode at each step of the
iteration. One idea may be to take a step that is in the direction of increasing @) but at the
same time, the resulting quasi-normal mode after updating the medium should not differ too
much from the one in the previous iteration. This added complication in the computation
is beyond the scope the present work.

5 Discussion

We present a computational method for designing an optical resonator which has high qual-
ity factor, (). Optical resonance is achieved by creating a medium with variable index of
refraction. The quality factor is calculated from the resonance frequency associated with
a quasi-normal mode. We start with a known structure and a quasi-normal mode whose
quality factor we would like to improve. We devise a continuation method which ‘follows’
the particular quasi-normal mode as the medium is changed. We take steps in the gradient
direction of ) with respect to the medium to ensure that @ is increased.

Both 1-D and 2-D numerical results are provided. In 1-D our method produces a medium
which resembles a periodic structure with a defect. In 2-D it produces lace-like structures.
We were able to perform 2-D computations only for low frequency resonance because of
the computational resource limitation. We are confident that very efficient 2-D resonators
can be created using our method. It is clear that calculations in 3-D, and those using
vector Maxwell equation, will require enormous computational resources. This fact points
to the need for more efficient ways of modeling the wave phenomena, which may be achieved
perhaps through the use of asymptotics [15]. Finally, we observed that () is large when the
quasi-normal mode is highly localized. This seems to indicate that one may not need to
optimize () through resonance calculation. It might be possible that we can obtain good
designs by ignoring the radiation boundary condition and just simply look for a bounded
medium which supports a highly localized eigenmode, as done in [5].
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Appendix: Resonances for the 1-D wave equation
Consider the time-dependent 1-D wave equation for U (x,t)

I+ p(z)) Uy — Uz =0, z€R.
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The function p(z) satisties 0 < p < p4 and is zero for |z| > L. We wish to study resonances
of this system. We can put the problem in a finite domain by using the radiation boundary
condition at ¢ = £L

Ul(£L,t) £ Uy(£L,t) = 0.

This is because we have explicitly assumed that p(z) = 0 for |x| > L, and no energy can
propagate towards the origin from |z| > L. To find resonances, we consider solutions of the
type U(z,t) = u(z)e” . Therefore, u(x) satisfies

u" + (1 + p(z))u = (19a)
v (—=L) +iwu(—L) = (19b)
u' (L) — iwu(L) = 0. (19¢)

We now seek eigenvalues w such that the above system yields a nontrivial solution u(x). The
eigenfunctions u(x) are the quasi-normal modes. Note that this is a nonlinear eigenvalue
problem as the differential equation and the boundary conditions depend on w.

There are several ways we can solve this eigenvalue problem. We adopt the finite element
method [17]. First, we derive the weak formulation by multiplying (19b) with an smooth
test function v(x) and integrating by parts to obtain

L L
"(L) —v(—=L)u/'(-L) — o (x)v (z)dz + w? z)) u(x)v(z)dz = 0.
WD) = oD (1) = [ @ (a)da it [ 1+ pl@) ulepole)ds =0
Apply the boundary conditions (19¢)—(19¢c) to get
—iw [v(L)u(L) + v(—L)u(—L)] (20)

L L
—/ o ()0 (z)dx + w2/ (1+ p(x)) u(z)v(x)dx = 0.
-L -L

Next we discretize the problem by representing the solution as a linear combination of
piecewise linear finite element basis

) =) ujd;(x)
j=1

We use a regular mesh for convenience as discretize the interval [—L, L] into (n — 1) equal
subintervals of size h = 2L/(n—1). Welabel 2y = —L, 29 = —L+h, ..., x,, = L, and scale
¢j(x) such that they take on the value of 1 at these mesh points. As usual ¢j(x) = 0 for
x < xj_1 and x > x;41. The coefficients u; represent the values of u(z) at the mesh points
Zj-

Substituting the approximation in (21) gives us

—iw[v(L)un + v(—L)uq]

n

n L
_Zuj/ 2)dz + o Zlu]/_L(l—l—p( 2))o(a); (x)dx = 0.
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We choose the test function v(z) from the set of basis functions ¢;(x). Therefore we arrive
at

n L
—iwlon(LYn + dx(~Lyu] — 3 / O (2))(2)da (21)
=1 7t

n L
+w? Zuj / (1+ p(x))pr(z)pj(x)dr =0, for k=1,2,...,n.
-L

j=1
Defining the mass matrix M by
L
M= [ (1 pla)onla)s (@)
the stiffness matrix K by ;
K= [ o)),

and the damping matrix by

10 0
0 0
C=—
: 0 0
0 0 1|
Then (22) can be written as
(WM +iwC — K) u =0, (22)

which is a quadratic eigenvalue problem involving n-by-n matrices. This problem is easily
reduced to the familiar generalized eigenvalue problem

[(—(% é)‘w<é z&)](iﬁu)zo- (23)

Given p(x), this can be easily solved by existing eigenvalue solvers.
Denote
O(w) = w?M +iwC — K.

Since O(w)* = ©(—w), the distribution of the eigenvalues of ©(w) in the complex plane
is symmetric with respect to the imaginary axis. This is also true for the distribution of
eigenvalues (1) in the mass-spring system. If u is a right eigenvector associated with the
eigenvalue w, then u is a left eigenvector associated with the eigenvalue —w [19].
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