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Abstract

T cells of the immune system, upon maturation, differentiate into either
Th1 or Th2 cells that have different functions. The decision to which cell type
to differentiate depends on the concentrations of transcription factors T-bet
(x1) and GATA-3 (x2). The population density of the T cells, φ(t, x1, x2),
satisfies a conservation law ∂φ/∂t + (∂/∂x1)(f1φ)+ (∂/∂x2)(f2φ) = gφ where
fi depends on (t, x1, x2) and, in a nonlinear nonlocal way, on φ. It is proved
that, as t → ∞, φ(t, x1, x2) converges to a linear combination of 1,2, or 4
Dirac measures. Numerical simulations and their biological implications are
discussed.

keywords: Cell differentiation, Th1/Th2 cells, conservation law, multistationary,

integro-differential equation, transcription factors

1 Introduction

The development of a multicellular organism from a single fertilized egg cell to spe-

cialized cells depends on programs of gene expression. Following the initial stage

of cell determination is a maturation process called differentiation by which cells

acquire specific recognizable phenotypes and functions. In particular, the T lym-

phocytes of the immune system, upon maturation, differentiate into either Th1 or
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Th2 cells that have different functions. The decision to which of the cell type to

differentiate depends on the concentration of transcription factors T-bet (x1) and

GATA-3 (x2). If x1 is high (low) and x2 is low (high), the T cell will differentiate

into Th1 (Th2).

A mathematical model by Yates et. al. [15] describes the differentiation process

in terms of two differential equations

dxi
dt

= fi(t, x1, x2, φ) (i = 1, 2) (1.1)

where φ(t, x1, x2) is the population density of cells with concentration (x1, x2) at

time t; φ satisfies the conservation of mass law

∂φ

∂t
+

∂

∂x1

(f1φ) +
∂

∂x2

(f2φ) = gφ, (1.2)

where g is the growth rate. Here fi(t, x1, x2, φ) is a nonlinear, nonlocal function of

φ(t, x1, x2).

In this paper we analyze the asymptotic behaviour of φ(t, x1, x2) as t → ∞.

We prove that

φ(t, x1, x2) →
∑

ωjδ(aj
1,a

j
2) as t→ ∞ (1.3)

where the limit is a linear combination of Dirac measures at (aj1, a
j
2), and the number

of terms in the linear combination is 1, 2 or 4, depending on the parameters which

occur in the definition of the fi. Conservation laws of the form (1.2), but with

very different velocity terms (f1, f2), were considered in [6](Chap. 3), [7], [8], [16]

and [9](Chap.3), and some asymptotic estimates were derived in [6], [7], [9]. A

theoretical study of bistable switches appeared in [3]. An analytic approach in

studying multistationary dynamics for neural networks was reported in [2], [12],

[14]. We finally note that mathematical models of differentiation of T cell and other

cells appeared in [4], [5] and [13], respectively; see also [1](Chap.9).

2 The Mathematical Model

Lymphocytes are white blood cells that play important roles in the immune system.

T cells and B cells are two major types of lymphocytes. B cells produce antibodies

against pathogens while T cells are involved in autoimmunity. Th lympocytes repre-

sent a subtype of T cells that are identified by the presence of surface antigens called
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CD4; they are referred to as CD4+ T cells. Other subtypes of T cells include cyto-

toxic T cells (CD8+) and regulatory T cells. Th cells are the most numerous of the

T cells in a healthy person. After an initial antigenic stimulation, Th lymphocytes

differentiate into either one of two distinct types of cells called Th1 and Th2. Th1

cells make IFNγ that combat intracellular pathogens, and this immune response,

if abnormal, is associated with inflammatory and autoimmune diseases. Th2 cells

produce cytokines that activate B cells to produce antibodies against extracellular

pathogens; this response, if abnormal, is associated with allergies such as asthma.

Whether a precurser Th cell (henceforth to be denoted by Th0) becomes Th1 or

Th2 depends on ’polorizing’ signals.

The Yates et. al. [15] model of Th differentiation is based on the interaction of

two transcription factors, T-bet and GATA-3. High protein level of T-bet or GATA-

3 corresponds to the Th1 phenotype or the Th2 phenotype. We shall denote by S1

and S2 the Th1 and Th2 polarizing cytokines, and by x1 and x2 the concentrations

of T-bet and GATA-3, respectively, in a Th0 cell. Then the dynamics of x1 and x2

is described by

dx1

dt
= −µx1 + (α1

xn1
kn1 + xn1

+ σ1
S1

ρ1 + S1

) ·
1

1 + x2/γ2

+ β1, (2.1)

dx2

dt
= −µx2 + (α2

xn2
kn2 + xn2

+ σ2
S2

ρ2 + S2

) ·
1

1 + x1/γ1

+ β2. (2.2)

The first term on the right-hand side of each equation represents the rate of protein

degradation. The last term βi is the constant basal rate of protein synthesis. The

autoactivation rate of protein xi is represented by the term

αi
xni

kni + xni

where n is the Hill exponent that tunes the sharpness of the activation switch. The

contribution of external signaling to the rate of growth in xi is given by the term

σi
Si

ρi + Si
.

The cross-inhibition between x1 and x2 occurs at both the autoactivation level and

external (membrane) signaling level, and is represented by the cross-inhibition fac-

tors
1

1 + xi/γi
.
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The parameter γi represents the value of xi at which the ratio of production of xj ,

i 6= j, is halved (due to the combined autoactivation and external signaling).

We denote by φ(t, x1, x2) the population density of CD4+ T cells with concen-

tration (x1, x2) at time t. Then the total levels of expression of T-bet and GATA-3,

at time t in the cell population are given, respectively, by
∫

xiφ(t, x1, x2)dx1dx2, i = 1, 2.

If we denote by Ci(t) the exogenous (non-T cell) signals that stimulate T-bet and

GATA-3 expression, then the total signal Si is given by

Si(t) =
Ci(t) +

∫

xiφ(t, x1, x2)dx1dx2
∫

φ(t, x1, x2)dx1dx2

, i = 1, 2. (2.3)

Here, a normalization by total cell numbers is adopted to impose the limitation of

access to cytokines due to cell crowding. The evolution of the population density is

then derived from the equation of continuity, or mass conservation law:

∂φ

∂t
+

∂

∂x1
(f1φ) +

∂

∂x2
(f2φ) = gφ, (2.4)

where

f1(x1, x2, S1(t)) = −µx1 + (α1
xn1

kn1 + xn1
+ σ1

S1(t)

ρ1 + S1(t)
) ·

1

1 + x2/γ2

+ β1, (2.5)

f2(x1, x2, S2(t)) = −µx2 + (α2
xn2

kn2 + xn2
+ σ2

S2(t)

ρ2 + S2(t)
) ·

1

1 + x1/γ1
+ β2. (2.6)

In [15], the extrinsic and intrinsic cytokine interactions during the differen-

tiation process were described in detail. Several numerical simulations have been

made there to illustrate the changes of percentage of population under varying mag-

nitudes of stimulus. Switches of population between Th0 to Th2 (high GATA-3) or

from Th1 (high T-bet) to Th0, and then to Th2, under various levels of stimulus by

extrinsic cytokines IL4 and IL12 were demonstrated.

The primary aim of the present paper is to analyze the behavior of the dy-

namical system (2.1)-(2.2) and the associated conservation law (2.4). We prove that

when the parameters in (2.1)-(2.2) belong to a well defined regime Pi, 1 ≤ i ≤ 6,

the solution φ(t, x1, x2) will tend to 1-peak Dirac measure if i = 1, 2-peak Dirac

measures if i = 2, 3, 4, 5 and 4-peak Dirac measure if i = 6. We use numerical sim-

ulation to examine the intermediate behavior of φ(t, x1, x2), and to draw biological

implications.
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Note that (2.4) is associated with the velocity field described by

dx1(t)

dt
= f1(x1(t), x2(t), S1(t)), (2.7)

dx2(t)

dt
= f2(x1(t), x2(t), S2(t)). (2.8)

We consider (2.4) on a (closed) domain

Ω = [0, A1] × [0, A2]

which is an attracting set for (2.7)-(2.8); for convenience, we choose

Ai =
αi + σi + βi

µ
, i = 1, 2, (2.9)

and assume that

φ(0, x1, x2)|∂Ω = 0.

Then

φ(t, x1, x2)|∂Ω = 0 for all t > 0.

Assuming that g = g(t), and setting G(t) =
∫ t

0
g(s)ds,

ψ(t, x1, x2) = e−G(t)φ(t, x1, x2),

we can replace (2.4) by

∂ψ

∂t
+

∂

∂x1
(f1ψ) +

∂

∂x2
(f2ψ) = 0, (2.10)

with

Si(t) =
Ci(t)e

−G(t)

N0
+

∫

xiψ(t, x1, x2)dx1dx2

N0
, (2.11)

where N0 is the initial total population and the integral is taken over Ω.

Let Φ(t, x1, x2) be the solution map (flow map) of (2.7)-(2.8) and let Ω(t) =

Φ(t,Ω). Then the transport equation (2.10) yields

d

dt

∫

Ω(t)

ψ(t, x1, x2)dx1dx2 = 0.

Furthermore, if Ω(t) → (ā1, ā2) as t→ ∞ then for any continuous function h(x1, x2),

∫

Ω

h(x1, x2)ψ(t, x1, x2)dx1dx2 → h(ā1, ā2)N0 as t→ ∞,
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i.e.,

ψ(t, x1, x2) → N0δ(ā1,ā2) in measure as t→ ∞. (2.12)

In the subsequent sections we study the behavior of the solution of (2.7), (2.8) in

conjunction with the behavior of Ω(t).

In section 3 we prove existence and uniqueness for the initial value problem

of equation (2.10). In sections 4-8, we establish the assertion (1.3) under some

assumptions on the parameters of (2.5)-(2.6). Numerical simulation illustrating the

dynamics of the single cell model and the formation of peak-solutions as t increases

are given in section 9. In the concluding section 10, we give a biological interpretation

of our results.

3 Existence and Uniqueness

We shall prove the existence and uniqueness for equation (2.10) with initial values

ψ|t=0 = ψ0(x1, x2) in Ω (3.1)

where

ψ0 vanishes on ∂Ω,

∫

Ω(0)

ψ0 = N0,

ψ0,∇ψ0 are continuous functions in Ω,
G(t) and Ci(t) are continuous functions for t ≥ 0.

(3.2)

Set f = (f1, f2) and write

f = f(t,x, ψ) = F (x) +G(t,x, ψ(t, ·)). (3.3)

The characteristic curves of (2.10) are given by

dξt,x
dτ

= F (ξt,x(τ)) +G(t, ξt,x(τ), ψ(τ, ·)), 0 < τ < t, (3.4)

ξt,x(t) = x. (3.5)

Note that if x ∈ Ω then ξt,x(τ) ∈ Ω for all 0 ≤ τ < t.

We introduce the space C1(Ω) of continuous functions ψ(x) with norm

||ψ|| = max
x∈Ω

(|ψ(x)| + |∇ψ(x)|)

and the space C1
T (Ω) of continuous functions ψ(t,x) in ΩT = Ω× [0, T ] with contin-

uous derivative ∇
x
ψ(t,x) in ΩT , and with norm

||ψ||T = max
x∈Ω,0≤t≤T

(|ψ(t,x)| + |∇
x
ψ(t,x)|).
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Theorem 3.1. Under the condition (3.2) there exists a unique solution of (2.10),

(3.1), with fi, Si defined by (2.5), (2.6), (2.11), for all t > 0 such that ψ ∈ C1
T0

(Ω)

for all T0 > 0.

Proof. Take any constant M , M > ||ψ0||, and introduce the set

XM =
{

ψ ∈ C1
T (Ω), ||ψ||T ≤M

}

for T small to be determined. We define a mapping W from XM into itself and

prove that it has a unique fixed point. Given any ψ ∈ XM , set ψ̄ = W (ψ) where ψ̄

is the solution of

∂ψ̄

∂t
+ f(t,x, ψ) · ∇

x
ψ̄ = −(∇

x
· f(t,x, ψ))ψ̄, x ∈ Ω, 0 < t < T, (3.6)

ψ̄|t=0 = ψ0, x ∈ Ω. (3.7)

Using the representation

ψ̄(t,x) = ψ̄(ξt,x(0)) −

∫ t

0

[∇
x
· f(τ, ξt,x(τ), ψ(τ, ·))] ψ̄(τ, ξt,x(τ))dτ, (3.8)

we get

max
x∈Ω,0≤t≤T

|ψ(t,x)| ≤ |ψ0|L∞(Ω) + CT

where C is a constant which is actually independent of M .

Differentiating (3.6) with respect to xi and applying the preceding argument,

we obtain a similar bound on ∂ψ̄
∂xi

, so that

∥

∥ψ̄
∥

∥

T
≤ ‖ψ0‖ + CT < M

if T is small enough. Hence W maps XM into XM . We next claim that W is a

contraction. Indeed, given two functions ψ1, ψ2 in XM , denote by ξ1
t,x, ξ

2
t,x, the

corresponding characteristic curves, and set ψ̄i = W (ψi), ψ = ψ1 −ψ2, ψ̄ = ψ̄1 − ψ̄2.

By ODE theory and (3.3),

|ξ1
t,x(τ) − ξ2

t,x(τ)| ≤ CT [ max
x∈Ω,0≤t≤T

|ψ(t,x)|]. (3.9)

Using the representation (3.8) for each ψ̄i, we deduce that

max
x∈Ω,0≤t≤T

|ψ̄(t,x)| ≤ CT

[

max
x∈Ω,0≤t≤T

|ψ(t,x)|

]

.
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Similarly we obtain a bound on ∇ψ̄(t,x) by differentiating (3.6) with respect to xi,

applying the previous argument, and using (3.9). Hence

∥

∥ψ̄
∥

∥

T
≤ CT ‖ψ‖T ,

so that W is a contraction if T is small enough, and thus existence and uniqueness

for (2.10), (3.1) follows for 0 ≤ t ≤ T .

We can extend the solution step-by-step to all t > 0 provided we can derive

an a priori bound, say

‖ψ‖T0
≤ C + C exp(αT0) for all T0 > 0 (3.10)

where C, α are constants. From (3.8) with ψ̄ = ψ and (3.3) we get, by Gronwall’s

inequality,

sup
x∈Ω

|ψ(t,x)| ≤ C + Ceαt.

Similarly, by differentiating (3.6) with respect to xi, we derive

sup
x∈Ω

|∇ψ(t,x)| ≤ C + Ceαt.

Hence (3.10) holds and the proof of Theorem 3.1 is complete.

4 Single cell

We consider the single-cell model (2.1)-(2.2) in which S1, S2 are regarded as non-

negative constants. As we shall see, under some regimes of the parameter space, the

system admits monostable, bistable, and quadstable phases. In order to study the

dynamics of a single cell, we introduce upper bounds f̂i for the functions fi in (2.5),

(2.6):

f̂i(xi) = −µxi + (αi
xni

kni + xni
+ σi

Si
ρi + Si

) + βi, i = 1, 2. (4.1)

Then f̂i has the following properties:

f̂i(0) > 0, f̂ ′
i(0) < 0, f̂i(xi) < 0 for Ai ≤ xi <∞. (4.2)
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Let Bi ∈ (0, Ai) be greater than the largest zero of f̂i, i = 1, 2. We also introduce

lower bounds f̌i for fi:

f̌1(x1) = −µx1 + (α1
xn1

kn1 + xn1
+ σ1

S1

ρ1 + S1

) ·
1

1 +B2/γ2

+ β1, (4.3)

f̌2(x2) = −µx2 + (α2
xn2

kn2 + xn2
+ σ2

S2

ρ2 + S2

) ·
1

1 +B1/γ1

+ β2. (4.4)

Indeed,

f̌1(x1) ≤ f1(x1, x2), for (x1, x2) ∈ [0, A1] × [0, B2],

f̌2(x2) ≤ f2(x1, x2), for (x1, x2) ∈ [0, B1] × [0, A2].

Note that

f̌i(0) > 0, f̌ ′
i(0) < 0, f̌i(Bi) < 0 for i = 1, 2. (4.5)

The functions f̂i, f̌i, extended to xi ∈ (Ai,∞) by the right-hand sides of (4.3), (4.4),

have a unique inflection point ξ̃i, given by

ξ̃i = ki(
n− 1

n+ 1
)1/n,

where the slopes of f̂i and of f̌i are maximal. Therefore, if f̌ ′
i(ξ̃i) < 0, then f̌ ′

i(xi)

cannot take positive values. Set

ñ = (n+ 1)1+1/n(n− 1)1−1/n/4n.

We consider the following parameter regimes:

Condition (M1):

µ >
α1ñ

k1

,

Condition (M2):

µ >
α2ñ

k2

,

Condition (B1):

µ <
α1ñ

k1

·
1

1 +B2/γ2

,

Condition (B2):

µ <
α2ñ

k2

·
1

1 +B1/γ1

.

Condition (Mi) is equivalent to the inequality f̂ ′
i(ξ̃i) < 0, i = 1, 2. Under this

condition both f̂i and f̌i are strictly decreasing functions and have a unique zero.
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Condition (Bi) is equivalent to f̌ ′
i(ξ̃i) > 0 and, in that case, if ξ̃i < Ai then each

f̂i, f̌i has two critical points. Let p̂m
i , p̂

M
i (respectively p̌m

i , p̌
M
i ) be the local minimum

and maximum of f̂i (respectively f̌i). Then, p̌m
i < p̌M

i , p̂m
i < p̂M

i , and

f̌i(p̌
m
i ) < f̂i(p̂

m
i ), f̌i(p̌

M
i ) < f̂i(p̂

M
i ).

We shall consider only the following cases as illustrated in Figure 1:

(Note that if ξ̃i > Ai for i = 1 or i = 2, then only case (Mi) can occur for this i.)

(a) (Mi) holds for i = 1, 2;

(b) (Bi) holds and f̂i(p̂
M
i ) < 0 for i = 1, 2;

(c) (Bi) holds and f̌i(p̌
m
i ) > 0 for i = 1, 2;

(d) (Bi) holds and f̂i(p̂
m
i ) < 0, f̌i(p̌

M
i ) > 0 for i = 1, 2.

In cases (a), (b), and (c), f̂i and f̌i have a unique zero denoted by âi and

ǎi, respectively. In case (d), f̂i and f̌i have three zeros, denoted by (âi, b̂i, ĉi) and

(ǎi, b̌i, či), respectively.

We shall establish the following dynamical phases for (2.1)-(2.2):

Monostable (MS): low x1-low x2; low x1-high x2; high x1-low x2;

high x1-high x2 states;

Bistable (BS-ll,lh): low x1-low x2 state and low x1 - high x2 state;

(BS-ll,hl): low x1-low x2 state and high x1-low x2 state;

(BS-hl,hh): high x1-low x2 state and high x1 - high x2 state;

(BS-lh,hh): low x1-high x2 state and high x1-high x2 state;

Quadstable (QS): low x1-low x2 state, high x1 - low x2 state,

low x1 - high x2 state, and high x1 - high x2 state.

These notions of ’low’ and ’high’ are not directly related to the magnitudes of x1 and

x2. It will be shown that there exist six parameter regimes so that (2.1)-(2.2), with

parameters in each of these regimes admit, respectively, a unique stable equilibrium;

two stable equilibria and one unstable equilibrium; and four stable equilibria and

five unstable equilibria. Moreover, every solution which is initially not an unstable

equilibrium point converges to one of the stable equilibria as time tends to infinity.

In order to guarantee the convergence to equilibrium, we impose the following

condition:
(α1 + σ1)

γ2
·
(α2 + σ2)

γ1
< |µ−

α1ñ

k1
| · |µ−

α2ñ

k2
|. (4.6)

Theorem 4.1. Assume that condition (4.6) holds. Then
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Figure 1: f̂1 and f̌1 have one zero in cases (a), (b), (c), and three zeros in case (d).
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(i) Phase (MS) takes place under conditions (M1) and (M2), or conditions (B1),

(B2) with either f̂1(p̂
M
1 ) < 0, f̂2(p̂

M
2 ) < 0 or with f̌1(p̌

m
1 ) > 0, f̌2(p̌

m
2 ) > 0;

(ii) Phase (BS-ll,lh) takes place under conditions (B2), f̂2(p̂
m
2 ) < 0, f̌2(p̌

M
2 ) > 0, and

condition (M1), or (B1) and f̂1(p̂
M
1 ) < 0;

(iii) Phase (BS-ll,hl) takes place under condition (B1), f̂1(p̂
m
1 ) < 0, f̌1(p̌

M
1 ) > 0, and

condition (M2), or (B2), f̂2(p̂
M
2 ) < 0;

(iv) Phase (BS-hl,hh) takes place under conditions (B2), f̂2(p̂
m
2 ) < 0, f̌2(p̌

M
2 ) > 0,

and condition (M1), or (B1) and f̌1(p̌
m
1 ) > 0;

(v) Phase (BS-lh,hh) takes place under condition (B1), f̂1(p̂
m
1 ) < 0, f̌1(p̌

M
1 ) > 0, and

condition (M2), or (B2), f̌2(p̌
m
2 ) > 0;

(vi) Phase (QS) takes place under conditions (B1), (B2), f̂i(p̂
m
i ) < 0, f̌i(p̌

M
i ) > 0,

for i = 1, 2.

The proof of Theorem 4.1 follows from an iteration scheme which is similar to

that introduced in sections 5-8; in order to avoid repetition, the proof is omitted.

Remark 1: Note that

Condition (B1)′ : µ <
α1ñ

k1
·

1

1 + A2/γ2
,

Condition (B2)′ : µ <
α2ñ

k2
·

1

1 + A1/γ1
,

imply respectively, (B1) and (B2). Moreover, with Ai defined in (2.9), if both con-

ditions are satisfied then (4.6) holds. However, these conditions are more restrictive

than conditions (B1), (B2), and are not involved with the cytokines rates σ1, σ2.

Remark 2: The conditions expressed by the signs of f̂i(p̂
m
i ), f̌i(p̌

M
i ) depend on

the levels of cytokines S1, S2. There exist parameters so that phase (QS) takes place

if both S1 and S2 are sufficiently large. With the same parameters, the dynamics

reduces to phase (BS-ll,lh) (respectively (BS-ll,hl)) if S2 (respectively S1) is not large

enough and reduces to phase (MS) if both S1 and S2 are both not large enough. We

shall illustrate this situation numerically in section 9.

5 The Population Model

In the subsequent sections we shall consider the asymptotic behavior of ψ(t, x1, x2)

and of the corresponding dynamical system (2.7)-(2.8) in case Si = Si(t) is defined
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by (2.11). Typically g(t) = 2 day−1 for some time t < t0 and g(t) = 0 if t > t0, but

Ci(t) may not vanish for large t. Throughout this paper we assume that

Ci(t) → Ci(∞) ≥ 0, G(t) → G(∞) > 0 as t→ ∞. (5.1)

The derivation of the asymptotic behavior will be based on a sequence of approx-

imations by means of upper bounds f̂
(k)
i and lower bounds f̌

(k)
i of fi(x1, x2, Si(t)).

In this section we construct these functions for the case k = 0. As in the discussion

in section 4, we introduce an upper bound for fi(x1, x2, Si(t)):

f̂i(xi) = −µxi + (αi
xni

kni + xni
+ σi

Ĉi + Ai

ρi + Ĉi + Ai
) + βi,

where Ĉi = sup{Ci(t)e
−G(t)/N0 : t ∈ [0,∞)}; f̂i clearly satisfies (4.2). Let Bi be the

largest zero of f̂i. Thus, [0, B1] × [0, B2] is an attracting set for (2.7)-(2.8).

Next we define a lower bound for f1 on R × [0, B2] and a lower bound for f2

on [0, B1] × R, respectively:

f̌1(x1) = −µx1 + (α1
xn1

kn1 + xn1
+ σ1

Č1

ρ1 + Č1

) ·
1

1 +B2/γ2
+ β1,

f̌2(x2) = −µx2 + (α2
xn2

kn2 + xn2
+ σ2

Č2

ρ2 + Č2

) ·
1

1 +B1/γ1

+ β2.

where Či = inf{Ci(t)e
−G(t)/N0 : t ∈ [0,∞)}, i = 1, 2; f̌i clearly satisfies (4.5). The

functions f̂i, f̌i share other properties with those defined in section 4. Indeed, under

conditions (Mi), (Bi) with f̂i(p̂
M
i ) < 0, or (Bi) with f̌i(p̌

m
i ) > 0, both f̂i and f̌i

have a unique zero, denoted respectively by âi, ǎi; under conditions (Bi), each of f̂i

and f̌i has a local minimum and a local maximum, denoted by p̂m
i , p̂

M
i , and p̌m

i , p̌
M
i ,

respectively, and it can be computed that f̌i(p̌
m
i ) < f̂i(p̂

m
i ) and f̌i(p̌

M
i ) < f̂i(p̂

M
i ).

Furthermore, under conditions (Bi), and f̂i(p̂
m
i ) < 0, f̌i(p̌

M
i ) > 0, both f̂i and f̌i

have three zeros, denoted by (âi, b̂i, ĉi), (ǎi, b̌i, či), respectively; cf. Figure 2.

Set

Smin
i (t) = inf{Si(s) : s ∈ [t,∞)}, Smax

i (t) = sup{Si(s) : s ∈ [t,∞)},

for i = 1, 2 and t ≥ 0. Then Smin
i (t) ≥ Či, S

max
i (t) ≤ Ĉi + Ai, and Smin

i (t) ≤ Si(t) ≤

Smax
i (t). Note that Smin

i (t) is nondecreasing, Smax
i (t) is nonincreasing, and

Smin
i (t)

ρi + Smin
i (t)

≤
Si(t)

ρi + Si(t)
≤

Smax
i (t)

ρi + Smax
i (t)

for i = 1, 2, and t ≥ 0.
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Figure 2: f̂1 and f̌1 have two zeros.
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We formulate the first step for the iteration scheme via the functions

f̂
(0)
i (xi) = −µxi + (αi

xni
kni + xni

+ σi
Smax
i (0)

ρi + Smax
i (0)

) + βi for i = 1, 2,

f̌
(0)
1 (x1) = −µx1 + (α1

xn1
kn1 + xn1

+ σ1
Smin

1 (0)

ρ1 + Smin
1 (0)

) ·
1

1 +B2/γ2

+ β1,

f̌
(0)
2 (x2) = −µx2 + (α2

xn2
kn2 + xn2

+ σ2
Smin

2 (0)

ρ2 + Smin
2 (0)

) ·
1

1 +B1/γ1
+ β2.

Then f̂
(0)
i , f̌

(0)
i admit the same properties as in (4.2) and (4.5). Moreover,

f̌i(xi) ≤ f̌
(0)
i (xi) < f̂

(0)
i (xi) ≤ f̂i(xi), i = 1, 2.

Therefore, f̂i(p̂
m
i ) < 0 implies f̂

(0)
i (p̂m

i ) < 0, whereas f̌i(p̌
M
i ) > 0 implies f̌

(0)
i (p̌M

i ) > 0.

In addition, f̌
(0)′

i (xi) < f̂
(0)′

i (xi) for all xi ∈ [0,∞), and both of f̂
(0)
i and f̌

(0)
i have

their inflection points at ξ̃i = ki(
n−1
n+1

)1/n where they attain their largest slopes.

Observe that

f̌
(0)
i (xi) ≤ fi(x1, x2, Si(t)) ≤ f̂

(0)
i (xi), (5.2)

for i = 1, 2 and (x1, x2) ∈ [0, B1] × [0, B2], t ≥ 0. In addition, for all t ≥ 0,

f1(x1, x2, S1(t)) ≤ f̂
(0)
1 (x1) if (x1, x2) ∈ [0, A1] × [B2, A2], (5.3)

f2(x1, x2, S2(t)) ≤ f̂
(0)
2 (x2) if (x1, x2) ∈ [B1, A1] × [0, A2]. (5.4)

In the sequel, x(t,x0) denotes the solution of (2.7)-(2.8) starting from point x0 at

t = 0.

6 Asymptotic one-peak solution

Similarly to the case of Theorem 4.1(i) we assume that one of the following conditions

holds:

(M1) and (M2); (6.1)

(B1) and (B2) with f̂1(p̂
M
1 ) < 0, f̂2(p̂

M
2 ) < 0; (6.2)

(B1) and (B2) with f̌1(p̌
m
1 ) > 0, f̌2(p̌

m
2 ) > 0. (6.3)

Then each f̂
(0)
i and f̌

(0)
i has a unique zero which is denoted by â

(0)
i and ǎ

(0)
i , respec-

tively. Let ε0 > 0 be small so that

f̂
(0)
i (xi) ≤ f̂

(0)
i (â

(0)
i + ε0) < 0, for all xi ≥ â

(0)
i + ε0,

f̌
(0)
i (xi) ≥ f̌

(0)
i (ǎ

(0)
i − ε0) > 0, for all xi ≤ ǎ

(0)
i − ε0,
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1â
(0)

1a
 

   

(1)

1f̂
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Figure 3: The configuration of f̂
(0)
1 , f̌

(0)
1 , f̂

(1)
1 , f̌

(1)
1 and their zeros, under conditions

(B1) and f̂1(p̂
M
1 ) < 0.

for i = 1, 2; cf. Figure 3. Combining these with inequalities (5.2)-(5.4), we deduce

that there exists a T0 > 0 such that any solution x(t,x0) starting from a point

x0 ∈ [0, A1] × [0, A2] falls into the rectangle

Ω(0) := [ǎ
(0)
1 − ε0, â

(0)
1 + ε0] × [ǎ

(0)
2 − ε0, â

(0)
2 + ε0] ⊂ [0, B1] × [0, B2],

for t ≥ T0. Define
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f̂
(1)
1 (x1) = −µx1 + (α1

xn1
kn1 + xn1

+ σ1
Smax

1 (T0)

ρ1 + Smax
1 (T0)

) ·
1

1 + (ǎ
(0)
2 − ε0)/γ2

+ β1,

f̌
(1)
1 (x1) = −µx1 + (α1

xn1
kn1 + xn1

+ σ1
Smin

1 (T0)

ρ1 + Smin
1 (T0)

) ·
1

1 + (â
(0)
2 + ε0)/γ2

+ β1,

f̂
(1)
2 (x2) = −µx2 + (α2

xn2
kn2 + xn2

+ σ2
Smax

2 (T0)

ρ2 + Smax
2 (T0)

) ·
1

1 + (ǎ
(0)
1 − ε0)/γ1

+ β2,

f̌
(1)
2 (x2) = −µx2 + (α2

xn2
kn2 + xn2

+ σ2
Smin

2 (T0)

ρ2 + Smin
2 (T0)

) ·
1

1 + (â
(0)
1 + ε0)/γ1

+ β2.

Then f̌
(0)
i (xi) < f̌

(1)
i (xi) < f̂

(1)
i (xi) < f̂

(0)
i (xi) for xi ∈ [0, Ai], i = 1, 2. Let â

(1)
i

and ǎ
(1)
i denote the unique zeros of f̂

(1)
i and f̌

(1)
i respectively. Then â

(1)
i < â

(0)
i and

ǎ
(1)
i > ǎ

(0)
i . Furthermore,

f̌
(1)
i (xi) ≤ fi(x1, x2, Si(t)) ≤ f̂

(1)
i (xi) (6.4)

for all (x1, x2) ∈ Ω(0), t ≥ T0, i = 1, 2, and f̌
(1)
i (xi) > 0 for xi < ǎ

(1)
i , f̂

(1)
i (xi) < 0 for

xi > â
(1)
i . Hence for any small ε1 > 0 there exist a T1 > T0 such that any solution

x(t,x0) starting from a point x0 ∈ [0, A1] × [0, A2] falls into the region

Ω(1) := [ǎ
(1)
1 − ε1, â

(1)
1 + ε1] × [ǎ

(1)
2 − ε1, â

(1)
2 + ε1] ⊂ Ω(0),

for t ≥ T1; cf. Figure 4. We can proceed in a similar manner to define successively

f̂
(k)
i and f̌

(k)
i , k ≥ 2 by

f̂
(k)
1 (x1) = −µx1 + (α1

xn1
kn1 + xn1

+ σ1
Smax

1 (Tk−1)

ρ1 + Smax
1 (Tk−1)

) ·
1

1 + (ǎ
(k−1)
2 − εk−1)/γ2

+ β1,

f̌
(k)
1 (x1) = −µx1 + (α1

xn1
kn1 + xn1

+ σ1
Smin

1 (Tk−1)

ρ1 + Smin
1 (Tk−1)

) ·
1

1 + (â
(k−1)
2 + εk−1)/γ2

+ β1,

f̂
(k)
2 (x2) = −µx2 + (α2

xn2
kn2 + xn2

+ σ2
Smax

2 (Tk−1)

ρ2 + Smax
2 (Tk−1)

) ·
1

1 + (ǎ
(k−1)
1 − εk−1)/γ1

+ β2,

f̌
(k)
2 (x2) = −µx2 + (α2

xn2
kn2 + xn2

+ σ2
Smin

2 (Tk−1)

ρ2 + Smin
2 (Tk−1)

) ·
1

1 + (â
(k−1)
1 + εk−1)/γ1

+ β2.

and their zeros â
(k)
i , ǎ

(k)
i , i.e.,

f̂
(k+1)
i (â

(k)
i ) = 0, f̌

(k+1)
i (ǎ

(k)
i ) = 0. (6.5)

We may clearly assume that εk → 0 and Tk → ∞ as k → ∞.
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(0)

2 0a

(0)

2 0â (0)
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Figure 4: Ω(0) and Ω(1), for one-peak case.
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We can then prove that for any small ǫk > 0 there exists a Tk such that any

solution x(t,x0) starting from a point x0 ∈ [0, A1] × [0, A2] falls into the region

Ω(k) := [ǎ
(k)
1 − εk, â

(k)
1 + εk] × [ǎ

(k)
2 − εk, â

(k)
2 + εk] ⊂ Ω(k−1) for t ≥ Tk.

We shall need the following condition:

(α2 + σ2)

γ1
< |µ−

α1ñ

k1
| −

σ1

ρ1
,

(α1 + σ1)

γ2
< |µ−

α2ñ

k2
| −

σ2

ρ2
. (6.6)

Lemma 6.1. Under the conditions (6.6) and either (6.1), (6.2) or (6.3), the inter-

section ∩∞
k=1Ω

(k) consists of a single point (ā1, ā2).

Proof. Note that for each i = 1, 2, {ǎ
(k)
i − εk} is an increasing sequence, {â

(k)
i + εk}

is a decreasing sequence, ǎ
(k)
i − εk < â

(k)
i + εk for each k, and εk → 0 as k → ∞.

Hence

ǎ∗i = lim
k→∞

ǎ
(k)
i , â∗i = lim

k→∞
â

(k)
i , exists, and ǎ∗i ≤ â∗i for i = 1, 2.

Assuming that ∩∞
k=1Ω

(k) is not a single point so that â∗i > ǎ∗i for either i = 1 or i = 2

(or both), we shall derive a contradiction.

By passing to the limit in (6.5) we get

−µǎ∗1 + [α1
(ǎ∗1)

n

kn1 + (ǎ∗1)
n

+ σ1
Š1

ρ1 + Š1

] ·
1

1 + â∗2/γ2
+ β1 = 0, (6.7)

−µâ∗2 + [α2
(â∗2)

n

kn2 + (â∗2)
n

+ σ2
Ŝ2

ρ2 + Ŝ2

] ·
1

1 + ǎ∗1/γ1
+ β2 = 0, (6.8)

−µâ∗1 + [α1
(â∗1)

n

kn1 + (â∗1)
n

+ σ1
Ŝ1

ρ1 + Ŝ1

] ·
1

1 + ǎ∗2/γ2
+ β1 = 0, (6.9)

−µǎ∗2 + [α2
(ǎ∗2)

n

kn2 + (ǎ∗2)
n

+ σ2
Š2

ρ2 + Š2

] ·
1

1 + â∗1/γ1
+ β2 = 0, (6.10)

where

Ŝi = lim
t→∞

Smax
i (t), Ši = lim

t→∞
Smin
i (t),

and

Ŝ1 ≤ â∗1 + C̄1, , Š1 ≥ ǎ∗1 + C̄1 (6.11)

Ŝ2 ≤ â∗2 + C̄2, Š2 ≥ ǎ∗2 + C̄2, (6.12)

with

C̄i = lim
t→∞

Ci(t)e
−G(t)/N0.
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Taking the difference of (6.7), (6.9) we obtain

µ(â∗1 − ǎ∗1) − α1[
(â∗1)

n

kn1 + (â∗1)
n
−

(ǎ∗1)
n

kn1 + (ǎ∗1)
n
] ·

1

1 + ǎ∗2/γ2

= [α1
(ǎ∗1)

n

kn1 + (ǎ∗1)
n

+ σ1
Š1

ρ1 + Š1

] · [
1

1 + ǎ∗2/γ2

−
1

1 + â∗2/γ2

]

+σ1[
Ŝ1

ρ1 + Ŝ1

−
Š1

ρ1 + Š1

] ·
1

1 + ǎ∗2/γ2

.

(6.13)

Thus, by the mean value theorem and the estimates (6.11) for Ŝ1, Š1,

|â∗1 − ǎ∗1| · |µ−
α1ñ

k1
|

≤
(α1 + σ1)

γ2

|ǎ∗2 − â∗2| +
σ1

ρ1

|â∗1 − ǎ∗1|,

or

|â∗1 − ǎ∗1| · [|µ−
α1ñ

k1

| −
σ1

ρ1

] ≤
(α1 + σ1)

γ2

|ǎ∗2 − â∗2|. (6.14)

Similarly, from (6.8), (6.10), (6.12) we obtain

|ǎ∗2 − â∗2| · [|µ−
α2ñ

k2
| −

σ2

ρ2
] ≤

(α2 + σ2)

γ1
|â∗1 − ǎ∗1|. (6.15)

Assume that the LHS of (6.14) and (6.15) are positive, these two inequalities yield

[|µ−
α1ñ

k1
| −

σ1

ρ1
] · [|µ−

α2ñ

k2
| −

σ2

ρ2
] <

(α2 + σ2)

γ1
·
(α1 + σ1)

γ2
, (6.16)

which is a contradiction to (4.6). We thus conclude that ǎ∗i = â∗i for i = 1, 2, which

proves the lemma.

From Lemma 6.1 it follows that the limit (ā1, ā2) of Ω(k) (as k → ∞), satisfies

the equations

−µa1 + [α1
an1

kn1 + an1
+ σ1

a1 + C̄1

ρ1 + a1

] ·
1

1 + a2/γ2

+ β1 = 0, (6.17)

−µa2 + [α2
an2

kn2 + an2
+ σ2

a2 + C̄2

ρ2 + a2
] ·

1

1 + a1/γ1
+ β2 = 0, (6.18)

and the solution is unique. We have thus proved:

Theorem 6.2. If (6.6) and one of the conditions (6.1), (6.2), or (6.3) holds, then

the solution ψ of (2.10),(3.1), with fi, Si defined by (2.5), (2.6), (2.10), satisfies:

lim
t→∞

ψ(t, x1, x2) = N0δ(a1,a2), (6.19)
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Figure 5: Configurations of functions f̂
(0)
1 , f̌

(0)
1 , f̂

(1)
1 , f̌

(1)
1 and their zeros, under

condition (B1).

where δ(a1,a2) is the Dirac measure at point (a1, a2) which is uniquely determined

from (6.17)-(6.18), and the convergence in (6.19) is in the sense of convergence in

measure as defined in (2.12).

7 Asymptotic two-peak solutions

Analogously to the case of Theorem 4.1(iii) we assume that

condition (B1) holds, f̂1(p̂
m
1 ) < 0, and f̌1(p̌

M
1 ) > 0, (7.1)

either condition (M2) holds, or (B2) and f̂2(p̂
M
2 ) < 0 hold. (7.2)

Let â
(0)
1 , b̂

(0)
1 , ĉ

(0)
1 (respectively ǎ

(0)
1 , b̌

(0)
1 , č

(0)
1 ) be the zeros of f̂

(0)
1 (respectively f̌

(0)
1 ),

and â
(0)
2 , ǎ

(0)
2 be the zeros of f̂

(0)
2 , f̌

(0)
2 , respectively; cf. Figure 5.
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Then, by (7.1), (7.2) and (5.2)-(5.4), for any small ε0 > 0 there exists a T0 > 0

such that any solution x(t,x0) starting from a point x0 ∈ [0, A1]× [0, A2]\K
(0) falls

into the region

Ω(0) = Ω
(0)
l ∪ Ω(0)

u

for all t ≥ T0, where

K(0) = [̂b
(0)
1 , b̌

(0)
1 ] × [ǎ

(0)
2 , â

(0)
2 ],

Ω
(0)
l = [ǎ

(0)
1 − ε0, â

(0)
1 + ε0] × [ǎ

(0)
2 − ε0, â

(0)
2 + ε0],

Ω(0)
u = [č

(0)
1 − ε0, ĉ

(0)
1 + ε0] × [ǎ

(0)
2 − ε0, â

(0)
2 + ε0].

Next, we define

f̂
(1)
1 (x1) = −µx1 + (α1

xn1
kn1 + xn1

+ σ1
Smax

1 (T0)

ρ1 + Smax
1 (T0)

) ·
1

1 + (ǎ
(0)
2 − ε0)/γ2

+ β1,

f̌
(1)
1 (x1) = −µx1 + (α1

xn1
kn1 + xn1

+ σ1
Smin

1 (T0)

ρ1 + Smin
1 (T0)

) ·
1

1 + (â
(0)
2 + ε0)/γ2

+ β1,

f̂
(1)
2,l (x2) = −µx2 + (α2

xn2
kn2 + xn2

+ σ2
Smax

2 (T0)

ρ2 + Smax
2 (T0)

) ·
1

1 + (ǎ
(0)
1 − ε0)/γ1

+ β2,

f̌
(1)
2,l (x2) = −µx2 + (α2

xn2
kn2 + xn2

+ σ2
Smin

2 (T0)

ρ2 + Smin
2 (T0)

) ·
1

1 + (â
(0)
1 + ε0)/γ1

+ β2,

f̂
(1)
2,m(x2) = −µx2 + (α2

xn2
kn2 + xn2

+ σ2
Smax

2 (T0)

ρ2 + Smax
2 (T0)

) ·
1

1 + b̂
(0)
1 /γ1

+ β2,

f̌
(1)
2,m(x2) = −µx2 + (α2

xn2
kn2 + xn2

+ σ2
Smin

2 (T0)

ρ2 + Smin
2 (T0)

) ·
1

1 + b̌
(0)
1 /γ1

+ β2,

f̂
(1)
2,u(x2) = −µx2 + (α2

xn2
kn2 + xn2

+ σ2
Smax

2 (T0)

ρ2 + Smax
2 (T0)

) ·
1

1 + (č
(0)
1 − ε0)/γ1

+ β2,

f̌
(1)
2,u(x2) = −µx2 + (α2

xn2
kn2 + xn2

+ σ2
Smin

2 (T0)

ρ2 + Smin
2 (T0)

) ·
1

1 + (ĉ
(0)
1 + ε0)/γ1

+ β2.

Let â
(1)
2 , ǎ

(1)
2 (respectively b̂

(1)
2 , b̌

(1)
2 ; ĉ

(1)
2 , č

(1)
2 ) be the zeros of f̂

(1)
2,l , f̌

(1)
2,l (respectively

f̂
(1)
2,m, f̌

(1)
2,m; f̂

(1)
2,u , f̌

(1)
2,u) respectively, and â

(1)
1 , ǎ

(1)
1 be the smallest, b̂

(1)
1 , b̌

(1)
1 be the

middle, and ĉ
(1)
1 , č

(1)
1 be the largest zeros of f̂

(1)
1 and f̌

(1)
1 , respectively. (Herein “l”,

“m” and “u” mean lower, middle, and upper, respectively.) Then for any small

ε1 > 0 there exists a T1 > T0 such that any solution x(t,x0) starting from a point

x0 ∈ [0, A1] × [0, A2] \K
(1) falls into the region

Ω(1) = Ω
(1)
l ∪ Ω(1)

u ⊂ Ω(0),
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for t ≥ T1, where

K(1) = [̂b
(1)
1 , b̌

(1)
1 ] × [̌b

(1)
2 , b̂

(1)
2 ] ⊂ K(0),

Ω
(1)
l = [ǎ

(1)
1 − ε1, â

(1)
1 + ε1] × [ǎ

(1)
2 − ε1, â

(1)
2 + ε1] ⊂ Ω

(0)
l ,

Ω(1)
u = [č

(1)
1 − ε1, ĉ

(1)
1 + ε1] × [č

(1)
2 − ε1, ĉ

(1)
2 + ε1] ⊂ Ω(0)

u .

In addition, for t ≥ T1,

Si(t) ·N0 = Ci(t)e
−G(t) +

∫ ∫

Ω(1)∪K(1)

xiψdx1dx2.

We proceed to define successively

f̂
(k)
1,l (x1) = −µx1 + (α1

xn1
kn1 + xn1

+ σ1
Smax

1 (Tk−1)

ρ2 + Smax
2 (Tk−1)

) ·
1

1 + (ǎ
(k−1)
2 − εk−1)/γ2

+ β1,

f̌
(k)
1,l (x1) = −µx1 + (α1

xn1
kn1 + xn1

+ σ1
Smin

1 (Tk−1)

ρ1 + Smin
1 (Tk−1)

) ·
1

1 + (â
(k−1)
2 + εk−1)/γ2

+ β1,

f̂
(k)
1,m(x1) = −µx1 + (α1

xn1
kn1 + xn1

+ σ1
Smax

1 (Tk−1)

ρ1 + Smax
1 (Tk−1)

) ·
1

1 + b̌
(k−1)
2 /γ2

+ β1,

f̌
(k)
1,m(x1) = −µx1 + (α1

xn1
kn1 + xn1

+ σ1
Smin

1 (Tk−1)

ρ1 + Smin
1 (Tk−1)

) ·
1

1 + b̂
(k−1)
2 /γ2

+ β1,

f̂
(k)
1,u (x1) = −µx1 + (α1

xn1
kn1 + xn1

+ σ1
Smax

1 (Tk−1)

ρ1 + Smax
1 (Tk−1)

) ·
1

1 + (č
(k−1)
2 − εk−1)/γ2

+ β1,

f̌
(k)
1,u (x1) = −µx1 + (α1

x1s
n

kn1 + xn1
+ σ1

Smin
1 (Tk−1)

ρ1 + Smin
1 (Tk−1)

) ·
1

1 + (ĉ
(k−1)
2 + εk−1)/γ2

+ β1,

and similarly f̂
(k)
2,u , f̌

(k)
2,u , f̂

(k)
2,m, f̌

(k)
2,m, f̂

(k)
2,l , f̌

(k)
2,l , their zeros â

(k)
i , ǎ

(k)
i , b̂

(k)
i , b̌

(k)
i , ĉ

(k)
i , č

(k)
i , i =

1, 2 and domains Ω(k). Note that the sets Ω(k) as well as the rectangles [̂b
(k)
1 , b̌

(k)
1 ] ×

[̌b
(k)
2 , b̂

(k)
2 ] are shrinking as k increases. Suppose that

[ǎ
(k)
1 , â

(k)
1 ] → {a1}, [̂b

(k)
1 , b̌

(k)
1 ] → {b1}, [č

(k)
1 , ĉ

(k)
1 ] → {c1}, (7.3)

[ǎ
(k)
2 , â

(k)
2 ] → {a2}, [̂b

(k)
2 , b̌

(k)
2 ] → {b2}, [č

(k)
2 , ĉ

(k)
2 ] → {c2}, (7.4)

as k → ∞. Then Ω(k) → {(a1, a2), (c1, c2)} as k → ∞, and

S1(t) → wl · a1 + wu · c1 + C̄1,

S2(t) → wl · a2 + wu · c2 + C̄2,

as t → ∞, for some wl, wu ≥ 0 with wl + wu = 1. Herein, wl, wu represent the per-

centages of cells whose concentrations tend to levels (a1, a2) and (c1, c2), respectively.
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Notice that points (a1, a2), (c1, c2), and wl, wu satisfy the equations

−µa1 + [α1
an1

kn1 + an1
+ σ1

wl · a1 + wu · c1 + C̄1

ρ1 + (wl · a1 + wu · c1 + C̄1)
] ·

1

1 + a2/γ2

+ β1 = 0, (7.5)

−µc1 + [α1
cn1

kn1 + cn1
+ σ1

wl · a1 + wu · c1 + C̄1

ρ1 + (wl · a1 + wu · c1 + C̄1)
] ·

1

1 + c2/γ2
+ β1 = 0, (7.6)

−µa2 + [α2
an2

kn2 + an2
+ σ2

wl · a2 + wu · c2 + C̄2

ρ2 + (wl · a2 + wu · c2 + C̄2)
] ·

1

1 + a1/γ1

+ β2 = 0, (7.7)

−µc2 + [α2
cn2

kn2 + cn2
+ σ2

wl · a2 + wu · c2 + C̄2

ρ2 + (wl · a2 + wu · c2 + C̄2)
] ·

1

1 + c1/γ1
+ β2 = 0. (7.8)

We have thus derived an asymptotic two-peak solution ψ = wl · δ(a1,a2) +wu · δ(c1,c2).

Notice that ā1, ā2, c̄1, c̄2, wl, wu are not determined uniquely from the equations

(7.5) - (7.8); these quantities depend also on the initial condition (3.1).

In order to complete the proof, it remains to establish (7.3), (7.4). Following

the argument in the proof of Lemma 6.1, we argue that if (7.3) and (7.4) are not

true then

∩∞
k=1Ω

(k) = ∪3
i=1Ri (disjoint union)

where each Ri is either a rectangle or a single point, and at least one Ri is a rectangle.

We denote by (ǎ∗1, â
∗
2) the upper-left vertex of R1 which is diagonally opposed to

(ǎ∗1, â
∗
2); if R1 is a single point then we take ǎ∗1 = ǎ∗1, â

∗
2 = â∗2. Similarly we designate

the vertices (b̂∗1, b̌
∗
2), (b̌

∗
1, b̂

∗
2) for R2, and (ĉ∗1, č

∗
2), (č

∗
1, ĉ

∗
2) for R3. Then analogous to

(6.7)-(6.10), the coordinates of these vertices satisfy the following equations:

f1(ǎ
∗
1, â

∗
2, Š1) = 0, f2(ǎ

∗
1, â

∗
2, Ŝ2) = 0, (7.9)

f1(â
∗
1, ǎ

∗
2, Ŝ1) = 0, f2(â

∗
1, ǎ

∗
2, Š2) = 0, (7.10)

f1(b̂
∗
1, b̌

∗
2, Š1) = 0, f2(b̂

∗
1, b̌

∗
2, Ŝ2) = 0,

f1(b̌
∗
1, b̂

∗
2, Ŝ1) = 0, f2(b̌

∗
1, b̂

∗
2, Š2) = 0,

f1(č
∗
1, ĉ

∗
2, Š1) = 0, f2(č

∗
1, ĉ

∗
2, Ŝ2) = 0, (7.11)

f1(ĉ
∗
1, č

∗
2, Ŝ1) = 0, f2(ĉ

∗
1, č

∗
2, Š2) = 0. (7.12)

Furthermore,

Ŝ1 ≤ [v1â
∗
1 + v2b̌

∗
1 + v3ĉ

∗
1]/v + C̄1, (7.13)

Š1 ≥ [v1ǎ
∗
1 + v2b̂

∗
1 + v3č

∗
1]/v + C̄1, (7.14)

Ŝ2 ≤ [v1â
∗
2 + v2b̌

∗
2 + v3ĉ

∗
2]/v + C̄2, (7.15)

Š2 ≥ [v1â
∗
2 + v2b̌

∗
2 + v3č

∗
2]/v + C̄2, (7.16)
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where v1, v2, v3 are the areas of the regions R1, R2, R3, and v1 +v2 +v3 = v. Among

the three quantities

(â∗1 − ǎ∗1), (b̌∗1 − b̂∗1), (ĉ∗1 − č∗1),

we pick the largest one, say (â∗1 − ǎ∗1), and the corresponding two equations from

(7.9), (7.10),

f1(ǎ
∗
1, â

∗
2, Š1) = 0, f1(â

∗
1, ǎ

∗
2, Ŝ1) = 0 (7.17)

(analogously to equations (6.7), (6.9)). Similarly, among the quantities

(â∗2 − ǎ∗2), (b̌∗2 − b̂∗2), (ĉ∗2 − č∗2)

we pick the largest one, say (ĉ∗2− č
∗
2), and the corresponding equations (7.11), (7.12),

f2(č
∗
1, ĉ

∗
2, Ŝ2) = 0, f2(ĉ

∗
1, č

∗
2, Š2) = 0 (7.18)

(analogously to equations (6.8), (6.10)). From (7.13)-(7.16) we deduce that

Ŝ1 − Š1 ≤ [v1(â
∗
1 − ǎ∗1) + v2(b̌

∗
1 − b̂∗1) + v3(ĉ

∗
1 − č∗1)]/v (7.19)

≤ â∗1 − ǎ∗1,

Ŝ2 − Š2 ≤ [v1(â
∗
2 − ǎ∗2) + v2(b̌

∗
2 − b̂∗2) + v3(ĉ

∗
2 − č∗2)]/v (7.20)

≤ ĉ∗2 − č∗2.

We use (7.17) and (7.19) to estimate |â∗1 − ǎ∗1| in terms of |â∗2 − ǎ∗2|, as in the

derivation of (6.12). We next use (7.18) and (7.20) to estimate |ĉ∗2 − č∗2| in terms of

|ĉ∗1− č
∗
1|. Finally, from the two estimates on |â∗1−ǎ

∗
1| and |ĉ∗2− č

∗
2| and the inequalities

|â∗2 − ǎ∗2| ≤ |ĉ∗2 − č∗2|, and |ĉ∗1 − č∗1| ≤ |â∗1 − ǎ∗1|, (7.21)

we derive the estimates (6.14), (6.15) which yield a contradiction to (6.6). Assertions

(7.3) and (7.4) are thus established.

Setting nl = N0 · wl, nu = N0 · wu, we summarize:

Theorem 7.1. If conditions (6.6), (7.1) and (7.2) hold then the solution ψ of (2.10),

(3.1), with fi, Si defined by (2.5), (2.6), (2.11), satisfies:

lim
t→∞

ψ(t, x2, x2) = nlδ(a1,a2) + nuδ(c1,c2) (7.22)

where nl +nu = N0 and the points (a1, a2) and (c1, c2) together with the weights wl,

wu satisfy equation (7.5)-(7.8); the convergence in (7.22) is in the sense of conver-

gence in measure.
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Remark 7.1. Theorem 7.1 extends to the case where instead of (7.1), (7.2) we

assume that

condition (B2) holds, f̂2(p̂
m
2 ) < 0, and f̌2(p̌

M
2 ) > 0,

and either condition (M1) holds, or (B1) and f̂1(p̂
M
1 ) < 0 hold.

8 Asymptotic four-peak solutions

In this section we assume, analogously to the case of Theorem 4.1(vi), that

conditions (B1), (B2) hold, and f̂i(p̂
m
i ) < 0, f̌i(p̂

M
i ) > 0, i = 1, 2. (8.1)

As in sections 6,7, in view of (8.1) and (5.3)-(5.4), for any small ε0 > 0, there exists a

T0 > 0 such that any solution x(t,x0) starting from a point x0 ∈ [0, A1]×[0, A2]\K
(0),

falls into one of the four rectangles

Ω(0) = Ω
(0)
ll ∪ Ω

(1)
ul ∪ Ω

(0)
lu ∪ Ω(1)

uu ,

for t ≥ T0, where

K(0) = Ω
(0)
ml ∪ Ω

(0)
lm ∪ Ω(0)

mm ∪ Ω(0)
um ∪ Ω(0)

mu,

Ω
(0)
ll = [ǎ

(0)
1 − ε0, â

(0)
1 + ε0] × [ǎ

(0)
2 − ε0, â

(0)
2 + ε0],

Ω
(0)
ul = [č

(0)
1 − ε0, ĉ

(0)
1 + ε0] × [ǎ

(0)
2 − ε0, â

(0)
2 + ε0],

Ω
(0)
lu = [ǎ

(0)
1 − ε0, â

(0)
1 + ε0] × [č

(0)
2 − ε0, ĉ

(0)
2 + ε0],

Ω(0)
uu = [č

(0)
1 − ε0, ĉ

(0)
1 + ε0] × [č

(0)
2 − ε0, ĉ

(0)
2 + ε0],

Ω
(0))
ml = [̂b

(0)
1 , b̌

(0)
1 ] × [ǎ

(0)
2 , â

(0)
2 ],Ω

(0)
lm = [ǎ

(0)
1 , â

(0)
1 ] × [̂b

(0)
2 , b̌

(0)
2 ],

Ω(0)
mm = [̂b

(0)
1 , b̌

(0)
1 ] × [̂b

(0)
2 , b̌

(0)
2 ],Ω(0)

um = [č
(0)
1 , ĉ

(0)
1 ] × [̂b

(0)
2 , b̌

(0)
2 ],

Ω(0)
mu = [̂b

(0)
1 , b̌

(0)
1 ] × [č

(0)
2 , ĉ

(0)
2 ].
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(1) (1)

1,l 1 2,l 1( , )a a

(1) (1)

1,l 1 2,l 1
ˆ ˆ( , )a a

(1)

ll

(1)

lm

(1)

lu

(1)

mu

(1)

mm

(1)

ml

(1)

ul

(1)

um

(1)

uu

(1) (1)

1,u 1 2,u 1( , )c c

(1) (1)

1,u 1 2,u 1
ˆ ˆ( , )c c

(1) (1)

1,u 1 2,l 1( , )a c

(1) (1)

1,u 1 2,l 1
ˆ ˆ( , )a c

(1) (1)

1,l 1 2,u 1( , )c a

(1) (1)

1,l 1 2,u 1
ˆ ˆ( , )c a

Figure 6: Notations for Ω(1) and its components, for the four-peak case.
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We then need to concentrate only on the dynamics in Ω(0) and K(0). Define

f̂
(1)
1,l (x1) = −µx1 + (α1

xn1
kn1 + xn1

+ σ1
Smax

1 (T0)

ρ1 + Smax
1 (T0)

) ·
1

1 + (ǎ
(0)
2 − ε0)/γ2

+ β1,

f̌
(1)
1,l (x1) = −µx1 + (α1

xn1
kn1 + xn1

+ σ1
Smin

1 (T0)

ρ1 + Smin
1 (T0)

) ·
1

1 + (â
(0)
2 + ε0)/γ2

+ β1,

f̂
(1)
1,m(x1) = −µx1 + (α1

xn1
kn1 + xn1

+ σ1
Smax

1 (T0)

ρ1 + Smax
1 (T0)

) ·
1

1 + b̂
(0)
2 /γ2

+ β1,

f̌
(1)
1,m(x1) = −µx1 + (α1

xn1
kn1 + xn1

+ σ1
Smin

1 (T0)

ρ1 + Smin
1 (T0)

) ·
1

1 + b̌
(0)
2 /γ2

+ β1,

f̂
(1)
1,u(x1) = −µx1 + (α1

xn1
kn1 + xn1

+ σ1
Smax

1 (T0)

ρ1 + Smax
1 (T0)

) ·
1

1 + (č
(0)
2 − ε0)/γ2

+ β1,

f̌
(1)
1,u(x1) = −µx1 + (α1

xn1
kn1 + xn1

+ σ1
Smin

1 (T0)

ρ1 + Smin
1 (T0)

) ·
1

1 + (ĉ
(0)
2 + ε0)/γ2

+ β1,

and similarly, by interchanging indices i = 1 and i = 2, define

f̂
(1)
2,l (x2), f̌

(1)
2,l (x2), f̂

(1)
2,m(x2), f̌

(1)
2,m(x2), f̂

(1)
2,u(x2), f̌

(1)
2,u(x2).

Next, let â
(1)
i,l , ǎ

(1)
i,l (respectively â

(1)
i,m, ǎ

(1)
i,m; â

(1)
i,u , ǎ

(1)
i,u ) be the smallest zeros, b̂

(1)
i,l , b̌

(1)
i,l

(respectively b̂
(1)
i,m, b̌

(1)
i,m; b̂

(1)
i,u , b̌

(1)
i,u ) be the middle zeros, and ĉ

(1)
i,l , č

(1)
i,l (respectively ĉ

(1)
i,m,

č
(1)
i,m; ĉ

(1)
i,u , č

(1)
i,u ) be the largest zeros of f̂

(1)
i,l , f̌

(1)
i,l (respectively f̂

(1)
i,m, f̌

(1)
i,m; f̂

(1)
i,u , f̌

(1)
i,u ).

Then for any small ε1 > 0 there exists a T1 > T0 such that any solution x(t,x0)

starting from a point x0 ∈ [0, A1]× [0, A2] \K
(1) falls into one of the four rectangles

Ω(1) = Ω
(1)
ll ∪ Ω

(1)
ul ∪ Ω

(1)
lu ∪ Ω(1)

uu ⊂ Ω(0),

for t ≥ T1, where

K(1) = Ω
(1)
ml ∪ Ω

(1)
lm ∪ Ω(1)

mm ∪ Ω(1)
um ∪ Ω(1)

mu ⊂ K(0),

Ω
(1)
ll = [ǎ

(1)
1,l − ε1, â

(1)
1,l + ε1] × [ǎ

(1)
2,l − ε1, â

(1)
2,l + ε1] ⊂ Ω

(0)
ll ,

Ω
(1)
ul = [č

(1)
1,l − ε1, ĉ

(1)
1,l + ε1] × [ǎ

(1)
2,u − ε1, â

(1)
2,u + ε1] ⊂ Ω

(0)
ul ,

Ω
(1)
lu = [ǎ

(1)
1,u − ε1, â

(1)
1,u + ε1] × [č

(1)
2,l − ε1, ĉ

(1)
2,l + ε1] ⊂ Ω

(0)
lu ,

Ω(1)
uu = [č

(1)
1,u − ε1, ĉ

(1)
1,u + ε1] × [č

(1)
2,u − ε1, ĉ

(1)
2,u + ε1] ⊂ Ω(0)

uu ,

Ω
(1)
ml = [̂b

(1)
1,l , b̌

(1)
1,l ] × [ǎ

(1)
2,m, â

(1)
2,m] ⊂ Ω

(0)
ml , Ω

(1)
lm = [ǎ

(1)
1,m, â

(1)
1,m] × [̂b

(1)
2,l , b̌

(1)
2,l ] ⊂ Ω

(0)
lm ,

Ω(1)
mm = [̂b

(1)
1,m, b̌

(1)
1,m] × [̂b

(1)
2,m, b̌

(1)
2,m] ⊂ Ω(0)

mm, Ω(1)
um = [č

(1)
1,m, ĉ

(1)
1,m] × [̂b

(1)
2,u, b̌

(1)
2,u] ⊂ Ω(0)

um,

Ω(1)
mu = [̂b

(1)
1,u, b̌

(1)
1,u] × [č

(1)
2,m, ĉ

(1)
2,m] ⊂ Ω(0)

mu;
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Figure 6 describes the four components of Ω(1) and the five components of K(1).

We then consider the dynamics on Ω(1) ∪ K(1). Successively, we can define

â
(k)
i,∗ , ǎ

(k)
i,∗ , b̂

(k)
i,∗ , b̌

(k)
i,∗ , ĉ

(k)
i,∗ , č

(k)
i,∗ , i = 1, 2, ∗ = l,m, u, and Ω(k) and K(k), for k > 2. Using

(6.6) we can extend the argument used in Lemma 6.1 and in section 7 to show that

each of the following intervals converges to a single point as k → ∞:

[ǎ
(k)
i,∗ , â

(k)
i,∗ ] → {ai,∗}, [̂b

(k)
i,∗ , b̌

(k)
i,∗ ] → {bi,∗}, [č

(k)
i,∗ , ĉ

(k)
i,∗ ] → {ci,∗}, i = 1, 2, ∗ = l,m, u,

so that

Ω(k) → {(a1,l, a2,l), (c1,l, a2,u), (a1,u, c2,l), (c1,u, c2,u)}, as k → ∞.

In addition,

S1(t) → S1 = wll · a1,l + wul · c1,l + wlu · a1,u + wuu · c1,u + C̄1,

S2(t) → S2 = wll · a2,l + wul · a2,u + wlu · c2,l + wuu · c2,u + C̄2,

as t → ∞, for some wll, wul, wlu, wuu ≥ 0 with wll + wul + wlu + wuu = 1. Here,

wll, wul, wlu, wuu represent the percentage of cells whose concentrations tend to lev-

els (a1,l, a2,l), (c1,l, a2,u), (a1,u, c2,l), (c1,u, c2,u), respectively. Notice that these points

together with the w’s weights satisfy

fi(a1,l, a2,l, wll · a1,l + wul · c1,l + wlu · a1,u + wuu · c1,u + C̄i) = 0, (8.2)

fi(c1,l, a2,u, wll · a1,l + wul · c1,l + wlu · a1,u + wuu · c1,u + C̄i) = 0, (8.3)

fi(a1,u, c2,l, wll · a1,l + wul · c1,l + wlu · a1,u + wuu · c1,u + C̄i) = 0, (8.4)

fi(c1,u, c2,u, wll · a1,l + wul · c1,l + wlu · a1,u + wuu · c1,u + C̄i) = 0, (8.5)

for i = 1, 2.

Setting nll = N0 ·wll, nlu = N0 ·wlu, nlu = N0 ·wlu, nuu = N0 ·wuu, we summarize:

Theorem 8.1. If the conditions (6.6) and (8.1) hold then the solution ψ of (2.10),

(3.1), with fi, Si defined by (2.5), (2.6), (2.11), satisfies:

lim
t→∞

ψ(t, x2, x2) = nll·δ(a1,l,a2,l)+nul·δ(c1,l,a2,u)+nlu·δ(a1,u,c2,l)+nuu·δ(c1,u,c2,u). (8.6)

where nll +nlu +nlu +nuu = N0; the points (a1,l, a2,l), (c1,l, a2,u), (a1,u, c2,l), (c1,u, c2,u)

and the weights wll, wlu, wlu, wuu satisfy equations (8.2)-(8.5) and the convergence

in (8.6) is in the sense of convergence in measure.
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9 Numerical Illustrations

In this section, we provide numerical simulations for the single cell model (2.1) (2.2)

and for the population model (2.4).

The single cell model is a system of two ordinary differential equations (ODEs)

which can be easily solved by the Runge-Kutta method, using ode45 in MATLAB.

The population model (2.4) is essentially an integro-differential equation. The in-

tegrations in the Si(t) need to be carried out through quadrature rule (numerical

integration); we shall use Simpson’s rule which has third order accuracy. The so-

lution of equation (2.4) is then obtained by using Lax-Friedrichs method [10] [11].

Notice that the asymptotic solution of the population model becomes singular for

large time. In order to obtain highly accurate solution, refinement is definitely

needed at the places where population density tends to grow, and the correspond-

ing quadrature rule has to be redesigned; this we have done for the one-peak case,

but not for the multi-peak cases: we stopped the numerical simulations after the

asymptotic singular solutions are observed.

9.1 The single cell model

In Figure 7, we first demonstrate the single cell model results. The parameters for

(a)-(e) are chosen as those in [15], namely,

µ = 5 day−1, α1 = α2 = 5 day−1, σ1 = σ2 = 5 day−1, (9.1)

k1 = k2 = 1, ρ1 = ρ2 = 1, γ1 = 1, γ2 = 0.5, (9.2)

β1 = β2 = 0.05 day−1, n = 6. (9.3)

For these parameters, we take A1 = A2 = 2.01. Then

α1ñ

k1
·

1

1 + A2/γ2
< µ <

α1ñ

k1
,

α2ñ

k2

·
1

1 + A1/γ1

< µ <
α2ñ

k2

,

so that the conditions (M1) and (M2) are not satisfied. Thus, f̂i defined in (4.1) has

a local minimum and a local maximum for i = 1, 2.

In addition, conditions (B1), (B2) may hold for the Bi defined in section 4.

This gives the flexibility for the system to be either monostable or bistable under

different choices of S1 and S2. For example, the system is
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(a) monostable (MS) for S1 = 0.05, S2 = 0.025, with the choice of B1 = 0.058 and

B2 = 0.035; in this case (B1), (B2) hold and f̂i(p̂
M
i ) < 0 (i = 1, 2);

(b) bistable (BS-ll,hl) for S1 = 1.2, S2 = 0.025 with B1 = 1.181 and B2 = 0.035; in

this case (B1), (B2) holds, and f̂1(p̂
m
1 ) < 0, f̌1(p̌

M
1 ) > 0, f̂2(p̂

M
2 ) < 0 hold;

(c) bistable (BS-ll,lh) for S1 = 0.05, S2 = 1.3 with B1 = 0.058 and B2 = 1.493; in

this case (B1), (B2) hold and f̂2(p̂
m
2 ) < 0, f̌2(p̌

M
2 ) > 0, f̂1(p̂

M
1 ) < 0 hold.

Each of these cases is shown in Figure 7, where we chose 36 different initial

conditions (x1(0), x2(0)) and depicted their evolution. The blue curve is the nullcline

of f1 while the black curve is the nullcline of f2. We can clearly see that the solutions

converge to a single stable equilibrium in case (a) and to two stable equilibria in case

(b) and (c). The bistable-ll,hl (bistable-ll,lh ) system with low x1-low x2 and high

x1- low x2 states (low x1-low x2 and low x1- high x2 states), shown in case (b)((c))

can become monostable with high x1- low x2 state (low x1- high x2 ), shown in

(d)((e)) by increasing the value of S1(S2). Notice that (d)((e)) satisfies conditions

(B1), f̌1(p̌
m
1 ) > 0 and (B2), f̂2(p̂

M
2 ) < 0 with B1 = 1.626 and B2 = 0.035 ((B2)

f̌2(p̌
m
2 ) > 0, (B1), f̂1(p̂

M
1 ) < 0 with B1 = 0.058 and B2 = 1.626). It is also possible

to switch from bistable-ll,hl (bistable-ll,lh) to monostable by decreasing S2 (S1).

However, the system with parameters (9.1)-(9.3) cannot be quadstable due to

the strong mutual inhibition (i.e., small γ1, γ2). If we decrease the mutual inhibition

by taking parameters γ1 = γ2 = 30, σ1 = σ2 = 2, k1 = k2 = 0.6, but keep all the

other parameters the same, then conditions (B1), (B2), f̂i(p̂
m
i ) < 0, f̌i(p̌

M
i ) > 0, i =

1, 2, are satisfied, and by Theorem 4.1 (iv), the system is quadstable, as illustrated

in Figure 8.

9.2 The population model

Since in the population model (2.4) S1 and S2 are not constant and their evolution

depends on both the initial population of cells and the external signals C1(t), C2(t),

one may expect interesting behavior; for example, the system may switch from

one-peak to two-peak profile at intermediate times. In the subsequent numerical

simulations we adapt the normalized population density ψ(t, x1, x2), take A1, A2 as

in section 9.1, and choose the initial condition

ψ0(x1, x2) = const =
1

A1A2
(9.4)

so that N0 = 1. Although in (3.1) we assumed that ψ0 = 0 on ∂Ω, the results

of sections 6-8 do not actually use this assumption. Furthermore, the simulations
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Figure 7: Single cell model: (a) Monostable: the stable equilibrium is (x1, x2) ≈
(0.055, 0.033). (b) Bistable-ll,hl: the stable equilibria are (x1, x2) ≈ (0.556, 0.026)
and (1.368, 0.020); the unstable equlibrium is (x1, x2) ≈ (0.976, 0.022). (c) Bistable-
ll,lh: the stable equilibria are (0.032, 0.602) and (0.022, 1.444); the unstable equlib-
rium is (0.027, 0.904)(d) Monostable: the stable equilibrium is (1.549, 0.020). (e)
Monostable: the stable equilibrium is (0.042, 1.544).
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Figure 8: Single cell model: Quadstable: S1 = 0.04, S2 = 1.6, the stable
equilibria are (x1, x2) ≈ (0.211, 0.211), (0.204, 1.186), (1.186, 0.204), (1.146, 1.146)
and the unstable equilibria (x1, x2) ≈ (0.208, 0.531), (0.531, 0.208), (0.535, 0.535),
(0.543, 1.171), (1.171, 0.543).

given below do not significantly change if we modify (9.4) near the boundary ∂Ω so

as to make ψ0 vanish there.

In subsections 9.2.1-9.2.3 we have taken Ci(t) = 0, i.e., there is no external

stimulus. In section 9.2.4 we examine the effect of the stimulus.

We first demonstrate one-, two-, and four-peak solutions by choosing specific

parameters in the regimes we discussed in Theorem 4.1.

9.2.1 Asymptotic one-peak solution

In Figure 9 we show numerical results under conditions (M1) and (M2) which guar-

antee a single attracting point. Notice that we choose k1 = k2 = 2 instead of

k1 = k2 = 1 in [15] in order to satisfy conditions (M1) and (M2). In Figure 9(a),

9(b), 9(c) we have plotted ψ and the corresponding vector field (f1, f2) at times

t = 0.05, 0.2, 5. Since (M1) and (M2) are satisfied no matter what S1 and S2 are,

there is only one stable equilibrium point (although the sufficient condition (6.6) in

Theorem 6.2 is not satisfied). The vectors (f1, f2) all point toward the attracting

point. The normalized population density gets more and more concentrated at an

attracting point, and (S1(t), S2(t)) converges to (ā1, ā2) ≈ (0.054, 0.081).
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Figure 9: Monostable: k1 = k2 = 2 but all other parameters are as in (9.1)-(9.3)
(a)t = 0.05, (b) t = 0.2 (c) t = 5
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9.2.2 Asymptotic two-peak solution

Figure 10 displays bistable case (Bistable-ll,lh) with two-peak solution. We choose

parameters σ1 = σ2 = 2, γ1 = 30,γ2 = 1, k1 = 5, k2 = 0.6. We see that the

population density starts to accumulate at two attracting points and the population

density is higher in low x1- high x2 state as proved in section 7. The weights w1

and w2 in the asymptotic solution depend on the initial population density. If most

of the population density is initially in the attraction basin of low x1- low x2 state,

then the weight for the Dirac function with center at low x1- low x2 state would be

higher (not shown here).

9.2.3 Asymptotic four-peak solution

In Figure 11, the population density becomes highly concentrated at four attracting

points as we expect from Theorem 8.1. The weights w11, wu1, w1u and wuu depend on

the parameters of the system as well as on initial population density. The parameters

chosen satisfy the condition (B1)’ and (B2)’, (and (6.6) is also satisfied). Note that

the mutual inhibition is small (i.e., γ1 and γ2 are large).

9.2.4 Effect of the stimulus

In the previous subsections we have assumed that Ci(t) ≡ 0 (no external stimulus).

We now want to examine the effect of these stimuli. We take the parameters as in

(9.1)-(9.3): Figure 12 shows how with no stimuli (i.e with C1(t) ≡ C2(t) ≡ 0) the

uniform populations begins to evolve and move into low-x1-lowx2 peak; this is inter-

preted biologically as no cell differentiation. In Figure 13 we choose C1(t) exp−G(t) =

0.5 and C2(t) exp−G(t) = 1.5 for all t > 0. We see that the solution develops a two-

peak solution. Due to the larger stimulus of x2 (i.e. C2(t) > C1(t)), as well as the

stronger inhibition of x1 by x2, the low x1 - high x2 peak has much larger population

than the low x1-low x2 peak.

In Figure 14 we use the same stimuli as in Figure 13, but have taken ψ0

to be constant for x1 < A1/5 and zero elsewhere. Thus we give GATA-3 initial

density advantage as well as stimulus advantage. We see that the population density

moves again toward two-peak solution, low x1- low x2 and low x1- high x2, but the
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Figure 10: Bistable (BS-ll,lh): σ1 = σ2 = 2, γ1 = 30,γ2 = 1, k1 = 5, k2 = 0.6 and all
other parameters are as in (9.1)-(9.3) (a)t = 0.05, (b) t = 0.2 (c) t = 1
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population density at the low x1-high x2 is larger than in Figure 13. In both Figure

13 and 14, the low x1 - high x2 can be interpreted biologically as a population of

differentiated Th2 cells.

10 Conclusions

In this paper, we considered a conservative law of the form

∂φ

∂t
+

∂

∂x1
(f1φ) +

∂

∂x2
(f2φ) = gφ, φ = φ(t, x1, x2) (10.1)

where the velocity vector f = (f1, f2) is a nonlinear nonlocal function of φ. This

equation arises as a model of T cell differentiation where x = (x1, x2), and x1, x2

are the concentrations of transcription factors T-bet and GATA-3, respectively. A

precursor T cell growing at rate g with x1 large (small) and x2 small (large) will

differentiate into Th1 (Th2) T cell. Th1 and Th2 have different functions: Th1

T cells combat intracellular pathogens while Th2 T cells induce the activation of

B cells to combat extracellular pathogens. A ’good’ balance between these two

populations of cells is maintained in homeostasis. The function φ(t, x1, x2) represents

the population density of T cells with concentrations (x1, x2) at time t. Within an

individual cell the concentrations of x1 and x2 vary according to the equations

dxi
dt

= fi(t, x1, x2, φ(t, ·)) (i = 1, 2) (10.2)

and the dependence on t and φ(t, ·) arises from stimuli Si(t) consisting of a stimulus

which arises from within the entire population of the T cells and of an external

stimulus Ci.

It is natural to ask what is the behavior of φ at intermediate and large times

and how this depends on Ci(t) and on the initial condition. In this paper, we

have depicted six regions from the space of parameters that are introduced in the

definition of the fi. We proved that for the first regime the function φ(t, x1, x2)

converges to a 1-peak solution as t → ∞; for regimes 2,3,4, and 5, φ converges to

a 2-peak solutions, and for regime 6, φ convergences to a 4-peak solution; this was

illustrated in Figures 9-11 when Ci(t) ≡ 0

Numerical simulations given in Figure 12-14, show how the location of these

peaks depend on the external signals Ci(t) and the initial conditions. We interpret
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Figure 12: Monostable result: The parameters are as in (9.1)-(9.3). The population
density moves toward low x1- low x2 state at (a)t = 0.05, (b)t = 1.0 and (c) t = 5.
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Figure 13: The parameters are as in (9.1)-(9.3). A uniform density evolves toward
two stable points under external stimulus C1(t)e

−G(t) = 0.5, C1(t)e
−G(t) = 1.5.

(a)t = 0.01 (b) t = 0.1 and (c) at t = 1
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Figure 14: The parameters are as in (9.1)-(9.3). A uniform density at x1 <
A1/5 evolves toward two stable points under external stimulus C1(t)e

−G(t) = 0.5,
C1(t)e

−G(t) = 1.5. (a)t = 0.01 (b) t = 0.1 and (c) at t = 1
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a peak centered at (x0
1, x

0
2) with x0

1, x
0
2 small as a population of T cell that do not

differentiate. A peak with x0
1 small, x0

2 large represents a population of T cells that

differentiate into Th2. In a similar way, we interpret the case of x0
1 large, x0

2 small.

Finally, a situation where both x0
1 and x0

2 are large in viewed as abnormal: Since

the concentrations of both T-bet and GATA-3 are large, the cell receive conflicting

instructions to differentiate simultaneously to Th1 and Th2. This situation arises in

Figure 11 where the mutual inhibition is weak (namely, γ1 = γ2 = 30). Hence one

of the conclusions of our simulations is that, in homeostasis, the mutual inhibition

cannot be too weak.

The results of the paper are obtained by approximating the full dynamical

system

dxi
dt

= fi(t, x1, x2, φ(t, ·)) (i = 1, 2) (10.3)

from above and below by a sequence of dynamical systems where in each step of

approximation the total signaling is constant but is ’sharper’ than in the previous

step. This method is quite general and could be applied to more general functions

f(t, x, φ(·)) and in any number of dimensions for the x variable.
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