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A Deep Non-Negative Matrix Factorization Neural Network

Jennifer Flenner · Blake Hunter

1 Abstract

Recently, deep neural network algorithms have emerged as one of the most successful machine
learning strategies, obtaining state of the art results for speech recognition, computer vision, and
classification of large data sets. Their success is due to advancement in computing power, availability
of massive amounts of data and the development of new computational techniques. Some of the
drawbacks to these deep neural networks are that they often require massive amounts of observed
data, their feature representations are hard to interpret and they are not well mathematically
understood when they will work, and why. Other strategies for data representation and feature
extraction, such as topic modeling based strategies, have also recently progressed. Topic models,
such as NMF, combine data modeling with optimization to learn interpretable and consistent feature
structures in data. Previously criticized for their computational complexity, it is now possible to
quickly perform topic modeling on massive streaming data sets. We introduce a deep non-negative
matrix factorization framework capable of producing interpretable hierarchical classification of many
types of data. Our proposed framework shows that it is possible to combine the interpretability and
predictability of topic modeling learned representations with some of the power and accuracy of deep
neural networks. Furthermore, we uncover a new connection between sparse matrix representations
and deep learning models by combining multiple layers of NMF with a non-linear activation function
and pooling, optimized by backpropagation.

2 Introduction

Deep neural network learns an input-output network composed of multiple layers of representations
[Krizhevsky et al., 2012] based on massive amounts of training data. In particular, deep convo-
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Fig. 1: A graphical representation of the deep topic model.

lutional neural networks are the current industry leaders in image classification, speech recogni-
tion, and classification of many other large data sets. They have obtained state of the art results
for classification, even surpassing human level performance [He et al., 2015b,Amodei et al., 2015,
Le Roux et al., 2015,Boureau et al., 2010,LeCun et al., 2015,Gan et al., 2015,Flenner et al., 2015].
One of the major drawbacks of the deep learning approach is that the models are not well un-
derstood mathematically. For example, there are no known convergence criteria, the accuracy is
unpredictable, and little is known a priori where or why they fail, at times misclassifying data with
high confidence [Nguyen et al., 2015]. However, other strategies for data representation and fea-
ture extraction, such as topic modeling based strategies [Blei, 2012,Lee and Seung, 1999], are well
understood [Cichoki et al., 2009,Rajabi and Ghassemian, 2015]. Topic models combine data model-
ing with optimization to learn interpretable and consistent features in data [Blei and Lafferty, 2009,
Hoyer, 2004].

We combine a deep architecture, containing multiple layers, pooling, nonlinearities, and back-
propagation, with the interpretability of topic modeling. Figure 1 shows a graphical representation
of the alternating generative model and pooling layers of deep non-negative matrix factorization
(deep NMF). These alternating layers and the last semi-supervised linear classifier layer are learned
using backpropagation. This proposed deep NMF is capable of producing reliable, interpretable,
and predictable hierarchical classification of text, audio and image data. Like NMF our proposed
deep models learn through optimizing an energy function. We demonstrate that it is natural to
leverage pooling and backpropagation from deep neural networks and combine them with NMF
based representations. First we propose a multilayered NMF that provides a hierarchical topic
model, as seen in Figure 4 and 3 . Secondly, we use this multilayered NMF, combined with pooling,
as a model for a deep neural network, as seen in Figure 1. This allows us to create a single efficient
numerical algorithm that optimizes a deep multilayered NMF model that maintains the genera-
tive interpretable nature of NMF at the top layers while simultaneously obtaining state of the art
classification accuracy of deep neural networks. Furthermore, we empirically show that connecting
multiple layers with a non-linear function, followed by backpropagation, promotes sparsity.



2.1 Non-negative Matrix Factorization

A linear algebra based topic modeling technique called non-negative matrix factorization (NMF).
This method was popularized by Lee and Seung through a series of algorithms [Lee and Seung, 1999],
[Leen et al., 2001], [Lee et al., 2010] that can be easily implemented. Given a data matrix X such
that Xij ≥ 0, non-negative matrix factorization finds a data representation by solving the opti-
mization problem

min
A,S
||X −AS||F , such thatAij ≥ 0, Sij ≥ 0, (1)

where || · ||F is the Frobenius norm. This optimization provides a generative model of the data
through linear non-negative constraints, data matrix X into a basis matrix A and corresponding
coefficient matrix S.

Minimization in each variable A, S separately is a convex problem, but the joint minimization
of both variables is highly non-convex [Cichoki et al., 2009]. Many NMF algorithms can get stuck
in local minima, therefore, the algorithm’s success can depend on initialization. This problem can
often be overcome by providing several random initializations and keeping the factorization that
maximizes some performance criteria.

Due to its speed and simplicity, we use the multiplicative update equations, originally derived
by Lee and Seung [Lee and Seung, 1999], to optimize Equation 1. Let A�B represent component
wise multiplication, i.e. (A�B)ij = AijBij and let division be defined component wise for non-zero
entries; the update equations are given by

A← A� XST

ASST
, S ← S � ATX

ATAS
. (2)

2.2 Deep Learning and Deep Neural Networks

Deep learning and deep neural networks are a rebirth of artificial networks from the 80’s inspired
by biological nervous systems [LeCun et al., 2015]. The first generation of learning algorithms fell
out of favor due to a performance plateau when applied to increasingly large data sets. The current
iteration of fully supervised learning algorithms are producing state of the art results for voice
recognition, machine translation, and image classification problems [Deng et al., 2013,Bengio, 2013,
Deng, 2014,Krizhevsky et al., 2012] because their performance continues to improve as the training
data set size increases. The modern rendition of these algorithms are able to scale with the data. The
two most powerful changes to modeling and computational techniques have been the introduction
of multiple hidden layers and backpropagation.

Previously there have been attempts to combine supervised deep neural networks with unsuper-
vised representations. One common way of combining these is using autoencoders. Autoencoders
are a class of self-supervised neural networks that learn a data representation which approximates
it’s own input. Initially, autoencoders were once seen as a promising way to initialize deep neural
networks, however, single layer neural networks have failed to produce as high of an accuracy as
random initializations [He et al., 2015a].

Given a set of samples xn, deep NN sometimes define the autoencoder as an unsupervised
generative algorithm that solves the optimization problem

min
W

N∑
n=1

||xn − f(xn,W )||,



Fig. 2: On the left are the weights A† of a single layer neural network and on the right is an
approximate matrix representation from the NMF factorization X = AS.

for some norm || · || and some single layer neural network f(x,W ) with parameters W . Let sn
be the column of S corresponding to the nth column of X, then the autoencoder’s per document
optimization energy functional can be written as

||xn − f(xn,W )|| = ||xn −Asn|| = ||xn −AAautoxn||. (3)

The goal of an autoencoder is to learn the operators A and Aauto that minimizes (3). Let A† be the
More-Penrose pseudo-inverse, (A>A)−1A> of A, then using NMF to factor X = AS gives A†X = S
and the optimal Aauto is A†.

In order to learn more interesting features than the linear model given above, it is typical
for a neural network to include a nonlinear activation function g(x). Some common choices of are
the softplus function [Glorot et al., 2011], the sigmoid function [Cybenko, 1989,Hornik et al., 1989],
and the rectifier [Nair and Hinton, 2010,LeCun et al., 2015]. The ReLu rectifier activation function
given by

g(z) = max(0, z),

is a commonly used activation function in deep learning ana the most applicable for non-negative
matrix factorization since it is approximated by requiring all dictionary weights to be non-negative.
More precisely, if we change the optimization to

||xn −Asn|| → ||xn −Ag(sn)||,

then we have included a non-negative constraint on the weights sn = A†xn. However, this is still
not equivalent to NMF since A is not constrained to have non-negative elements. This is a very
important distinction because the columns of A are the basis vectors that give physical meaning
to the NMF generative model. Figure 2 shows an analogy between the weights A† of a single layer
neural network and the More-Penrose pseudo-inverse of A from the NMF factorization X = AS.



Self-supervised algorithms, such as the autoencoders, often do not learn interesting features.
For example, there is nothing preventing an autoencoder from learning the identity function. Along
these lines, a stacked autoencoder, capable of learning several layers of a function, was developed.
However, the set of stacked autoencoders tended to learn a lossy reconstruction which was either
PCA or a close approximation [Baldi and Hornik, 1989,Chicco et al., 2014]. The lossy reconstructed
data learned by autoencoders was used as a pre-training technique for deep networks.

Currently, one of the most successful methods for image classification is the Imagenet contest
winner, a deep convolutional neural network [Russakovsky et al., 2015a,Russakovsky et al., 2015b].
Deep convolutional neural networks learn a data representation at each layer. Each of the deep
convolutional layers has a set of parameters, weights and biases, that are learned through labeling
and a fixed pooling layer that does not learn any parameters. The goal is to determine the parameters
that provide good classification performance for new, unseen, data samples. The purpose is not only
to find repeatable representative patterns in the data, but also to perform directed tasks on a large
data set, such as classification, object recognition, and denoising [Wang, 2016,LeCun et al., 2015].
The patterns discovered by deep convolutional neural networks are designed to produce classification
labels. However, these patterns, or filters, are often not interpretable or physically meaningful, and
the learned coefficients are not able to accurately reconstruct the data. This is a direct result of
the fact that these deep models are not required to be generative models; they are focused on
learnability, not representability.

2.2.1 Limitations of standard deep Neural Networks

Deep learning algorithms constructed of hierarchical nested layers, specifically, deep convolutional
neural networks [He et al., 2015b], [Russakovsky et al., 2015b], have recently lead the field in pro-
ducing state of the art classification results, at times matching or exceeding human classification,
for problems related to extremely large data sets. However, despite recent success, there are four
main limitations to these methods.

First, regardless of all the efforts to understand why deep models produce excellent classification
results, these approaches are still not well understood [Giryes et al., 2015]. Currently there is no
coherent framework for understanding the functionality of each of the layers of deep algorithms
[Bruna and Mallat, 2013], which renders construction of an optimal deep neural network architec-
ture for a specific mathematical problem to be more art than science [Szegedy et al., 2015]. If we
consider the example of Figure 2, which map autoencoder deep generative models to the NMF topic
model, the difficulty of a formal analysis becomes clear. The operators in the autoencoder do not
have a fixed mathematical interpretation. Secondly, if the generative model requirement is removed,
then the output of the network is not physically interpretable [LeCun et al., 2015]. Additionally,
deep neural networks are still subject to a host of common problems such as: overfitting, generaliza-
tion error, and training computation time [Bengio, 2013]. Lastly, deep neural networks only work
well form massive data sets, but do not perform well, overfitting or underfitting data, on problems
with limited observed training data or small data sets.

This paper makes contributions to our understanding and potential resolution of each of these
four problems. First, our deep NMF addresses the issue of mathematical understanding since the
operators in each layer are linear algebraic operators. The function and behavior of these operators
is well understood and can be analyzed in the context of a deep architecture. Second, our deep NMF
retains the generative model requirement. Deconstruction of data by NMF is a method of blind
source separation. The results of this deconstruction will be physically interpretable and although



reconstruction will be lossy, we are likely to retain important features in the signal. Third, we show
that although NMF learns a basis size dependent on rank restriction in the first layer, the deep
NMF algorithm can shrink or grow the size of the learned basis through additional hidden layers.
In addition to learning a basis dimension through hidden layers, we still have access to resize the
dimension through rank restriction. Control over rank restriction reduces computation time and
can be used to prevent overfitting or underfitting of the data. This is a powerful additional level of
control which can be used with L2 regularization, L1 regularization and dropout methods. Finally,
it is well known that NMF works well on small data sets, and in fact, it has only recently been
scaled to perform well on extremely large data sets. The generative, feature preserving aspects of
this model, enable it to perform well on any size data set.

3 Proposed Methods

Deep networks are compositions of different functions, or network layers, commonly referred to as
hidden layers. The most successful deep network for the Imagenet data set [Russakovsky et al., 2015a],
is a deep convolutional neural network, [Krizhevsky et al., 2012], which consists primarily of two dif-
ferent types of network layers that we reproduce in our optimization framework . [Szegedy et al., 2015,
Chen et al., 2014] and [Hannun et al., 2014,Graves et al., 2013] are the industry leading methods in
image classification, hyperspectral segmentation and speech recognition and all uses deep variations
convolutional NN. Standard deep convolutional N.N. are made up of multiple pairs of a dictionary
learning layer (typically convolutional operators) and a pooling layer [Long et al., 2015] that learn
a hierarchy of linear affine operators on the data.

Consider a standard deep N.N. made up of three components,

1. Multiple ”hidden” layers
(a) a affine functional Ax+ c layer
(b) non-linear activation function g(Ax+ c) such as ReLu
(c) pooling layer

2. supervised classification last (outer) layer
3. optimized by backpropagation.

Theorem 1 A standard deep N.N. defined above can be written as a multi-layered deep nonnegative
matrix factorization (Deep NMF) optimization.

Proof The multiple ”hidden” layers can be written as a multi-layered matrix factorization (section
3.2) by defining affine matrix functions (??). The ReLu Activation function is a standard approxi-
mation of a non-negative constraint (3.2.1). The pooling operator can be a combined with a NMF
model (3.2.2). The last last supervised (outer) layer can be replaced with a semi-supervised NMF
layer (3.2.3). Finally our proposed deep MNF network can be optimized by backpropagation (3.4).

3.1 Deep NMF

Our deep NMF model consists of multilayered NMF combined with a pooling layer followed by
backpropagation. The multilayered NMF consists of nested NMF decompositions into L layers. Af-
ter the primary data observations are deconstructed, each subsequent data layer is acted upon by a
pooling function prior to each subsequent NMF decomposition. The last, or L, layer of multilayered



NMF is decomposed by semi-supervised NMF, instead of NMF. The semi-supervised step is used
to create a label learning energy functional which softens the invertibility requirement; backpropa-
gation acts on the energy functional to learn a better set of basis coefficients. Backpropagation on
the energy functional is what is known as the learning step of the algorithm. This model will be
analyzed in three parts: multilayered NMF, supervised multilayered NMF with pooling, and deep
NMF with backpropagation.

3.2 Multilayered NMF

Consider the independent nested set of NMF decompositions. Let X(0) be the original data obser-
vations. Each column in the spectrogram is a document, the sum of all the documents is called the
corpus. Let the corpus, X(0), be the first input. The first NMF decomposition obtains

X(0) ≈ A(0)S(0),

where A(0) are a set of topics, or basis vectors, and S(0) are the topic weights, or basis coefficients.
Next the basis coefficients S(0) become the new input. The second layer deconstructs S(0) to obtain
a subtopics and subtopic weights,

S(0) ≈ A(1)S(1).

The two layer nested decomposition can be rewritten as,

X(0) ≈ A(0)(A(1)S(1)),

shown graphically in Figure 4.

This process can continue in order to learn as many layers as is desired. The multilayered nested
decomposition for L layers can be found by minimizing

||X(0) −A(0)A(1) · · ·A(L)S(L))))||.

The operator defined as A† = (ATA)−1AT minimizes the `2 norm between X and AS such that
A†X = S. This operator is called the Moore-Penrose pseudoinverse [Ben-Israel and Greville, 2003,
Moore, 1920] and it is used in figure 3 for the the multilayered NMF diagram. The multilayered
NMF can be calculated through the process given in algorithm 5.

Let x ∈ Rd be an input data point. The dictionary layer is a set of functionals lk : Rd → R such
that

lk(x) = sk.

By the Riesz representation theorem, we can write the kth dictionary element lk(x) = 〈a†k,x〉 for

weights a†k ∈ Rd. This means that each layer of a neural network can be written as a matrix
multiplication, as seen in Figure 4 and 3. The output of all the linear operators is a vector s =
(s1, s2, . . . , sK)T = (〈a†1,x〉, . . . , 〈a

†
K ,x〉)T = A†x. The a†k vectors are the neural network analog to

the non-negative dictionary A† = (a†1, . . . ,a
†
K) in NMF.



Fig. 3: The multilayered NMF model without pooling learns a hierarchical representation of the
data.

Fig. 4: The multilayered NMF model without pooling is a hierarchical representation of the data
at the zeroth layer and then the weights and lower levels. This is the multilayered decomposition
of the S coefficient matrices, X(0) ≈ A(0)(A(1)(A(2)S(2))).

3.2.1 Activation Function

Neural networks often then apply an activation function g(z). Some common choices are the softplus
function, the sigmoid function and the rectifier. Applying the rectifier activation function, given by

g(z) = max(0, z),

can be mimicked by requiring all dictionary weights to be non-negative.

For l < D the second layer of the network, the max pooling layer, is defined by the set of
functions



Fig. 5: The multilayered NMF forward propagation algorithm.

Fig. 6: Illustration of the pooling operator.

pk(x) = max{xk | j − l ≤ k ≤ j + l, 0 ≤ j ≤ D}.

We define p(x) = (p1(x), p2(x), . . . , pK(x)) as the pooling function, see Figure 6. For each row of
the matrix S, the pooling operator non-linearly maps a subset of the row to one output value.
The deep convolutional N.N. pooling layer can be constructed with an average pooling function
[Oyallon et al., 2013] or the max pooling function. Analysis and experiments on sparse data by
[Boureau et al., 2010] indicate that max pooling outperforms average pooling, so we implement
max pooling as well.

A final layer is the classification function g : Rd×N → RN . This function maps the final layer to
an integer as seen in Figure 1.

A deep neural network is a composition of the network functions with a different parameter
set, A(l), when applicable [Jia et al., 2014]. Define fl(x) = f(x, A(l)) as the convolution function



with parameter set A(l). The output of our neural network with L layers, denoted as h(x), is the
composition of functions.

Note that the output of a pooling layer, p, is the input to a dictionary learning layer fl.
In order to optimize these parameters on the training data, [Williams and Hinton, 1986] suggests

the backpropagation method. Backpropagation depends on calculating derivatives of the pooling
function, but the derivative of the max function does not always exist. Where it exists, the derivative
of the max function can be written as

∂max(x)

∂xk
=

{
1 if max(x) = xk,

0 otherwise
.

This derivative can be used to define the derivative of p(x) with respect to each of the components
of the vector x. A derivation of the derivative of the pooling operator will be presented after the
deep NMF section.

3.2.2 Multilayered NMF with Pooling

Pooling layers are commonly found in many deep Neural networks such as [Scherer et al., 2010,
Szegedy et al., 2015], but it is still not well understood why [Bruna and Mallat, 2013]. However, it
is hypothesized that the purpose of a pooling step in neural networks is to reduce the spatial size of
the representation to control overfitting, to create robustness to small variations and to introduce
nonlinearity into the system. The most common form of pooling is to replace a neighborhood of
data points with their maximum value; this is called max pooling. Inclusion of a pooling step in
the deep NMF model allows us to mimic a deep neural network and investigate the impact of this
operation.

We include a pooling step in our deep NMF model by placing a pooling layer after NMF
decomposition in each layer. The first NMF decomposition is the original data matrix, followed by
max pooling step on the weight matrix, S. The max pooling step is a window of fixed size that is
moved across the data matrix columns. Every pixel in the window is replaced with the maximum
pixel value found in the window; the resulting data matrix is called p(S). Once the max pooling
step is performed the p(S) matrix is decomposed by NMF.

It is important to note that the pooling layer typically operates along the direction of a sym-
metry group in the data. See [Bruna and Mallat, 2013] for more information. Consider the NMF
decomposition of the data

xn ≈ Asn.

The pooling layer takes as input the rows of the weight matrix Sl. We use superscripts to represent
row vectors of S, thus sk ∈ RM is the kth row of matrix S.

Let S be the NMF matrix from layer l. Define the rows of the data matrix X for the next layer
as the pooled weights from layer l − 1, or

xk+1 = p(sk).

We will also use the notation X = p(S) to represent the matrix where each row of the matrix is
the output of the pooling operator defined above.



Fig. 7: The supervised NMF forward propagation algorithm with pooling. This algorithm decon-
structs the final input layer, p(S(L−1)), with a semi-supervised NMF step.

The last pooling layer in the algorithm is followed by supervised NMF. This is necessary because
we match labels only on the last layer, as in a neural network. The zeroth layer depends on the
input data, while the last L layer is used for classification.

This completes the forward propagation of the deep NMF model, graphically shown in Figure
1 and outlined in 7.

The equation which describes the deep NMF forward propagation with pooling is an energy
functional. The energy functional exploits the NMF generative model in order to describe the error
between the input data and reconstruction at each layer. The energy functional written here relies
on the Frobenius norm, but it is possible to construct energy functionals using other norms. The
semi-supervised Deep NMF energy functional takes the form

E(X(l), A(l), S(l), B) =
1

2

L∑
l=0

||W � (X −AS)||2F +
λ

2
||L� (Y −BS(L))||2F ,

=
1

2
||W � (X(0) −A(0)S(0))||2F +

1

2

L∑
l=1

||W �
(
p(S(l−1))−A(l)S(l)

)
||2F +

λ

2
||L� (Y −BS(L))||2F

=
1

2
||W � (X(0) −A(0)S(0))||2F +

1

2

L−1∑
l=0

||W �
(
p(S(l))−A(l+1)S(l+1)

)
||2F +

λ

2
||L� (Y −BS(L))||2F .



3.2.3 Semi-Supervised NMF Multiplicative Update Equations

The semi-supervised NMF algorithm requires a label matrix Y . Let Y ∈ RN×K be a class matrix
where for each sample n then Ynk = 1 if xn is in class k and Ynk = 0 otherwise. Next, approximate
the known label matrix Y by finding a separating hyper plane defined by a new operator B such
that ||Y −BS||2. Finally we can introduce binary indicator matrices Wnk and Lnk to model missing
data and known data labels respectively as

Wij =

{
1, if xij is observed

0, if xij is unobserved, and

[L]:,j =

{
1k, if label xj is known

0, otherwise.

The NMF energy function can be rewritten as

E(A,B, S) =
1

2
||W � (X −AS)||2F +

λ

2
||L� (Y −BS)||2F ,

and we include the constraints Aij ≥ 0, Bij ≥ 0 and Sij ≥ 0. The term λ is used to weight the
importance of the labeling. If λ = 0 then the energy functional is equivalent to the unsupervised
equation, a small λ can be useful if some of the data is mislabeled, and a large λ emphasizes the
labels, see [Lee et al., 2010] for more details.

3.3 Deep Network Backpropagation

The backpropagation algorithm has become the standard algorithm to train the neural networks
[LeCun et al., 2012,Jia et al., 2014]. Given a set of examples xn with a corresponding class label
yn ∈ Z for each sample, the backpropagation algorithm defines an energy function

E =
1

2

N∑
n=1

(yn − f(xn))2.

Let Wl denote the parameters for the function fl at the lth layer of the network and ∇Wl
represents

the gradient with respect to these parameters. Using a gradient descent to minimize the energy E
updates the parameters according to the rule

W
(n+1)
l = W

(n)
l − η∇Wl

E.

The variable η is often called the learning rate. An energy is defined based on the output of the
network and the parameters for the lth layer. This energy is then updated through the l gradients
that back-propagate from the output to the lth layer, hence the name backpropagation.



3.4 Deep NMF with Backpropagation

The final algorithm adds the learning step via backpropagation which we call Deep NMF with
backpropagation. This algorithm optimizes over the representations weights, or basis coefficients,
in order to minimize the energy functional defined through forward propagation.

Backpropagation is a way to optimize the learning step of a deep algorithm using an energy
functional based on the output of a neural network. Consider the neural networks that can written
as composition of (convolutional) representation layers and pooling layers with the final layer a
classification layer. The neural network can be written in the form

h(x) = g(f(p(f(. . . f(x, A(0)) . . . , A(L−1))), A(L)).

It is useful to define the output of the neural network up to layer l after the dictionary learning
and pooling steps respectively as

dl(x) = f(p(f(. . . f(x, A0) . . . , A(l−1))), A(l)),

ql(x) = p(f(. . . f(x, A0) . . . , A(l−1))), A(l)).

Let z(n) correspond to the class of the nth column. Consider the energy functional, ENN , the neural
network energy

ENN ({xn}Nn=1, z) =
1

2

N∑
n=1

(z(n)− h(xn))2.

The backpropagation algorithm learns the parameters one layer at a time and is based on gradient
descent of this energy, seen in algorithm 8. There are no parameters to learn for the pooling operator.

For the deep NMF model, recall the energy functional

E(X(l), A(l), S(l), B) =
1

2
||W � (X(0) −A(0)S(0))||2F +

1

2

L−1∑
l=0

||W �
(
p(S(l))−A(l+1)S(l+1)

)
||2F

+
λ

2
||L� (Y −BS(L))||2F .

Recall that p(S(l)) = X l+1, we use this substitution when calculating the gradient of the energy
functional.

The gradient with respect to the A(l) matrix is the same as the original supervised NMF al-
gorithm and is given by the Jacobian partial derivative of the NMF energy functional E such
that

JA(l)

E (A(l)) = −
(
W � (X(l) −A(l)S(l))

)
(S(l))T ,

= −(W �X(l))(S(l))T + (W �A(l)S(l))(S(l))T .

The Jacobian derivative with respect to S(l) is more difficult since the layer l + 1 depends on S(l)

through the pooling step. The Jacobian can be found in the appendix.
The last layer L will be different from the other l layers. This is because the last layer introduces

the classification labeling matrices L, Y and B. The last layer of the energy functional will take the
form

E(L) =
1

2
||W �

(
p(S(L−1))−A(L)S(L)

)
||2F +

λ

2
||L� (Y −BS(L))||2F .



Fig. 8: The deep NMF backpropagation algorithm.

The Jacobian derivative with respect to B, which only occurs in the final layer L is

JB
E (B) = λ

(
L� (Y −BS(L))

)
[S(L)]T

= λ
(
L� Y

)
[S(L)]T − λ

(
L�BS(L)

)
[S(L)]T .

It does not come as a surprise that the L layer update equations work out to be the same as
the supervised NMF algorithm update equations. The intermediate layers S(l) are different. The
intermediate layers do not update through labeling, but rather through the Jacobian. Given the
Jacobians and following the discussion above , we obtain the multiplicative update equations for
deep NMF as



A(l) ← A(l) �
[W �X(l)](S(l))T

[W �A(l)S(l)](S(l))T
,

S(l) ← S(l) �
(A(l))T

[
W �X(l)

]
+
[
W �A(l+1)S(l+1)

]
[Jp(S(l))]T

(A(l))T
[
W �A(l)S(l)

]
+
[
W �X(l+1)

]
[Jp(S(l))]T

,

S(L) ← S(L) �
(A(L))T

[
W �X(L)

]
+ λBT

[
L� Y

]
(A(L))T

[
W �A(L)S(L)

]
+ λBT

[
L�BS(L)

] ,
B ← B �

[
L� Y

]
(S(L))T[

L�BS(L)
]
(S(L))T

. (4)

The basic properties of the deep NMF algorithm are contrasted with those of a deep convolutional
neural network and single layer NMF in table 3.4.

Architecture Convolutional Deep NN NMF Deep NMF

Representation A†X = S X=A S X=A S

Activation Function ReLu: g(z) = max(z, 0) non-negative restriction non-negative restriction

f(x,w) Ag(A†xn) gAgA†xn gAgA†xn multilayered

loss function ||z − f(x,w)|| ||X −AS||
∑

` ||X(`) −A(`)S(`)||

Layer Model additive network weights - matrix multiplication

Nonlinearity pooling none pooling

Representation hierarchical convolutions non-negative parts model hierarchical parts model

Layers multilayered network single multilayered NMF

Optimization backpropagation
multiplicative updates &
alternating least squares

backpropagation &
multiplicative updates

4 Results and Discussion

4.1 Text Data Preprocessing

The corpus was processed using the Bag of Words model. The first step was to select a fixed number
of classes; these classes were used to label the known data. Then, each text document was broken
into paragraphs and each paragraph was broken into a histogram of words and word frequencies.
These histograms were compiled into a matrix of word frequencies representing the entire corpus,
every row contains a distinct word and each column is a paragraph from a specific text document.
Next, stop words, such as articles and pronouns, were removed from the corpus.Then we calculate
the term frequency inverse document frequency statistic , TF-IDF [Salton et al., 1975], which is
used to de-emphasized words that are common among all documents, while emphasizing words



found with high frequency in a specific document. The final step is to label the training set using
the predetermined classes. In this particular case, labels were known for the entire text corpus, so
we randomly selected 1% of the data from each of the classes to label as known. The resulting word
frequency matrix, with 1% of the data labeled, is the input for the deep NMF algorithm.

4.2 Text Experiments

The text corpus was deconstructed by the deep NMF algorithm in a series of experiments. The
NMF rank restriction was fixed to 20. The training set was created from 1% of the text corpus.
The deep NMF algorithm was run for two and three layer cases for each of the pool window sizes
from the set {0, 3, 5, 7}. The classification results from these experiments were compared to the
result of the semi-supervised NMF, SSNMF, algorithm using identical rank restriction and training
parameters.

The goal of the text data deconstruction was to correctly classify each document in one of 5
classes. In order to make sure each document can be classified, we do not want to pool across more
than one document at a time. This means that we can pool across sentences or paragraphs. We
decided to pool across paragraphs, with the pool stops at the end of each document. The typical
document contained between 10 and 30 paragraphs. We investigated pool sizes across paragraphs of
size {0, 3, 5, 7}. Topic consolidation was defined as two topics having the same nonzero word list and
a distribution over words within 5◦ of each other. During forward propagation topic consolidation
did not occur without pooling as seen in 10.

Both deep NMF and SSNMF contain a supervision layer. Recall, that the multiplicative update
equations trade off between labeling by minimizing ||Y −BS|| and data reconstruction by minimizing
||X −AS||. In the multiplicative update equations, the B matrix is created in the last layer and is
used for class labeling. Therefore, the density of the B matrix indicates the number of basis elements
necessary for classification. The deep NMF algorithm found a sparser basis than NMF, SSNMF,
and multilayered NMF. The only two differences between deep NMF and multilayered NMF are
the pooling and backpropagation steps. Pooling and backpropagation are encouraging sparsity, as
seen in figure 9.

The forward propagation algorithms, multilayered NMF, learn a set of topics through the first
layer NMF decomposition. The topic list does not change until backpropagation. Consider the
example of the philosophy class initially deconstructed into 6 topics in layer 1 deconstruction shown
in figure 10. However, after backpropagation, a new dictionary and basis weights are learned which
allow us to reconstruct the original philosophy class using only two final topics and updated weights.
The philosophy class is described by 6 initial topics which are condensed into 2 new final topics
after backpropagation. The topic consolidation found was consistent with the B matrix results
which show that deep NMF learns the sparsest basis.

Unsupervised learning is performed by classification using clustering. One way to assess the
algorithmic result is to analyze cluster purity [Handl et al., 2005]. Purity is an external evaluation
method used to rate the homogeneity of clustered data. Note that while purity is related to classi-
fication, it is not classification. Specifically, it is possible for purity to be high and classification to
be low, or for purity to be low and classification high. The purity results of our clustered data were
very similar to the correct classification rate of that data shown in figure 11 next to the classification
rates.

Finally, classification rates of SSNMF, multilayered NMF and deep NMF were compared. Our
deep NMF produced higher classification rates than SSNMF or multilayered NMF. The one layer



Fig. 9: The B matrix for text data is a result of the multiplicative update rules derived in Equation
4. The class 1, class 2, class 3, class 4, and class 5 graphs indicate the active topics in each class.
The second row shows the B matrix after backpropagation.

Fig. 10: The outer circle is constructed of 5 classes decomposed into an overcomplete basis of 20
initial topics. Deep NMF, after backpropagation, learns a new representation of both dictionary
and weights. The inner circle shows the new restricted overcomplete basis, which reconstructs the
original 5 classes into 7 learned final topics and updated weights.



Fig. 11: This histogram shows the impact of 2 and 3 layers with varying pool size on classification.
These results were obtained by randomnly training on 1% of the data with a rank restriction of
20. These classification rates were compared with the the single layer SSNMF algorithm given the
same rank and training parameters. The classification rate of single layer SSNMF was 46%.

SSNMF case obtained a classification rate of 46%. It is not possible to perform pooling or back-
propagation on a one layer algorithm, so these steps were omitted. The classification results are
given in figure 11.

4.3 Audio Data Preprocessing

The audio data was obtained from The Cornell Guide To Bird Sounds Master Set For North
America, copyright 2014. The audio data consists of bird calls from three bird types: owls, wood-
peckers and hummingbirds from the Cornell Master Set database. Each call was broken into 3
second segments and grouped by bird type. These calls were then converted into a spectrogram.
The spectrogram is always a non-negative visual representation of the Fourier spectrum, created
from an audio signal in which the rows represent frequencies and the columns are documents. Each
document represents one fifty fourth of a second of a bird call. The audio data corpus consists of
a concatenation of all the bird call spectrograms. We randomly selected 1% of the data from each
of the three bird types to label as known. The resulting spectrogram matrix, with 1% of the data
labeled, is the input for the deep NMF algorithm.

4.4 Audio Experiments

The audio corpus was deconstructed by the deep NMF algorithm in a series of experiments. The
NMF rank restriction was fixed to 30. The training set was created from 1% of the audio corpus.
Next, the deep NMF algorithm was run for two and three layer cases for each of the pool window
sizes from the set {0, 25, 50, 75}. The classification results from these experiments were compared



Fig. 12: The procedure for learning topics in audio data.

to the result of the semi-supervised NMF, SSNMF, algorithm using identical rank restriction and
training parameters. It is important to note that the pooling layer typically operates along the
direction of a symmetry group in the data. See [Bruna and Mallat, 2013] for more information. In
the bird data set, the appropriate symmetry group is along the spectrogram’s time axis. Consider
the NMF decomposition of the data

xn ≈ Asn.

Each bird call corresponds to 162 columns, or documents, in the spectrogram. For each bird we
can write S = (s1, . . . , sM ). Pooling along the time axis is equivalent to pooling along the columns
of S, which is different than the deep neural network pooling defined above. Instead, the pooling
layer takes as input the rows of the weight matrix S corresponding to the NMF spectrogram of a
single bird call. We will use superscripts to represent row vectors of S, thus sk ∈ RM is the kth

row of matrix S. The background, or silent periods, may be common to all bird species. Second,
the background may contain other animals, which again may be common to all bird clips. The
goal of pooling is to remove the nuisance variation common to all the bird classes and emphasize
the unique features of each of the three bird classes. The pool stop used for the audio data was 3
seconds of a bird call. We investigated pool sizes across the spectrogram for sizes of {0, 25, 50, 75}.
Topic consolidation was defined as topic vectors that are less than 5◦ apart.Topic consolidation did
not occur without pooling as seen in 12.

The deep NMF algorithm was found to produce a sparser basis than NMF, SSNMF, and multi-
layered NMF. In the audio data, it was again found that pooling and backpropagation are encour-
aging sparsity, as seen in figure 13. In the audio data, the topic list begins to consolidate in the
forward propagation step if pooling is present. The topic list changes further after backpropagation,
in which 12 shows how backpropagation can grow the number of topics. The topic consolidation
was again found to be consistent with the B matrix results which show that deep NMF learns a
sparser basis. The sparser basis classifies better as seen in 14.



Fig. 13: The B matrix for audio data is a result of the multiplicative update rules derived in Equation
4. The class 1, class 2, and class 3 graphs indicate the active topics in each class. The second row
shows the B matrix after backpropagation.

Fig. 14: This histogram shows the impact of 2 and 3 layers with varying pool size on classification.
These results were obtained by randomnly training on 1% of the data with a rank restriction of
30. These classification rates were compared with the the single layer SSNMF algorithm given the
same rank and training parameters. The classification rate of single layer SSNMF was 59%.



4.5 Insights into Neural Networks

In addition to classification, euclidean distance and angle changes within layers [Giryes et al., 2015]
can be used to evaluate the learned representation found by a neural network. If we follow points
through deep layers, points within the same class are expected to remain close together while points
from different classes are expected to move apart. There are two criteria that must be satisfied for
this premise to hold: first, the input data must lie on the surface of a sphere and the activation
function is a rectified linear unit (ReLU). Although deep NMF does not use a ReLU activation
function, it deconstructs a positive corpus into two non-negative matrices which provide the same
non-negative initial restriction as the ReLU activation function; the outputs remain approximately
on the surface of a sphere. Therefore, the input text data under the deep NMF model satisfy both
conditions.

For each layer, a sample of points from a distinct class can be represented by the feature vectors
S(l). The angular distance between these feature vectors as the representation becomes deep will

change. The maximum angle of separation is 90 degrees. Let S
(l)
a be a feature vector from class a

and S
(l+1)
a be the feature vector at the next layer. Using the polarization identity, we can define

the angle between two feature vectors as

θ(l)a = acos

(
||S(l)

a + S
(l+1)
a || − ||S(l)

a − S(l+1)
a ||

||S(l+1)
a || ||S(l+1)

a ||

)
.

Geometrically, if the minimum angle between the input vectors and output vectors of different
classes increases then the sets have an increase in separation. Let S(l) be a feature vector at level
l. We calculate the histograms for H(l, a) and H(l + 1, a). If the histogram is shifted away from
zero, then the class is further separated, indicating the feature vectors are from different classes.
If the angle between classes shrinks, the feature vectors are from the same class. The ratio of the
angle change between the last layer and the first layer can be used to determine how the points
are moving through the layers. If the ratio is less than 1, the points are from the same class. If the
ratio is greater than or equal to 1, then the points are from different classes. In general, the deep
NMF was able to classify points from within class and between classes in the expected way, shown
in figure 16.

We compare the input and output angles at each layer for deep NMF with pooling and without
pooling for both the text and audio data. Figure 16 shows that without pooling the representation
does not retain important within class information shown in figure 16. Pooling is adding stability
as the number of layers increases; this can be seen in Figure 15.

The NMF portion of the algorithm prevents over fitting, however, it is the pooling layer which
creates feature stability, and backpropagation allows us to find the features that determine the
classification labels of interest. The angles between the input layer and output layer are used to find
a distance. If the distance is greater than one, the points are spreading apart. If the distance is less
than one the points remain close. The distance of points between two different classes is expected
to grow between layers. Thus, a euclidean distance greater than one is desirable between classes,
indicating that points from different classes are spread apart as seen in figure 16 and figure 17.
Ideally, points from the same class remain close, or are pushed together, therefore, it is desirable
to obtain a distance less than or equal to one. In figures 16 and 17 we were able to show that, in
general, points from the same classes remain close, while points from different classes are spread
apart. We were also able to experimentally demonstrate that in order to obtain proper distance
between points the inclusion of a non-linear pooling layer is necessary.



Fig. 15: Histogram of angles in the output between layers, comparing class 1 to the other classes.
Note that without pooling the angle separation, through multiple layers, does not occurr.

Fig. 16: The Euclidean distance for Text data points at input layer compared to output layer at the
end of deep NMF. The bar graph on the left shows distance between points from different classes.
The bar graph on the right shows the distance between points from the same class.

Figure 15, 16 and 17 demonstrate that extending NMF algorithms can produce the quality inter
results previously only seen in deep neural networks. In particular, applying deep NMF allow points
from the same class remain close while points from different classes become points become further
separated as additional layers and pooling are added.



Fig. 17: The Euclidean distance for Audio data points at input layer compared to output layer
at the end of deep NMF. The bar graph on the left shows distance between points from different
classes. The bar graph on the right shows the distance between points from the same class.

5 Conclusion

This paper combined ideas from non-negative matrix factorization and deep convolutional neu-
ral networks, introducing a deep NMF model. We provide an efficient set of optimization update
equations that combine multiplicative updates with backpropagation. We show this deep NMF
framework produces interpretable hierarchical classification of text and audio data, outperforming
NMF, semi-supervised NMF, and multilayered NMF. Leveraging NMF as a generative model pro-
duces a more physically interpretable output at each layer. Additionally, this generative constraint
allows deep NMF to perform well on limited training data, whereas previous deep neural networks
usually require massive amounts of observed data. The deep NMF model also allows us to learn
the optimal rank of the data deconstruction at each layer, giving us a way to avoid overfitting
or underfitting the data. Lastly, the structure of our deep NMF model provides a bridge to gain
mathematical insight into general deep neural networks.
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