Boyce/DiPrima 9th ed, Ch 7.4: Basic Theory of Systems of First Order Linear Equations

Elementary Differential Equations and Boundary Value Problems, 9th edition, by William E. Boyce and Richard C. DiPrima, ©2009 by John Wiley & Sons, Inc.

* The general theory of a system of *n* first order linear equations $x'_{1} = p_{11}(t)x_{1} + p_{12}(t)x_{2} + ... + p_{1n}(t)x_{n} + g_{1}(t)$ $x'_{2} = p_{21}(t)x_{1} + p_{22}(t)x_{2} + ... + p_{2n}(t)x_{n} + g_{2}(t)$

 $x'_{n} = p_{n1}(t)x_{1} + p_{n2}(t)x_{2} + \dots + p_{nn}(t)x_{n} + g_{n}(t)$

parallels that of a single *n*th order linear equation. This system can be written as $\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t)$, where

 $\mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}, \ \mathbf{g}(t) = \begin{pmatrix} g_1(t) \\ g_2(t) \\ \vdots \\ g_n(t) \end{pmatrix}, \ \mathbf{P}(t) = \begin{pmatrix} p_{11}(t) & p_{12}(t) & \cdots & p_{1n}(t) \\ p_{21}(t) & p_{22}(t) & \cdots & p_{2n}(t) \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1}(t) & p_{n2}(t) & \cdots & p_{nn}(t) \end{pmatrix}$

Vector Solutions of an ODE System

* A vector $\mathbf{x} = \boldsymbol{\phi}(t)$ is a solution of $\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t)$ if the components of \mathbf{x} ,

 $x_1 = \phi_1(t), x_2 = \phi_2(t), \dots, x_n = \phi_n(t),$

satisfy the system of equations on *I*: $\alpha < t < \beta$.

* For comparison, recall that $\mathbf{x'} = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t)$ represents our system of equations

$$x'_{1} = p_{11}(t)x_{1} + p_{12}(t)x_{2} + \dots + p_{1n}(t)x_{n} + g_{1}(t)$$

$$x'_{2} = p_{21}(t)x_{1} + p_{22}(t)x_{2} + \dots + p_{2n}(t)x_{n} + g_{2}(t)$$

 $x'_{n} = p_{n1}(t)x_{1} + p_{n2}(t)x_{2} + \ldots + p_{nn}(t)x_{n} + g_{n}(t)$

★ Assuming P and g continuous on *I*, such a solution exists by Theorem 7.1.2.

Homogeneous Case; Vector Function Notation

- * As in Chapters 3 and 4, we first examine the general homogeneous equation $\mathbf{x'} = \mathbf{P}(t)\mathbf{x}$.
- * Also, the following notation for the vector functions $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(k)}, \dots$ will be used:

$$\mathbf{x}^{(1)}(t) = \begin{pmatrix} x_{11}(t) \\ x_{21}(t) \\ \vdots \\ x_{n1}(t) \end{pmatrix}, \quad \mathbf{x}^{(2)}(t) = \begin{pmatrix} x_{12}(t) \\ x_{22}(t) \\ \vdots \\ x_{n2}(t) \end{pmatrix}, \dots, \quad \mathbf{x}^{(k)}(t) = \begin{pmatrix} x_{1n}(t) \\ x_{2n}(t) \\ \vdots \\ x_{nn}(t) \end{pmatrix}, \dots$$

Theorem 7.4.1

- * If the vector functions $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are solutions of the system $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$, then the linear combination $c_1\mathbf{x}^{(1)} + c_2\mathbf{x}^{(2)}$ is also a solution for any constants c_1 and c_2 .
- Note: By repeatedly applying the result of this theorem, it can be seen that every finite linear combination

 x = c₁x⁽¹⁾(t) + c₂x⁽²⁾(t) + ... + c_kx^(k)(t)
 of solutions x⁽¹⁾, x⁽²⁾,..., x^(k) is itself a solution to x' = P(t)x.

Theorem 7.4.2

* If $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(n)}$ are linearly independent solutions of the system $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ for each point in *I*: $\alpha < t < \beta$, then each solution $\mathbf{x} = \boldsymbol{\phi}(t)$ can be expressed uniquely in the form $\mathbf{x} = c_1 \mathbf{x}^{(1)}(t) + c_2 \mathbf{x}^{(2)}(t) + \dots + c_n \mathbf{x}^{(n)}(t)$

* If solutions $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$ are linearly independent for each point in *I*: $\alpha < t < \beta$, then they are **fundamental solutions on** *I*, and the **general solution** is given by $\mathbf{x} = c_1 \mathbf{x}^{(1)}(t) + c_2 \mathbf{x}^{(2)}(t) + \dots + c_n \mathbf{x}^{(n)}(t)$

The Wronskian and Linear Independence

* The proof of Thm 7.4.2 uses the fact that if $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(n)}$ are linearly independent on *I*, then det $\mathbf{X}(t) \neq 0$ on *I*, where

$$\mathbf{X}(t) = \begin{pmatrix} x_{11}(t) & \cdots & x_{1n}(t) \\ \vdots & \ddots & \vdots \\ x_{n1}(t) & \cdots & x_{nn}(t) \end{pmatrix},$$

- * The Wronskian of $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$ is defined as W[$\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$](t) = detX(t).
- It follows that W[$\mathbf{x}^{(1)}, ..., \mathbf{x}^{(n)}$](t) ≠ 0 on *I* iff $\mathbf{x}^{(1)}, ..., \mathbf{x}^{(n)}$ are linearly independent for each point in *I*.

Theorem 7.4.3

- * If $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(n)}$ are solutions of the system $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ on *I*: $\alpha < t < \beta$, then the Wronskian W[$\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$](*t*) is either identically zero on *I* or else is never zero on *I*.
- * This result relies on Abel's formula for the Wronskian

 $\frac{dW}{dt} = (p_{11} + p_{22} + \dots + p_{nn}) \Longrightarrow W(t) = ce^{\int [p_{11}(t) + p_{22}(t) + \dots + p_{nn}(t)]dt}$

where c is an arbitrary constant (Refer to Section 3.2)

* This result enables us to determine whether a given set of solutions x⁽¹⁾, x⁽²⁾,..., x⁽ⁿ⁾ are fundamental solutions by evaluating W[x⁽¹⁾,..., x⁽ⁿ⁾](t) at any point t in α < t < β.</p>

Theorem 7.4.4 * Let (1) (0)

$$\mathbf{e}^{(1)} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \ \mathbf{e}^{(2)} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \ \mathbf{e}^{(n)} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

(0)

* Let $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(n)}$ be solutions of the system $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$, $\alpha < t < \beta$, that satisfy the initial conditions $\mathbf{x}^{(1)}(t_0) = \mathbf{e}^{(1)}, \dots, \mathbf{x}^{(n)}(t_0) = \mathbf{e}^{(n)}$,

respectively, where t_0 is any point in $\alpha < t < \beta$. Then $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(n)}$ are form a fundamental set of solutions of $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$.