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S The general theory of a system of n ﬁrst order linear equatlons
= pn(Ox + pp(Ox, +...+ p,(Hx, + g,(2)
x; = Py (DX + Py (D)X, +...+ Py, (Dx, + g, (7)

xl”l N pnl(t)xl + an(t)XZ Tt pnn(t)xn + gn(t)
parallels that of a single nth order linear equation.

| = This system can be written as x' = P(¢)x + g(¢), where

X, (1)) (&,(1)) (pn(@) pp) - pL@))

X(t) = Xzz(t) . g(t) = gzz(f) . P(f) = pzl;(t) pzzz(f) pz,,;(t)

X, (1)) \&,(1)) \Pu(®) pp) - p, (1)




Vector Solutlons of an ODE System

3 A vector X = ¢(t) 1S a solutlon of X1 P(t)x + g(t) if the
components of X,

=¢, (1), x, =¢,(1),....x, =9,(?),
satisfy the system of equationson I: a < ¢ < f.
* For comparison, recall that x’ = P(¢)x + g(¢) represents our
system of equations
X, = puOx, + pp(Ox, +...+ p,(Ox, + g,(7)
Xy = Py (DX, + Py (DX, + ... Py, (DX, + g, (D)

xilfl T pnl(t)xl +pn2(t)x2 +"’+pnn(t)xn +gn(t)

* Assuming P and g continuous on /, such a solution exists by
Theorem 7.1.2.



Homogeneous Case Veetor Funetlon Notatlon

% Asin Chapters 3 and 4 we first examine the general
homogeneous equation x' = P(?)x.

* Also, the following notation for the vector functions
x(D, x@_ . x® .. will be used:

[, (7)) [ x,(7)) (x,,(0))

le.(f) X(z)(f) i x22.(t) e X(k)(f) X xzn_(t) S

X(1) (t) 0

\xnl (t)/ \xn2 (t)/ \xnn (t)/




Theorem 7.4.1
» If the vector functions x(1) and x(® are solutions of the system
x' = P(¢)x, then the linear combination ¢, x(!) + ¢,x(? is also a
solution for any constants ¢, and c,.

* Note: By repeatedly applying the result of this theorem, it
can be seen that every finite linear combination

x=cx () +c,x? @) +...+¢,x"()

of solutions x(D, x®, ... x® is itself a solution to x' = P(?)x.




Theorem 7.4.2
w If x(l),. X e X are ﬁneaﬂy independent solutions of the
system x' = P(¢)x for each point in I: o <t < 5, then each
solution x = ¢(¢) can be expressed uniquely 1n the form

Xx=cx"@O)+cx? @) +...+¢c x" (1)

» If solutions x(U,..., X are linearly independent for each
point in I: a < ¢t < f3, then they are fundamental solutions
on /, and the general solution 1s given by

x=cx"(@)+c,x? @) +...+¢c x" (1)




The Wronsklan and L1near Independence

% The proof of Thm 7.4.2 uses the fact that if x(l), x(z),. R X
are linearly independent on /, then detX(?) = 0 on 1, where

(x,(2) - x,(0))
X(@)=| : RS
\xnl(t) xnn(t))

» The Wronskian of xV,. .., x® is defined as
W[xD, ..., xD](f) = detX(?).

= It follows that W[x(D, ..., x"](#) # 0 on [ iff x(,. .., x" are
linearly independent for each point in /.




Theorem 7.4. 3

iit'

If x(D, x(z) x(”) are solutlons of the system X' = P(t)x on
Ia<t<p, then the Wronskian W[x(), ..., x"](?) is either
identically zero on [ or else is never zero on 1.

This result relies on Abel’s formula for the Wronskian

AW e R
7=(p11 t Py +"'+pnn):W(t)=ceﬂp R
{

where c 1s an arbitrary constant (Refer to Section 3.2)

This result enables us to determine whether a given set of
solutions x(, x®)_ ../ x( are fundamental solutions by
evaluating W[x, ..., x"](¥) at any point ¢ in o < ¢t < 3.



Theorem 7.4.4

ket (1) (0) 0
0 1 0

e =[0] e?=|0|...,e" =]

. . 0

\Y) \Y) \

= Letx(D, x®), .., x( be solutions of the system x' = P(?)x,
a < t < f, that satisfy the initial conditions
D R s Ry S RS
respectively, where £, 1s any pointin @ < ¢ < . Then
x(D, x@ . x™ are form a fundamental set of solutions of
x' = P(0)x.




