
Math 115a Final exam
Lecture 1
Fall 2009

Name:

Instructions:

• There are 10 problems. Make sure you are not missing any pages.

• Unless stated otherwise, you may use without proof anything proven in the
sections of the book covered by this test.

• You may only cite an exercise from the book if it was assigned as homework.

• You must prove your answers (OF COURSE!).

Question Points Score

1 10

2 15

3 10

4 15

5 15

6 10

7 10

8 15

9 10

10 15

Total: 125



1. (10 points) Let A be an upper triangular matrix. Use the definition of the
determinant to prove that det(A) is the product of the diagonal entries of A.
Solution
We proceed by induction. The claim is easy to show for small matrices. Suppose it is
true for upper triangular (n− 1)× (n− 1) matrices. Let

A =

a11 · · · a1n

0
. . .

...
0 · · · ann

 .

Recall that if A is n× n, then

det A =
n∑

i=1

(−1)1+iai1 det(Ãi1),

where Ãi1 is the (i, 1)-cofactor of A. Since A is upper triangular, ai1 = 0 if i ≥ 2. Hence

det A =
n∑

i=1

(−1)1+iai1 det(Ãi1) = a11 det(Ã11).

But Ã11 is an upper triangular (n − 1) × (n − 1) matrix, so the induction hypothesis

applies, giving us det(Ã11) = a22a33 · · · ann. Hence det A = a11a22a33 · · · ann.



2. (15 points) Let V be a finite dimensional inner product space. Let W be a subspace of
V , and let {w1, ..., wk} be an orthonormal basis of W . Define

T (x) =
k∑

j=1

〈x, wj〉wj.

(a) (5 points) Prove N(T ) = W⊥

(b) (5 points) Prove R(T ) = W .
(c) (5 points) Compute T ∗(x) for any x in V .
Solution (a)
Suppose T (x) = 0. Then

∑k
j=1〈x, wj〉wj = 0. Since {w1, ..., wk} is orthonormal, it

is linearly independent, which implies that 〈x, wj〉 = 0 for j = 1, ...k. This proves
N(T ) ⊆ W⊥. On the other hand, if x ∈ W⊥, then 〈x, wj〉 = 0 for j = 1, ...k, which

implies that T (x) =
∑k

j=1〈x, wj〉wj = 0. This proves W⊥ ⊆ N(T ).
Solution (b)
Let x ∈ W . Say x =

∑k
i=1 aiwi. Then

T (x) =
k∑

j=1

〈
k∑

i=1

aiwi, wj〉wj

=
k∑

j=1

k∑
i=1

ai〈wi, wj〉

=
k∑

i=1

aiwi

= x,

which implies that W ⊆ R(T ). On the other hand, if y ∈ V , then

T (y) =
k∑

j=1

〈y, wj〉wj ∈ span{w1, ..., wk} ⊆ W,

which implies that R(T ) ⊆ W .
Solution (c)

For any x, y ∈ V ,

〈T (x), y〉 = 〈
k∑

j=1

〈x, wj〉wj, y〉

=
k∑

j=1

〈x, wj〉〈wj, y〉

=
k∑

j=1

〈x, 〈wj, y〉wj〉

= 〈x,

k∑
j=1

〈y, wj〉wj〉

= 〈x, T (y)〉.

Hence T ∗ = T .



3. (10 points) Let V be a finite dimensional inner product space. Let W be a subspace of
V . Prove (W⊥)⊥ = W .
Solution
Let w ∈ W and let x ∈ W⊥. By definition of W⊥, we have

〈w, x〉 = 0.

Since this holds for any x ∈ W⊥, we have w ∈ (W⊥)⊥. This proves W ⊆ (W⊥)⊥.

Now let y ∈ (W⊥)⊥. By a theorem in the book, there exists unique w ∈ W and z ∈ W⊥

such that y = w + z. Since we assumed y ∈ (W⊥)⊥, we have 〈y, z〉 = 0. Hence

0 = 〈y, z〉 = 〈w + z, z〉 = 〈w, z〉+ 〈z, z〉 = 〈z, z〉.

But this implies z = 0, which implies y = w ∈ W . This proves (W⊥)⊥ ⊆ W .



4. (15 points) Let

A =

(
1 2
2 1

)
.

Compute A100.
Solution
An easy computation shows that the characteristic polynomial of A is (λ − 3)(λ +
1), which means that the eigenvalues of A are 3 and −1. Another straightforward
computation shows that the eigenspaces are

E−1 = span{(1,−1)}

and

E3 = span{(1, 1)}.

Let β = {(1,−1), (1, 1)}. Then

Q =

(
1 1
−1 1

)
is the change of basis matrix from β to the standard ordered basis of R2. If we let

D =

(
−1 0
0 3

)
,

then

A = QDQ−1.

Hence

A100 =
(
QDQ−1

)100
= QD100Q−1

=

(
1 1
−1 1

) (
1 0
0 3100

)
1

2

(
1 −1
1 1

)
=

1

2

(
3100 + 1 3100 − 1
3100 − 1 3100 + 1

)



5. (15 points) Define T : P2(R) → M2×2(R) by

T (f) =

(
f(0) f(1)
f(1) −f(0)

)
(a) (5 points) Prove T is linear.
(b) (5 points) Compute N(T ).
(c) (5 points) Find a basis for R(T ).
Solution (a)
Let λ ∈ R and f, g ∈ P2(R). Then

T (f + λg) =

(
(f + λg)(0) (f + λg)(1)
(f + λg)(1) −(f + λg)(0)

)
=

(
f(0) + λg(0) f(1) + λg(1)
f(1) + λg(1) −f(0)− λg(0)

)
=

(
f(0) f(1)
f(1) −f(0)

)
+ λ

(
g(0) g(1)
g(1) −g(0)

)
= T (f) + λT (g).

Solution (b)

Note that T (f) =

(
0 0
0 0

)
if and only if f(0) = f(0) = 1. If f(x) = ax2 +bx+c, we have

f(0) = c = 0, and f(1) = a+ b+c = 0, which implies a = −b. So N(T ) = span{x2−x}.
Solution (c)
One basis for R(T ) is

{
(

1 0
0 −1

)
,

(
0 1
1 0

)
}.



6. (10 points) Recall that C([−π, π]) is the real vector space of continuous real-valued
functions defined on the interval [−π, π]. For functions f, g ∈ C([−π, π]), define

〈f, g〉 =

∫ π

−π

f(x)g(x)dx.

(a) (5 points) Prove that this defines an inner product on C([−π, π]).

(b) (5 points) Prove ∫ π

−π

√
| sin x cos x|dx ≤ 4.

Solution (a)
You only need to check the four criteria in the definition of an inner product in Section
6.1. See example 3 on page 331 of the textbook.
Solution (b)
First, by the Cauchy-Schwarz inequality, we have∫ π

−π

√
| sin x cos x|dx =

∫ π

−π

√
| sin x|

√
| cos x|dx

≤

√∫ π

−π

| sin x|dx

√∫ π

−π

| cos x|dx.

Then by some calculus, ∫ π

−π

| sin x|dx = 2

∫ π

0

sin xdx = 4.

Similarly, ∫ π

−π

| cos x|dx = 4.

Hence ∫ π

−π

√
| sin x cos x|dx ≤

√
4
√

4 = 4.



7. (10 points) Define T : P2(R) → P2(R) by T (f) = f ′ + f . Let β = {1, x, x2}. Compute
[T ]ββ.
Solution

T (1) = 1 = 1 · 1 + 0 · x + 0 · x2

T (x) = 1 + x = 1 · 1 + 1 · x + 0 · x2

T (x2) = 2x + x2 = 0 · 1 + 2 · x + 1 · x2.

Hence

[T ]ββ =

1 1 0
0 1 2
0 0 1





8. (15 points) (a) (5 points)Determine whether the matrix A below is diagonalizable over
R. Justify your answer.

A =

5 1 5
1 3 1
5 1 5

 .

(b)(5 points) Determine whether the matrix B below is diagonalizable over R. Justify
your answer.

B =

5 1 5
0 3 1
0 0 5

 .

(c)(5 points) Determine whether the matrix C below is diagonalizable over C. Justify
your answer.

C =

(
1 i
1 1

)
.

Solution (a)
Since A is symmetric, there exists an orthonormal basis for R3 consisting of eigenvectors
of A. This implies A is diagonalizable.
Solution (b)
The eigenvalues of this matrix are 3, with multiplicity 1, and 5, with multiplicity 2. But

B − 5I =

0 1 5
0 −2 1
0 0 0


has nullity 1, which is not equal to the multiplicity of the eigenvalue 5. Hence B is not
diagonalizable.
Solution (c)
Note that

CC∗ =

(
1 i
1 1

) (
1 1
−i 1

)
=

(
2 1 + i

1− i 2

)
=

(
1 1
−i 1

) (
1 i
1 1

)
= C∗C.

In other words, C is normal. Since C is the underlying field, C is diagonalizable.



9. (10 points) For f, g ∈ P2(R), define

〈f, g〉 =

∫ 1

0

f(x)g(x)dx.

You may assume this is an inner product on P2(R). Note that P1(R) is a subspace of
P2(R), so the inner product defined above is also defined for functions in P1(R).
(a) (5 points) Find an orthogonal basis for P1(R).
(b) (5 points) Find an orthogonal basis for P2(R).
Solution (a)
We know the set {1, x} is linearly independent in P1(R), so it is enough to carry out the
Gram-Schmidt process to turn this into an orthogonal set. So let w1 = 1 and w2 = x.
Then define v1 = w1 and

v2 = w2 −
〈w2, v1〉v1

||v1||2
= x−

∫ 1

0

x · 1dx = x− 1

2
.

Since we obtained v1 and v2 from the Gram-Schmidt process, we know they are orthog-
onal. (It is also easy to check that v1 and v2 are orthogonal.) Since we started with a
set that spans P1(R), we know {v1, v2} spans P1(R).
Solution (b)
We know the set {1, x, x2} is linearly independent in P2(R), so it is enough to carry out
the Gram-Schmidt process as in part (a), with w3 = x2. We can start with v1 = 1 and
v2 = x− 1

2
. Then define

v3 = w3 −
〈w3, v1〉
||v1||2

v1 −
〈w3, v2〉
||v2||2

v2

= x2 − 1

3
−

∫ 1

0
x2(x− 1

2
)dx

1
12

(x− 1

2
)

= x2 − x +
1

6
.

Again, the set {v1, v2, v3} is orthogonal because we obtained it from the Gram-Schmidt
process, and it spans all of P2(R) because we started with a basis of P2(R).



10. (15 points) Suppose V is a vector space, suppose S : V → V and T : V → V are linear,
and suppose that ST = TS. Assume that v is an eigenvector of T with associated
eigenvalue λ. Let Eλ be the λ-eigenspace of T and assume dim(Eλ) = 1.
(a) (10 points) Prove v is an eigenvector of S.
(b) (5 points) Is λ necessarily an eigenvalue of S? Prove it is or find a counterexample.
Solution (a)
First note that λS(v) = ST (v) = TS(v) = T (S(v)). This implies that S(v) ∈ Eλ.
Since we assume that Eλ is one dimensional, and since we assume v ∈ Eλ, we know
Eλ = span{v}. Hence S(v) ∈ span{v}, which means there exists c ∈ F such that
S(v) = cv. This is what we needed to prove.
Solution (b)
No. Counterexample: Let

A =

(
0 0
0 0

)
and

B =

(
1 0
0 0

)
.

Then AB = BA = A. Further, 1 is an eigenvalue of B with a one-dimensional
eigenspace. However, 1 is not an eigenvalue of A.



Extra Scratch Paper:


