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Social media data tend to cluster around events and themes. Local newsworthy events, sports team
victories or defeats, abnormal weather patterns, and globally trending topics all influence the content of
online discussion. The automated discovery of these underlying themes from corpora of text is of interest
to numerous academic fields as well as to law enforcement organizations and commercial users. One
useful class of tools to deal with such problems are topic models, which attempt to recover latent groups of
word associations from the text.However, it is clear that these topics may also exhibit patterns in both time
and space. The recovery of such patterns complements the analysis of the text itself, and in many cases
provides additional context. In the present work we describe two methods for mining interesting spatio-
temporal dynamics and relations among topics, one that compares the topic distributions as histograms
in space and time, and another that models topics over time as temporal or spatio-temporal Hawkes
process with exponential trigger functions. Both methods may be used to discover topics with abnormal
distributions in space and time. The second method also allows for self-exciting topics, and can recover
intertopic relationships (excitation or inhibition) in both time and space. We apply these methods to a
geo-tagged Twitter dataset, and provide analysis and discussion of the results.
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1. Introduction

It is apparent that microblogs such as Twitter are composed of a vast number of diverse topics. Unfilted
samples from the Twitter “firehose” often contain tweets on wide variety of topics such as local politics,
sporting events, daily activities, weather, local crime, and organized public demonstrations. The summa-
rization and analysis of these data is of interest to social scientists, commercial groups, law enforcement,
and government agencies among others.

However, the extraction of semantic information from raw text is a non-trivial task. A large amount
of literature has been devoted to modeling and extracting latent themes from both Twitter and large
text corpora in general. Known as topic models, these methods use latent word associations (referred
to as topics) to capture the underlying themes in the documents (i.e. the Tweets). In practice many
practitioners use a very large number of topics due to the diversity of the text. While originally intended
to summarize latent themes in the data, the topics may be so numerous that they themselves may require
automated analysis.

At the same time, we are often able to recover more information from the media source than just
the text content. Microblog data often includes metadata such as posting-time and location, allowing us
to produce distributions of documents over physical space and time. In the context of a spatiotemporal
process, some topics are observed in Tweets purely at random (topics associated with teenage romance
perhaps), or on a periodic basis with spatial clusters (topics about rush hour traffic, local weather, or
major holidays). Still others exhibit patterns quite different from baseline Twitter usage. Natural dis-
asters, one-time fads, and large events (including mass civil disturbances) can be expected to produce
anomalous Twitter content.

It is useful then to produce automated topic analysis methods focused around identifying spatio-
temporal patterns. Topics with temporal or spatial distributions that are anomalous with respect to the
background rate of document occurrence may be of further interest to analysts, and may be indicative
of a corresponding real world event. Furthermore, given a specific location and/or time, it is helpful to
be able to find associated topics (and thereby documents).

Topics may also exhibit temporal or spatio-temporal couplings. Social events may trigger further
events, sports team victories or defeats may lead to the discussion of the future of a player or coach’s
employment, or a controversial post may trigger an explosion of heated responses. In terms of topics
and Tweets, the observation of some Tweets from a topic may precede the observation of Tweets from
another related topic with some regularity. In a predictive sense, the observation of Tweets from some
topics may contain information about the incidence rate of Tweets from another topic (Ding et al. [2013],
Ver Steeg & Galstyan [2012]). For example, if we observe a number of observations in a bad weather
topic, we might expect to see a number of observations in the traffic topic. On a larger scale, the pairwise
coupling of topics is indicative of a possible latent network structure.

In the present work we give two methods for the automated mining of temporally and spatially
anomalous topics generated by Non-negative Matrix Factorization. One method is based on the Earth
Mover’s Distance and provides a distance measure of a topic from a background distribution. The other
is based on the Hawkes process, which is a self-exciting point process model. The second provides
estimates of latent network structures, and has associated goodness-of-fit measures. To validate these
methods we process 500,000 geolocalized Twitter messages from the Los Angeles area over a ten-month
period. The Tweets are timestamped and geo-tagged (geographical location information from the user
attached to the Tweet).
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2. Previous Work

Our methods build upon recent literature concerning the spatio-temporal analysis of human activity
patterns, topic modelling, anomaly detection, and self-exciting point processes.

2.1 Spatio-temporal Human Activity:

It is well-known that human activity is not uniformly distributed in space or time. Particular activity
types tend to cluster in local spatial regions, while the frequencies of those behaviors also tend to cluster
in time. The clustered, bursty nature of human behavior has huge implications for the organization and
function of urban systems. Our own previous work has concentrated on the spatio-temporal dynamics
of crime which, like other aspects of human behavior, forms dynamic spatio-temporal hotspots (Lewis
& Mohler [2011], Mohler [2014], Woodworth et al. [2014]).

Outside of this, mobile device usage has been shown to also have a clustered nature (Gonzalez et al.
[2008]), following human behavior. The rise of social media and mobile data allows similar analyses to
be taken a step further. One prime example is the use of Foursquare data to make inferences about user
activities, geographic regions, and local events (Noulas et al. [2011]).

2.2 Microblogs and Related Topic Models:

Twitter as a source of data for academic study has been in use since approximately 2007 (Java et al.
[2007]), when it was treated as a social network. Since then, it has been a popular topic of study, so much
that there are papers about people writing about Twitter (Williams et al. [2013]). A growing proportion
of studies look principally at Twitter content; it has been suggested that Twitter, while presenting a
social network and an information diffusion network, may be closer to a media distribution site, where
the media is user produced (Kwak et al. [2010]). Analysis of the text content includes both general
models as well as Twitter specific models (Hong & Davison [2010], Zhao et al. [2011]). Grindrod
[2014] looks at a dynamic random walk time series model for event-driven spikes in Twitter data and
outlines many of the current state-of-the-art approaches in the area.

Several previous works have introduced geospatial or time-dependent topic models. In particular
Cataldi et al. [2010] introduce a time-dependent topic model. Similarly, both Yin et al. [2011] and
Hong et al. [2012] provide variants of geospatial topic models. In general these approaches differ from
our method in that they directly influence the chosen topics by their respective domain (time or space).
Though these are important contributions, the topics produced from these models may not accurately
describe the full corpus of text.

Along a different line is the much more recent exploration of topics on hidden information diffusion
graphs by He et al. [2015]. This work also uses the Hawkes process, but, instead of constructing separate
timelines for each topic, models each user as having a separate timeline. This excellent work parallels
our second method, and uses a similar Multivariate Marked Hawkes Process.

2.3 Spatial and Temporal Anomaly Detection:

Directly related to our first method is a work by Applegate et al. [2011]. The authors consider only
mobile phone usage data without content, applying an approximate Earthmover’s Distance described in
? to cluster temporal patterns across multiple cyclic periods (e.g. patterns over time of day and day
of the week between different users). Our work extends their approximate Earthmover’s distance from
time based histograms to a histograms weighted by document content both in space and time.
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More related to our second method are event detection and summary methods. Twitter is known to
reflect real world events and news media activity.

Similar to our work, Zhao et al. [2011] use a Twitter generative text model based on latent Dirichlet
allocation (LDA), then match Topics between the generated Twitter model and New York Times articles.
This provides important groundwork for investigating temporal coupling between documents, though
not in a point process context.

2.4 Point Process Models for Social Interaction:

Recently, several studies have modeled social interactions as linked Hawkes point processes. While not
analyzing text content, nor, in general, microblog activity, these studies employ methods that are similar
to the ones explored in Sections 5 and 6.

In particular, Blundell et al. [2012] model reciprocity in relationships from human interaction data
using linked Hawkes processes. The authors fit their model to several datasets, including selected threads
of the ENRON email corpus and the Militarized Interstate Dispute (MID) corpus. Following this work,
Zhou et al. [2013] provides a sparse, low-rank extension, using the same multidimensional Hawkes pro-
cess to model information diffusion across networks. This second set fits the model to a MemeTracker
dataset, a similar setting to Twitter.

A more technical review of the Hawkes process and relevant citations is given in Section 5.

3. Topic Models

In order to extract latent topic variables from our text corpus, we transform our raw text data into a
Bag-of-Words vector form and then apply Non-Negative Matrix factorization with sparse constraints.
The pre-processing work, while involved and non-trivial, is not our focus, nor do we introduce any
innovations to the field, and so is only covered briefly here.

3.1 Pre-Processing:

As found in Ramage et al. [2010],Godin et al. [2013], and Hong & Davison [2010], we apply significant
pre-processing to our raw data before training our topic model. The steps here are undertaken in order:
1. We encode the text into ASCII, discarding any Unicode characters. 2. We replace all double quotes
with the empty string. 3. We extract all user references and all hashtags, denoted respectively with @
or # at the beginning of a token. 4. We attempt to remove any urls, specifically anything prefixed with
“http”. 5. We remove many non-alphanumeric characters, with the important exception of $ and @,
with the latter only in the case that it is the only character in the token (the @ symbol is significant in
its usage by Instagram in automatically generated Tweets). 6. We change all characters to lowercase.
7. We remove any token on our Stop Words list, including a Twitter specific stopwords list of the 50
most common words observed in our dataset. 8. We remove any token observed less than 10 times.
9. We partition the data by month in order to reduce the number of fad-like topics observed in each data
set.

After pre-processing we form an ordered vocabulary and generate term-frequency vectors from the
documents. These we concatenate to form a data matrix D′, where each row is a document, and each
column represents a distinct word in our vocabulary. We immediately re-weight D′ using the TF-IDF
scheme (Salton & McGill [1983]). This re-weighted matrix we denote as D.

We denote the number of documents N, and the number of words in our vocabulary M; thus, D ∈
RN×M . For this analysis N > M. As a matrix of frequency counts, D only has non-negative entries.
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3.2 Non-negative Matrix Factorization:

After forming our data matrix D, we then make the assumption that the rows of D are approximately the
additive combination of K non-negative topic vectors, where K� N. This is equivalent to making the
assumption that D is approximately of rank K, with the constraint that the subspace spanned by D has a
set of non-negative basis vectors and all of the rows of D have non-negative coordinates in that basis.

Using this assumption, we have the following approximation D≈WHT , where W is a matrix of the
coordinates of each document in the subspace of the rows of HT . This is the basic Non-negative Matrix
Factorization (NMF) (Lee & Seung [1999]), which has the objective function J(W,H) = ||D−WHT ||F .
The matrix norm used here is the Frobenius norm. With a slight modification of the above objective and
use of the Kullback-Leibler (KL) divergence instead of the Frobenius norm, NMF has been shown to be
equivalent to Probabilistic Latent Semantic Indexing (Ding et al. [2008]), a forerunner of LDA.

In the recent literature, good results have been achieved using a combination of an L1 and an L2
regularizing term (Kim & Park [2008b], Saha & Sindhwani [2012]). This encourages sparsity and
somewhat prevents overfitting. Our specific objective is given below:

J(W,H) =
1
2
‖D−WHT‖2

F +α‖W‖2
F +β

n
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‖Hi,:‖2

1 (3.1)

subject to the non-negative constraints on both W and H.
In this paper we use an Alternating Least Squares (ALS) active set method developed by Kim &

Park [2008a], using 300 topics. ALS methods alternate between minimizing ||D−WHT ||F (the sum
of element-wise squared error) over W and H matrices. In this particular case each regularizer term
contains only either W or H terms, so Kim and Park encode the regularizer terms into
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They then employ the usual ALS procedure, alternating between minimizing J1(H) and J2(W ).
Each of the K rows of HT may be interpreted as a topic vector, and each entry of a given row as the

relative frequency with which a word occurs in the topic. By sorting the entries of the row we can form
ranked lists of words describing the topic. We show an example of this in Table 1. Each of the N rows
of W is the encoding of a document in the topic basis. Each entry of a given row of W is the proportion
of the document that is “taken” from a given topic.

This topic model can efficiently handle streaming data or data that arrives in large batches over time.
Given the model parameters previously learned on current data, its a simple matrix multiplication to find
the topic representation of new data as it comes in. The parameters also be updated offline to adapt to
changes in the underlying structure do to the addition of new data.

4. Earthmover’s Distance

In this section we first define the Earthmover’s Distance (EMD) and briefly discuss its motivation,
important properties and differences from other measures and metrics. We then discuss our usage of it
and present results.
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Topic # Topic Words in Descending Order of Frequency per Topic
75 song sing lyric singing hear
79 hungry bored af lazy super

134 citadel outlets shopping commerce others
136 birthday enjoy happy beautiful cake
138 years new kiss resolution eve
154 california state university angeles los
172 class math ugh spanish full
184 idk might yet umm bout
188 cute boyfriend aww together aha
192 win lakers straight fan clippers
231 merry christmas xmas yall everybody
227 okay ahaha ohh aww hahahaha
237 commerce old store factory change
242 tho ahah af lame serious
25 school high middle monday excited
33 stay strong kind faithful single
40 wait till til excited train
62 cool sound kinda minute reply
64 stupid acting af - - act

113 text number sent message reply
117 good sound luck feels mood
143 gotta clean fight learn dawg
147 break heart winter taking fast
176 food mexican bomb chinese ate
179 face sad ugly beautiful punch
181 take nap shower breath seriously
211 asleep fall fell falling half

Table 1: Examples of topic interpretations for select topics. On the left hand side we provide the cor-
responding topic number. As expected, numerous topics have a running theme, e.g. Holidays, Events,
Classes, Sports Teams. Others seem to be dominated by a single word to which the others all relate.
Topics in boldface possibly exhibit spatial or temporal patterning, which the methods presented here
investigate rigorously.
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4.1 Definition of the Earthmover’s Distance:

Let P and Q be discrete distributions:

P = {(p1,wp1), . . . ,(pN ,wpN)} (4.1)
Q = {(q1,wq1), . . . ,(qM,wqM)}, (4.2)

N

∑
i=1

wpi = 1 and
M

∑
i=1

wqi = 1. (4.3)

Let d(·, ·) be a metric on the set {pi}N
i=1 ∪{qi}M

i=1 and let fi j be the scalar flow from pi to q j with
the following constraints:

fi j > 0,
M

∑
j

fi j = wpi,
N

∑
i

fi j = wq j. (4.4)

We define the Earthmover’s Distance (EMD) as

EMD(P,Q) = min
{ fi j}

∑
i, j

fi j ·d(pi,q j), (4.5)

as seen in Muskulus & Verduyn-Lunel [2011]. More intuitively, if P and Q were piles of dirt, the
Earthmover’s Distance measure would be similar to the minimum work required to move the pile P to
the pile Q. For more analytic results, the EMD is commonly extended to continuous event spaces; in
this paper we only use the discrete version.

EMD is a metric on distributions defined over a metric space. The metric space condition is due to
the ground distance or flow property of EMD, a property which also separates it from other metrics such
as Total Variation.

4.2 Construction of Histograms:

Once each document in the corpus has been assigned a topic encoding, we recover a empirical distribu-
tion in space and time for each topic. Here we only rigorously address a 1-dimensional histogram, but
the process is easily extended to higher dimensions.

Given an connected observational window L = [a,b] and a fixed number of bins B, we partition the
window into B subintervals of length h = b−a

B . Each sub-interval is defined as ` j = [a+ h× j,a+ h×
( j+1)]. For a given corpus D with documents di, topics Z, topic encodings ci,z, and positions ti ∈ [a,b],
we define the distribution Pz of a given topic z ∈ Z as the following vector (histogram):

p j,z =
∑ti∈` j ci,z

∑di ci,z
. (4.6)

This is readily interpreted as the binned distribution of Tweets in L, reweighed by their topic encod-
ings and normalized so that the bins sum to one. We also define the “uniform” weighting of the Tweets,
which we refer to as the uniform histogram; note that this is not a Uniform distribution over space or
time, but is the binned background rate of all Tweets (uniformly weighted).
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FIG. 1: Earthmover Distances for each temporal histogram.

Because the number of bins increases exponentially with the dimension of the ground distance,
common algorithms for computing the exact solution to EMD scale badly. To avoid this cost, we use
an approximation to the Earthmover’s Distance originally formulated by ? which relies on the wavelet
transform. This takes the computation from approximately O(n3) to O(n), where n is the number of
bins.

4.3 Application to Twitter Timeseries:

In the context of Twitter data, we construct topic timeseries histograms by binning the topic weighted
posting times and measuring the distance to the uniform histogram. This distance is interpreted as a
measure of each particular topics’ temporal clustering, given the background (overall) rate of Tweeting.
Ranking the results in descending order of distance, we show the range of distances in Figure 1, and, in
Table 2 and Table 3, a qualitative analysis of the “furthest” four topics. We also include an analysis of
the topic “closest” to uniform for reference. Note that here we present only the results from December,
though similar results have been generated for other months.

Figure 1 shows a small subset of topics on the left are considerably further from the uniform weight-
ing than most other topics. Topics explored in depth (in Table 2 and 3) are the four leftmost points and
the right most point on this plot. There is a clear change point in this plot on the left-hand side. While it
is difficult to test the true cause leading to such as shape, we conjecture that the left-hand group of topics
have some temporal linkage leading to more extreme EMD values and variation, while the majority of
topics to the right of the change point do not have such a linkage.

4.4 Application to Twitter GPS Data:

Keeping the timeseries histograms in mind, we would also like to know the topics with geographic
histograms “far” from the uniform histogram in space. Using the EMD, we can measure the distance
from each topic’s histogram to the uniform histogram seen in Figure 3. Ranking the results in descending
order of distance, we show in Table 4 and Table 5 the results and, again, a short analysis of the four
“furthest” topic histograms, as well as a “close” histogram for reference.

It is interesting to note that, in the geographic case, several topics are extremely far from the uni-
form distribution. As explored in the qualitative analysis, this may be attributed to user proclivity to
Tweet certain things from only certain specific locations (e.g. local landmarks, or the users’ places of
residence). The three furthest histograms (Topics 194, 80, and 166) have uni- or bi-modal distributions
with very little spread. The fourth, however, is of particular interest due to its multi-modal nature and
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Topic 121, Distance: 158.5699
Top words:

1. merry
2. christmas
3. christmas[symbol]
4. mount
5. washington

Analysis: This topic encompasses Tweets about
Christmas, and posts about Mount Washington,
which is both a local subdivision as well as a park
with coinciding names. The location name is gener-
ated by Instagram.

Topic 80, Distance: 143.2101
Top words:

1. rawr
2. ˆ0ˆ
3. kill
4. jurassic
5. dinosaur

Analysis: This topic is quite mysterious without
user data, but upon inspection appears to be a group
of friends who use the word ‘rawr‘, perhaps due to
the Jurassic park movie. Their usage of the word is
quite sparse.

Topic 63, Distance: 127.8254
Top words:

1. 1183
2. unknown
3. injury
4. collision
5. traffic

Analysis: This topic encompasses posts by the Cal-
ifornia Highway Patrol, specifically for CHP code
1183 (Accident, no details). The pattern exhibited
is consistent with weather patterns in Los Angeles,
with the exception Christmas eve, which received
heavy rain but low posting volume, implying a
lower number of accidents.

Table 2: We here display three of the “furthest” topic temporal histograms from the Uniform weighting
using the Earth Mover’s Distance. On the right of each section we provide an interpretation of the topic.
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Topic 283, Distance: 118.9802
Top words:

1. 1182
2. injury
3. collision
4. traffic
5. vs

Analysis: This topic encompasses posts by the
California Highway Patrol as well, specifically for
incidents with CHP code 1182 (Accident, property
damage). It is parallel to the previous topic (63).

Topic 179, Distance: 2.6742
Top words:

1. got
2. present
3. [explicative]
4. card
5. nobody

Analysis: This topic is the closest to the uniform
histogram. It somewhat describes the possible pur-
chase of gifts and cards, with the mysterious inclu-
sion of an explicative verb in past tense. This
reflects the usage of “got [explicative]”.

Uniformly Weighted Temporal Distribution of Tweets

We here display the uniformly weighted distribu-
tion of Tweets. There are clear cyclic patterns (on
a 24 hour scale, as well as possibly a weekly scale).
Topic weight distributions that are relatively close to
this distribution (as measured by the Earth Mover’s
Distance) we interpret as being comparatively more
uniform over time, and thus less specific to particu-
lar events.

Table 3: Here we display a “far” distribution, the “closest” distribution, as well as the uniform distribu-
tion (i.e. the zero-distance distribution), from Top to Bottom respectively. On the right of each section
we provide an interpretation of the topic.
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irregular shape. On the other end of the spectrum, we see that the closest to uniform topic includes
words that could be used by all Twitter users.

FIG. 2: Earthmover Distances for each spatial histogram. Several points on the far left of the plot show
extreme spatial localization. The topics explored in depth (in Table 4 and Table 5) are again the four
leftmost points and the right most point on this plot.

5. Point Process Models:

In this section we construct the necessary definitions for our second method, providing brief discussion
of their motivation and our specific usage. Results from this method are provided in Section 6.

5.1 Hawkes Process Model:

A point process N is a random process where any realization consists of a collection of points typically
representing the times and locations of events. The most basic of these processes is the stationary
Poisson process in which events occur independently at a constant rate over an observed space-time
window. Poisson point processes are characterized uniquely by their associated conditional rate λ ,
which is defined as the limited expected rate of the accumulation of points around a particular location
and time (Daley & Vere-Jones [2003]).

In this work we focus on self-exciting point processes which describe sequences of events where the
occurrence of one event increases the likelihood that another event occurs nearby in space and time. The
Hawkes process (Hawkes [1971]) is one of the most important models of the conditional intensity for
self-exciting point processes. This model was first applied to modeling earthquake occurrences through
separate kernels for the background (mainshock) and triggering (aftershock) intensities. More recent
applications include modeling spatial temporal crime rates (Mohler et al. [2011]), retaliatory acts of
violence on a gang network (Stomakhin et al. [2011]), and e-mail traffic on a social network (Fox et al.
[2014]).

For a sequence of Tweets of topic k, we model their associated time series {tk
i : i = 1, · · · ,nk} as a

Hawkes process with an exponential triggering function. The conditional intensity function λk(t) for
the rate at which Tweets occur in topic k is defined as:

λk(t) = µk +αk ∑
tk
i <t

ωkeωk(t−tk
i ). (5.1)
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Topic 194, Distance: 9.1704
Top words:

1. citadel
2. outlets
3. commerce
4. shopping
5. others

Analysis: This topic appears to encompass Tweets
from Citadel Outlet Malls, a shopping center in
Commerce, CA (a subdivision of Los Angeles).

Topic 80, Distance: 6.6391
Top words:

1. rawr
2. ˆ0ˆ
3. kill
4. jurassic
5. dinosaur

Analysis: This topic is quite mysterious without
user data, but upon inspection appears to be a group
of friends who use the word ‘rawr‘, perhaps due to
the Jurassic park movie.

Topic 166, Distance: 5.9912
Top words:

1. ty
2. gbu
3. jc
4. wanted
5. loving

Analysis: This topic also requires user data to inter-
pret, but upon inspection appears to be one man.
He often uses the abbreviations ‘ty’, ‘gbu’, and ‘jc’.
The active region appears to be his place of resi-
dence.

Table 4: We here display three of the “furthest” topic spatial histograms from the Uniform weighting
using the Earth Mover’s Distance. On the right of each section we provide an interpretation of the topic.
The axes are longitude and latitude coordinates (the x-axis is relative to 118◦ W).
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Topic 158, Distance: 3.7809

Top words:
1. tracking
2. graffiti
3. station
4. plaza
5. mariachi

Analysis:
This topic describes Tweets by a graffiti tracking service hired by the LA Metro
Link. On the righthand side are the locations of the Metro Link stations in the
area, which correspond with active regions. “Mariachi” is one of the stations.

Topic 208, Distance: 0.2838
Top words:

1. check
2. dm
3. welcome
4. em
5. - -

Analysis: This topic is the closest to the uniform
histogram, and is provided for reference. “dm” is
an abbreviation for Direct Message.

Table 5: We here display one “far” topic spatial histograms and one “close” topic spatial histogram, as
measured by the Earth Mover’s Distance from the Uniform weighting. We provide an interpretation of
the topic. The axes are longitude and latitude coordinates (the x-axis is relative to 118◦ W).
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FIG. 3: The uniform histogram for geographic space.

Here µk is the background rate for topic k, which can be interpreted as the occurrence rate of Tweets in
topic k which are not triggered by other Tweets in topic k. The parameter αk is the branching ratio of the
process, which in context is the expected number of Tweets in topic k triggered by an arbitrary Tweet in
topic k. The parameter ωk governs the rate of decay, i.e. how quickly the overall rate λk returns to its
background level µk after a Tweet occurs in topic k.

The exponential kernel was chosen because our topics come from a relatively short time interval.
Sornette & Helmstetter [2003] suggest that for short time-scale topics the triggering kernel should obey
an exponential decay function: g(t) = ωe−ω(t−tk).

In our analysis of the one-dimensional Hawkes model, we mainly focus on the estimated branching
ratio αk since this parameter directly measures the amount self-excitation in the process, and may be
used to identify those topics where Tweets are highly clustered in time. We also compared the stationary
temporal Poisson process with the exponential Hawkes process where the conditional intensity function
of the former model is a constant.

5.2 Marked Spatio-temporal Model:

The Hawkes process can be further extended to include both temporal and spatial information. Such a
space-time process N(t,x,y) is characterized via its conditional intensity λ (t,x,y). For a sequence of N
Tweets, we consider their sequence coordinates in space and time (x1,y1, t1), · · · ,(xN ,yN , tN) as such a
process.

Point processes may also carry additional information beyond their location; these data are known as
marks, and the corresponding processes are known as marked point processes. Here we carry the topic
information as a mark, using notation similar to Mohler [2014], where the marks are used to denote
different categories of crimes.

We consider the set of topics M believed to be precursory of one specific topic. For example, if we
focus on the topic with descriptors “lakers game”, we consider topics that may be potential precursors
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(“watch TV game”, “clippers lakers”). The topic label of a specific Tweet is indexed zi j ∈ {0,1}; zi j = 1
if Tweet i is in topic j. The intensity of the topic specific process is now:

λk(t,x,y) = µ(x,y)+ ∑
ti<t

∑
j∈M

g(x− xi,y− yi, t− ti,zi j). (5.2)

We use a triggering kernel which is specified as exponential in time and Gaussian in space:

g(x,y, t,zi j) = zi jωkθ j,k exp(−ωkt)
1

2πσ2
k

exp
(
−x2 + y2

2σ2
k

)
(5.3)

and a background rate estimated from all Tweets in the M topics:

µ(x,y) = ∑
t>ti

∑
j∈M

zi j
γ jk

2πT η2
k

exp
(
−x2 + y2

2η2
k

)
. (5.4)

In our model of the intensity function λk(t,x,y) for topic k, θ j,k is the expected number of Tweets
in topic k triggered by an arbitrary Tweet in topic j; this is the main parameter characterizing the cross
excitation rates between topics. Parameter σk is the standard deviation in distance among triggered
Tweets, reflecting the spatial clustering of the topic. Parameter γ jk gives the contribution of an event in
a given topic j to topic k’s background rate, ωk is again the decay timescale, and ηk is a background rate
scaling parameter. T is the length of the observational window. The choice of these Gaussian functions
in space allow for the derivation of the maximization step in the EM algorithm for parameter estimation.

5.3 Pre-processing and Estimation:

In order to separate our Tweets by topic and to generate marks for our point processes, for topic encoding
matrix W we normalize each row of the matrix. Wi, j then represents the proportion of Tweet i consisting
of topic j. We then threshold this matrix at a value of τ = 0.1, and take any non-zero values as binary
labels indicating membership in a topic. Note that some Tweets are effectively removed from our dataset
as they have no assigned label. To estimate parameters, we use maximum likelihood estimation via the
Expectation-Maximization (EM) algorithm of Veen & Schoenberg [2008].

5.4 Extensions:

There are many natural extensions of our model that can be adapted to handle a variety of problems in
future work. The topic model can be extended to a weighted semi-supervised model by applying Lee
et al. [2010] for classification tasks, user specified topics or to weight rare topic classes. To deal with
rare events, Vilalta & Ma [2002], Weiss & Hirsh [2000] can be used as a predictive model across both
rare and common time series patterns, or to search for rare events.

6. Results and Analysis

In this section, we present the results and analysis of the estimated Hawkes process models of the Twitter
topics. We assess the goodness-of-fit of the models to the Twitter data with the Akaike Information
Criterion and non-parametric methods like the Kolmogorov-Smirnov test for the transformed times. We
also interpret estimated parameters in the context of their respective topics.
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6.1 Temporal Hawkes Model:

The Akaike Information Criterion (AIC) (Akaike [1974]) is defined as

AIC = 2ρ−2l(Ω̂),

where ρ is the number of parameters of the model and l(Ω̂) is the maximum value of the log-likelihood
function. AIC is a simple model selection criterion that encourages goodness-of-fit for a model (as given
by likelihood) while penalizing the number of parameters, which serves as a measure of complexity. A
smaller AIC value implies the model is a better fit.

As an initial validation of our model, we compute AIC scores for both a stationary Poisson model
and a Hawkes model. Note, the intensity function for the stationary Poisson model is given by the
constant rate λk(t) = µk for each topic k. Unlike AIC calculations for most models, AIC for point
processes may be negative (Lewis et al. [2012]); the smaller (more negative) score denotes the preferred
model. Since the Hawkes model has more parameters than the Poisson model yet reduces to the latter
in the case that any of the triggering parameters are zero, by calculating the AIC scores for each we can
measure the amount to which a self-exciting model better fits the data. In every case for every topic the
Hawkes model has a better AIC score (Figure 4), though the margin varies by the amount to which a
topic clusters. The AIC values are relative, but their overall magnitudes scale with the size of the data.
While comparisons remain valid, the difference in the scores themselves will scale inversely with the
size of the data. The maximum log-likelihood and AIC scores for the temporal Hawkes and stationary
Poisson models summed over all 300 topics are presented in Table 6. This table shows that the Hawkes
model performs significantly better than stationary Poisson over all Twitter topics according to the AIC.

ρ l(Ω̂) AIC
Stationary Poisson 300 194383.9 -388167.8
Temporal Hawkes 900 214483.2 -427166.3

Table 6: Number of parameters (ρ), maximum log-likelihood values (l(Ω̂)) and AIC values (2ρ −
2l(Ω̂)) for the temporal Hawkes and stationary Poisson models.

Another goodness-of-fit diagnostic considered in Ogata [1988] is the transformed time {τk
i }, which

may be defined for each topic k as

τ
k
i =

∫ tk
i

0
λk(t)dt. (6.1)

If the conditional intensity is the true model used to generate the data then the transformed times follow
a stationary Poisson process with rate 1 (Meyer [1971]). Hence, the inter-event times τk

i −τk
i−1 follow an

exponential distribution, and consequently Uk
i = 1− exp{−(τk

i − τk
i−1)} follows a uniform distribution

over [0,1). Any deviation of {Uk
i } from the uniform distribution corresponds to some feature in the data

which is not well captured by the estimated model.

In Table 7 we present the p-values from the Kolmogorov-Smirnov test comparing {Uk
i } to the uni-

form distribution for some select topics k. A large p-value (e.g. greater than 0.05) indicates that the
Hawkes model is well fit to the data, while a small p-value (e.g. less than 0.05) indicates some fea-
ture of the data which is not well captured by the estimated model. Topics such as “cold af outside”
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FIG. 4: AIC values for the Poisson and Hawkes models for each topic (labeled 1–300).

FIG. 5: KS test p-values for the Poisson model and Hawkes model (dotted line) for each topic (labeled
1–300).

and “@ photo posted” appear to fit well since the corresponding p-values are greater than 0.05. Intu-
itively, we expect topics about the weather or posting photos to generate Tweets that are temporally
clustered and thus fit well to the self-exciting model. In a few exemplar cases, the Hawkes model is less
valid; for example, the “ca angeles commerce” and “new york berrics” topics have small p-values. For
these topics we may be modeling noise or Tweets that generally do not cluster or possess self-exciting
characteristics.

The last row of Table 7 shows the result of fitting the Hawkes model to the entire Twitter dataset
(not conditioned on topics). The small p-value indicates that a simple Hawkes model with three param-
eters cannot capture all the complexities in the entire dataset. Indeed, by classifying Tweets into their
respective topics the Hawkes model is better fit and more adequately captures the temporal clustering in
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the data.
Lastly, Figure 5 reveals that the p-values for the Hawkes model are generally much larger than

stationary Poisson for each topic. Moreover, 95.3% of the p-values for the Hawkes models are greater
than 0.05, indicating that this model is a good fit for most topics (in comparison, only 6.3% of the
p-values for the Poisson models are greater than 0.05).

Note that Figures 4 and 5 show a much more substantial difference between the fitted Hawkes and
Poisson models in terms of KS p-values than AIC scores. However, this is perhaps not surprising since
the AIC and KS test for the transformed times are two entirely different diagnostics: AIC is a likelihood
based statistic used to compare nested models of varying complexity, while the KS p-values are used to
test whether the distribution of the transformed times deviates significantly from a uniform distribution.
The two diagnostics also both indicate that the self-exciting model is a better fit to the data. Moreover,
the results for the KS test suggests that there is a lot of clustering in the temporal point process data that
is not being accounted for by the stationary Poisson model.

6.2 Strongly Branching Topics:

Table 7 shows the estimated parameters of the Hawkes process models for some select topics. The α̂

branching ratio, equal to the estimated mean number of Tweets triggered per Tweet, is of particular
interest. For instance, the “@ photo posted” topic is highly clustered in time since for every 100 tweets
sent in this topic the estimated mean number of triggered Tweets is 90, and it takes on average 57 minutes
for a Tweet in this topic to trigger another Tweet. Similarly, tweets in topics about the weather (“cold
af outside”) or sports (“game clipper laker”) have strong estimated branching ratios and quick estimated
average triggering times. By comparison, the topics “white center medical” and “rawr dinosaur jurrasic”
have much weaker branching ratios.

6.3 The Response Time of Topics:

ω−1 represents the expected amount of time for a Tweet about one topic to trigger another Tweet of the
same topic. Ranking ω−1 reveals topics with quick response times. For example, topic 96 is about fluff
ice in East LA. This topic gives rise to immediate responses, since many individuals are familiar with
this topic. Table 7 shows that there can an order of magnitude difference in the decay rates for different
topics. For instance, the expected response time for topic 234 about Jurassic Park is 4.15 days, while the
expected response time for topic 251 about basketball is about 1.36 hours. This substantial difference
in response times may correspond to the popularity of these topics, since a tweet about a current Lakers
game is more likely generate quick responses than one about Jurassic Park.

6.4 Marked Spatio-temporal Hawkes Model:

We again directly interpret the parameters of the Hawkes model fit to the data. As described in Section
5, σ shows the degree to which a topic clusters. We can, as in Section 4, directly rank these coefficients
and investigate the extrema topics; for example, the most spatially clustered topic is “citadel outlets
commerce” with σ = 0.0006 (which agrees with our results in Section 4) while the least spatial clustered
topic with σ = 0.0014 is “favorite seriously sad”.

Also described in the previous section is the parameter θ j,k, which, for each intensity function
λk(t,x,y), is the amount to which topic j triggers Tweets in topic k. Investigating θk,k is equivalent to
investigating the self-excitation rate (this is similar to the parameter α in the one-dimensional unmarked
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# Top Words µ̂ α̂ ω̂−1(day) p− value

1
’ca’ ’angeles’ ’commerce’

’alhambra’ ’monterey’ ’jack’ 18.97 1.60 0.053 3.8e-10

46
‘white’ ‘center’ ‘medical’
’memorial’ ’lab’ ’clinical’ 8.25 0.13 0.00002 0.25

98
’cold’ ’af’ ’outside’
’warm’ ’weather’ 7.88 0.60 0.059 0.88

251
‘game’ ‘clipper’ ‘laker’

’basketball’ ’fan’ ’video’ 4.99 0.65 0.0567 0.83

294
‘@’ ‘photo’ ‘posted’

’hq’ ’pic’ ’bridge’ 8.65 0.90 0.040 0.97

96
’chico’ ’fluffice’ ’ice’

’rt’ ’sexy’ ’fan’ 9.10 0.19 0.002 0.16

12
’new’ ’york’ ’berrics’
’year’ ’eve’ ’twitcon’ 9.25 0.81 0.0213 0.034

234
‘rawr’ ‘dinosaur’ ‘jurassic’

‘seen’ ’park’ 0.55 0.36 4.15 0.78

- all twitter data 6.29 0.99 0.0065 5.1e-21

Table 7: Estimated parameters and KS test p-values for the temporal Hawkes model for some select
topics.

case). We again show only a few exemplar cases, as there are too many interactions to present (K2 for
K topics).

• M={Topic 123 (“end-of-world 2012”), Topic 113 (“happy sad”)},

θ jk j = (123) j = (113)
k = 123 0.13 0.00
k = 113 0.19 0.97

First, it is quite interesting to note the extremely high rate of self-excitation in the “happy sad” topic.
Second, discussion of the purported end of the world is a precursor to Tweets discussing “happy sad”.

• M={Topic 127 (“traffic la”), Topic 82 (“food traffic”)},

θ jk j = (127) j = (82)
k = 127 0.78 0.48
k = 82 0.00 0.08

Los Angeles traffic is, unsurprisingly, a self-exciting topic, but the discussion of food and traffic is a
strong precursor to a simple discussion of traffic. This may be due to the topic of food and traffic being
semantically a subset of the topic of traffic as a whole.

• M={Topic 193(“game clipper laker”), Topic 90(“laker watching tv”)},

θ jk j = (90) j = (193)
k = 90 0.72 0.81

k = 193 0.00 1.95
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First, note the extreme excitation rates of both topics; these are clearly well clustered topics tempo-
rally. Discussion of the Lakers game informs on possible discussion of a Lakers-Clippers game.

Finally, we can investigate these interactions on a wider scale. We present a small example situation
of 4 topics about the Lakers or related games, 2 topics about holidays, and 4 topics about basketball in
general. The resulting excitation coefficients are presented in Figure 6, where darker means a stronger
coefficient.
The results show that one type of holiday conversation is a strong precursor to discussion of basketball

FIG. 6: θ jk for topics 1 to 10, M = 1,2, ...,10. In order from left to right, the first four topics contain
content about the Lakers, the next two contain holiday related content (in this case Christmas and New
Years), and the next four contain content about basketball. Here, the column index denotes the preceed-
ing topic and the row index denotes the succeeding topic. Darker cells indicate stronger coefficients.

in almost every topic studied, but, appropriately, basketball does not provoke much conversation about
the holidays.

7. Conclusions and Discussion:

In this paper, we propose two methods for the analysis of generic topic models on corpora of text with
spatio-temporal information. The first applies the Earthmover’s Distance to topic histograms in order to
discover topics that have abnormal structure in comparison with the background rate. The second mea-
sures clustering by self-excitation, and then is extended to measure cross-excitation rates. We present
results of both methods on a Twitter data set collected from East Los Angeles over a 10 month span,
demonstrating their viability and usefulness. In particular, the first method immediately selects tempo-
rally and spatially clustered topics, where the clusters do not have a particular shape or distribution. The
second method successfully recovers hidden interactions between topics which provides deeper insight
into the underlying temporal and spatial structure of the data.
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