Name: \qquad

Instructions:

- There are 10 problems. Make sure you are not missing any pages.
- Unless stated otherwise, you may use without proof anything proven in the sections of the book covered by this test.
- You may only cite an exercise from the book if it was assigned as homework.
- You must prove your answers (OF COURSE!).

Question	Points	Score
1	10	
2	15	
3	10	
4	15	
5	15	
6	10	
7	10	
8	15	
9	10	
10	15	
Total:	125	

1. (10 points) Let A be an upper triangular matrix. Use the definition of the determinant to prove that $\operatorname{det}(A)$ is the product of the diagonal entries of A. Solution
We proceed by induction. The claim is easy to show for small matrices. Suppose it is true for upper triangular $(n-1) \times(n-1)$ matrices. Let

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
0 & \ddots & \vdots \\
0 & \cdots & a_{n n}
\end{array}\right)
$$

Recall that if A is $n \times n$, then

$$
\operatorname{det} A=\sum_{i=1}^{n}(-1)^{1+i} a_{i 1} \operatorname{det}\left(\widetilde{A_{i 1}}\right)
$$

where $\widetilde{A_{i 1}}$ is the $(i, 1)$-cofactor of A. Since A is upper triangular, $a_{i 1}=0$ if $i \geq 2$. Hence

$$
\operatorname{det} A=\sum_{i=1}^{n}(-1)^{1+i} a_{i 1} \operatorname{det}\left(\widetilde{A_{i 1}}\right)=a_{11} \operatorname{det}\left(\widetilde{A_{11}}\right)
$$

But $\widetilde{A_{11}}$ is an upper triangular $(n-1) \times(n-1)$ matrix, so the induction hypothesis applies, giving us $\operatorname{det}\left(\widetilde{A_{11}}\right)=a_{22} a_{33} \cdots a_{n n}$. Hence $\operatorname{det} A=a_{11} a_{22} a_{33} \cdots a_{n n}$.
2. (15 points) Let V be a finite dimensional inner product space. Let W be a subspace of V, and let $\left\{w_{1}, \ldots, w_{k}\right\}$ be an orthonormal basis of W. Define

$$
T(x)=\sum_{j=1}^{k}\left\langle x, w_{j}\right\rangle w_{j} .
$$

(a) (5 points) Prove $N(T)=W^{\perp}$
(b) (5 points) Prove $R(T)=W$.
(c) (5 points) Compute $T^{*}(x)$ for any x in V.

Solution (a)
Suppose $T(x)=0$. Then $\sum_{j=1}^{k}\left\langle x, w_{j}\right\rangle w_{j}=0$. Since $\left\{w_{1}, \ldots, w_{k}\right\}$ is orthonormal, it is linearly independent, which implies that $\left\langle x, w_{j}\right\rangle=0$ for $j=1, \ldots k$. This proves $N(T) \subseteq W^{\perp}$. On the other hand, if $x \in W^{\perp}$, then $\left\langle x, w_{j}\right\rangle=0$ for $j=1, \ldots k$, which implies that $T(x)=\sum_{j=1}^{k}\left\langle x, w_{j}\right\rangle w_{j}=0$. This proves $W^{\perp} \subseteq N(T)$.

Solution (b)

Let $x \in W$. Say $x=\sum_{i=1}^{k} a_{i} w_{i}$. Then

$$
\begin{aligned}
T(x) & =\sum_{j=1}^{k}\left\langle\sum_{i=1}^{k} a_{i} w_{i}, w_{j}\right\rangle w_{j} \\
& =\sum_{j=1}^{k} \sum_{i=1}^{k} a_{i}\left\langle w_{i}, w_{j}\right\rangle \\
& =\sum_{i=1}^{k} a_{i} w_{i} \\
& =x
\end{aligned}
$$

which implies that $W \subseteq R(T)$. On the other hand, if $y \in V$, then

$$
T(y)=\sum_{j=1}^{k}\left\langle y, w_{j}\right\rangle w_{j} \in \operatorname{span}\left\{w_{1}, \ldots, w_{k}\right\} \subseteq W,
$$

which implies that $R(T) \subseteq W$.
Solution (c)

For any $x, y \in V$,

$$
\begin{aligned}
\langle T(x), y\rangle & =\left\langle\sum_{j=1}^{k}\left\langle x, w_{j}\right\rangle w_{j}, y\right\rangle \\
& =\sum_{j=1}^{k}\left\langle x, w_{j}\right\rangle\left\langle w_{j}, y\right\rangle \\
& =\sum_{j=1}^{k}\left\langle x, \overline{\left\langle w_{j}, y\right\rangle} w_{j}\right\rangle \\
& =\left\langle x, \sum_{j=1}^{k}\left\langle y, w_{j}\right\rangle w_{j}\right\rangle \\
& =\langle x, T(y)\rangle .
\end{aligned}
$$

Hence $T^{*}=T$.
3. (10 points) Let V be a finite dimensional inner product space. Let W be a subspace of V. Prove $\left(W^{\perp}\right)^{\perp}=W$.

Solution

Let $w \in W$ and let $x \in W^{\perp}$. By definition of W^{\perp}, we have

$$
\langle w, x\rangle=0 .
$$

Since this holds for any $x \in W^{\perp}$, we have $w \in\left(W^{\perp}\right)^{\perp}$. This proves $W \subseteq\left(W^{\perp}\right)^{\perp}$.
Now let $y \in\left(W^{\perp}\right)^{\perp}$. By a theorem in the book, there exists unique $w \in W$ and $z \in W^{\perp}$ such that $y=w+z$. Since we assumed $y \in\left(W^{\perp}\right)^{\perp}$, we have $\langle y, z\rangle=0$. Hence

$$
0=\langle y, z\rangle=\langle w+z, z\rangle=\langle w, z\rangle+\langle z, z\rangle=\langle z, z\rangle .
$$

But this implies $z=0$, which implies $y=w \in W$. This proves $\left(W^{\perp}\right)^{\perp} \subseteq W$.
4. (15 points) Let

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) .
$$

Compute A^{100}.

Solution

An easy computation shows that the characteristic polynomial of A is $(\lambda-3)(\lambda+$ 1), which means that the eigenvalues of A are 3 and -1 . Another straightforward computation shows that the eigenspaces are

$$
E_{-1}=\operatorname{span}\{(1,-1)\}
$$

and

$$
E_{3}=\operatorname{span}\{(1,1)\} .
$$

Let $\beta=\{(1,-1),(1,1)\}$. Then

$$
Q=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)
$$

is the change of basis matrix from β to the standard ordered basis of \mathbb{R}^{2}. If we let

$$
D=\left(\begin{array}{cc}
-1 & 0 \\
0 & 3
\end{array}\right)
$$

then

$$
A=Q D Q^{-1}
$$

Hence

$$
\left.\begin{array}{rl}
A^{100}=\left(Q D Q^{-1}\right)^{100} & =Q D^{100} Q^{-1} \\
& =\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 3^{100}
\end{array}\right) \frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{l}
3^{100}+1 \\
3^{100}-1
\end{array} 3^{100}-1\right. \\
100
\end{array}\right)
$$

5. (15 points) Define $T: P_{2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ by

$$
T(f)=\left(\begin{array}{cc}
f(0) & f(1) \\
f(1) & -f(0)
\end{array}\right)
$$

(a) (5 points) Prove T is linear.
(b) (5 points) Compute $N(T)$.
(c) (5 points) Find a basis for $R(T)$.

Solution (a)
Let $\lambda \in \mathbb{R}$ and $f, g \in P_{2}(\mathbb{R})$. Then

$$
\begin{aligned}
T(f+\lambda g) & =\left(\begin{array}{cc}
(f+\lambda g)(0) & (f+\lambda g)(1) \\
(f+\lambda g)(1) & -(f+\lambda g)(0)
\end{array}\right) \\
& =\left(\begin{array}{cc}
f(0)+\lambda g(0) & f(1)+\lambda g(1) \\
f(1)+\lambda g(1) & -f(0)-\lambda g(0)
\end{array}\right) \\
& =\left(\begin{array}{cc}
f(0) & f(1) \\
f(1) & -f(0)
\end{array}\right)+\lambda\left(\begin{array}{cc}
g(0) & g(1) \\
g(1) & -g(0)
\end{array}\right) \\
& =T(f)+\lambda T(g) .
\end{aligned}
$$

Solution (b)

Note that $T(f)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ if and only if $f(0)=f(0)=1$. If $f(x)=a x^{2}+b x+c$, we have $f(0)=c=0$, and $f(1)=a+b+c=0$, which implies $a=-b$. So $N(T)=\operatorname{span}\left\{x^{2}-x\right\}$. Solution (c)
One basis for $R(T)$ is

$$
\left\{\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\} .
$$

6. (10 points) Recall that $C([-\pi, \pi])$ is the real vector space of continuous real-valued functions defined on the interval $[-\pi, \pi]$. For functions $f, g \in C([-\pi, \pi])$, define

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x .
$$

(a) (5 points) Prove that this defines an inner product on $C([-\pi, \pi])$.
(b) (5 points) Prove

$$
\int_{-\pi}^{\pi} \sqrt{|\sin x \cos x|} d x \leq 4
$$

Solution (a)

You only need to check the four criteria in the definition of an inner product in Section 6.1. See example 3 on page 331 of the textbook.

Solution (b)

First, by the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
\int_{-\pi}^{\pi} \sqrt{|\sin x \cos x|} d x & =\int_{-\pi}^{\pi} \sqrt{|\sin x|} \sqrt{|\cos x|} d x \\
& \leq \sqrt{\int_{-\pi}^{\pi}|\sin x| d x} \sqrt{\int_{-\pi}^{\pi}|\cos x| d x}
\end{aligned}
$$

Then by some calculus,

$$
\int_{-\pi}^{\pi}|\sin x| d x=2 \int_{0}^{\pi} \sin x d x=4 .
$$

Similarly,

$$
\int_{-\pi}^{\pi}|\cos x| d x=4
$$

Hence

$$
\int_{-\pi}^{\pi} \sqrt{|\sin x \cos x|} d x \leq \sqrt{4} \sqrt{4}=4
$$

7. (10 points) Define $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ by $T(f)=f^{\prime}+f$. Let $\beta=\left\{1, x, x^{2}\right\}$. Compute $[T]_{\beta}^{\beta}$.

Solution

$$
\begin{aligned}
T(1)=1 & =1 \cdot 1+0 \cdot x+0 \cdot x^{2} \\
T(x)=1+x & =1 \cdot 1+1 \cdot x+0 \cdot x^{2} \\
T\left(x^{2}\right)=2 x+x^{2} & =0 \cdot 1+2 \cdot x+1 \cdot x^{2} .
\end{aligned}
$$

Hence

$$
[T]_{\beta}^{\beta}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

8. (15 points) (a) (5 points)Determine whether the matrix A below is diagonalizable over \mathbb{R}. Justify your answer.

$$
A=\left(\begin{array}{lll}
5 & 1 & 5 \\
1 & 3 & 1 \\
5 & 1 & 5
\end{array}\right)
$$

(b)(5 points) Determine whether the matrix B below is diagonalizable over \mathbb{R}. Justify your answer.

$$
B=\left(\begin{array}{lll}
5 & 1 & 5 \\
0 & 3 & 1 \\
0 & 0 & 5
\end{array}\right)
$$

(c)(5 points) Determine whether the matrix C below is diagonalizable over \mathbb{C}. Justify your answer.

$$
C=\left(\begin{array}{ll}
1 & i \\
1 & 1
\end{array}\right)
$$

Solution (a)

Since A is symmetric, there exists an orthonormal basis for \mathbb{R}^{3} consisting of eigenvectors of A. This implies A is diagonalizable.
Solution (b)
The eigenvalues of this matrix are 3 , with multiplicity 1 , and 5 , with multiplicity 2 . But

$$
B-5 I=\left(\begin{array}{ccc}
0 & 1 & 5 \\
0 & -2 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

has nullity 1 , which is not equal to the multiplicity of the eigenvalue 5 . Hence B is not diagonalizable.

Solution (c)

Note that

$$
C C^{*}=\left(\begin{array}{cc}
1 & i \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-i & 1
\end{array}\right)=\left(\begin{array}{cc}
2 & 1+i \\
1-i & 2
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
-i & 1
\end{array}\right)\left(\begin{array}{cc}
1 & i \\
1 & 1
\end{array}\right)=C^{*} C
$$

In other words, C is normal. Since \mathbb{C} is the underlying field, C is diagonalizable.
9. (10 points) For $f, g \in P_{2}(\mathbb{R})$, define

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

You may assume this is an inner product on $P_{2}(\mathbb{R})$. Note that $P_{1}(\mathbb{R})$ is a subspace of $P_{2}(\mathbb{R})$, so the inner product defined above is also defined for functions in $P_{1}(\mathbb{R})$.
(a) (5 points) Find an orthogonal basis for $P_{1}(\mathbb{R})$.
(b) (5 points) Find an orthogonal basis for $P_{2}(\mathbb{R})$.

Solution (a)
We know the set $\{1, x\}$ is linearly independent in $P_{1}(\mathbb{R})$, so it is enough to carry out the Gram-Schmidt process to turn this into an orthogonal set. So let $w_{1}=1$ and $w_{2}=x$. Then define $v_{1}=w_{1}$ and

$$
v_{2}=w_{2}-\frac{\left\langle w_{2}, v_{1}\right\rangle v_{1}}{\left\|v_{1}\right\|^{2}}=x-\int_{0}^{1} x \cdot 1 d x=x-\frac{1}{2}
$$

Since we obtained v_{1} and v_{2} from the Gram-Schmidt process, we know they are orthogonal. (It is also easy to check that v_{1} and v_{2} are orthogonal.) Since we started with a set that spans $P_{1}(\mathbb{R})$, we know $\left\{v_{1}, v_{2}\right\}$ spans $P_{1}(\mathbb{R})$.
Solution (b)
We know the set $\left\{1, x, x^{2}\right\}$ is linearly independent in $P_{2}(\mathbb{R})$, so it is enough to carry out the Gram-Schmidt process as in part (a), with $w_{3}=x^{2}$. We can start with $v_{1}=1$ and $v_{2}=x-\frac{1}{2}$. Then define

$$
\begin{aligned}
v_{3} & =w_{3}-\frac{\left\langle w_{3}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}-\frac{\left\langle w_{3}, v_{2}\right\rangle}{\left\|v_{2}\right\|^{2}} v_{2} \\
& =x^{2}-\frac{1}{3}-\frac{\int_{0}^{1} x^{2}\left(x-\frac{1}{2}\right) d x}{\frac{1}{12}}\left(x-\frac{1}{2}\right) \\
& =x^{2}-x+\frac{1}{6} .
\end{aligned}
$$

Again, the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is orthogonal because we obtained it from the Gram-Schmidt process, and it spans all of $P_{2}(\mathbb{R})$ because we started with a basis of $P_{2}(\mathbb{R})$.
10. (15 points) Suppose V is a vector space, suppose $S: V \rightarrow V$ and $T: V \rightarrow V$ are linear, and suppose that $S T=T S$. Assume that v is an eigenvector of T with associated eigenvalue λ. Let E_{λ} be the λ-eigenspace of T and assume $\operatorname{dim}\left(E_{\lambda}\right)=1$.
(a) (10 points) Prove v is an eigenvector of S.
(b) (5 points) Is λ necessarily an eigenvalue of S ? Prove it is or find a counterexample. Solution (a)
First note that $\lambda S(v)=S T(v)=T S(v)=T(S(v))$. This implies that $S(v) \in E_{\lambda}$. Since we assume that E_{λ} is one dimensional, and since we assume $v \in E_{\lambda}$, we know $E_{\lambda}=\operatorname{span}\{v\}$. Hence $S(v) \in \operatorname{span}\{v\}$, which means there exists $c \in F$ such that $S(v)=c v$. This is what we needed to prove.
Solution (b)
No. Counterexample: Let

$$
A=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Then $A B=B A=A$. Further, 1 is an eigenvalue of B with a one-dimensional eigenspace. However, 1 is not an eigenvalue of A.

Extra Scratch Paper:

