MATH 115A PRACTICE FINAL EXAMINATION

 $March\ 10th,\ 2003$

Problem 1. True or False. For each of the following statements, indicate if it is true or false. This problem will be graded as follows: you will receive n points for a correct answer, 0 points if there is no answer, and -n points if the answer is wrong.

- 1. The set of polynomials of degree exactly 3 is not a vector space.
- 2. The set $W = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 + a_2 + a_3 = 1\}$ is a subspace of \mathbb{R}^3 .
- 3. A subset of a linearly dependent set is linearly dependent.
- 4. If $\dim(V) = n$, any generating set of V contains at least n vectors.
- 5. If a set of vectors S generates vectors space V, any vector in V can be written as a linear combination of vectors in S in a unique way.
- 6. A linear transformation $T:V\to V$ carries linearly independent subsets of V into linearly independent subsets of V.
- 7. The function det: $M_{n\times n}(F) \to F$ which maps a matrix A to its determinant $\det(A)$ is linear.
- 8. Every square matrix is similar to a diagonal one.
- 9. A linear operator on an n-dimensional vector space that has less then n distinct eigenvalues can not be diagonalizable.
- 10. For any non-zero vector x in an inner-product space V its norm ||x|| > 0.

Problem 2. Let V be the set of all pairs (x, y), where x is a real number and y is a positive real number. Define addition on V by

$$(x, y) + (x, x') = (x + x', y \cdot y')$$

and scalar multiplication by

$$c(x, y) = (cx, y^c)$$
 for $c \in \mathbb{R}$

Let $\overrightarrow{0} = (0,1)$.

- 1. Show that V is a vector space with these operations.
- 2. Find the dimension of V.
- 3. Let n be the dimension of V which you found in part 2 of this problem. Construct an explicit isomorphism from V to \mathbb{R}^n .

Problem 3. Let W_1 and W_2 be subspaces of a vector space V. Prove that $V = W_1 \oplus W_2$ if and only if each vector x in V can be uniquely written in the form $x = x_1 + x_2$, where $x_1 \in W_1$ and $x_2 \in W_2$.

(Recall that a vector space V is called the $direct\ sum\ of\ W_1$ and W_2 if W_1 and W_2 are subspaces of V such that $W_1\cap W_2=\{\overrightarrow{0}\}$ and $V=W_1+W_2$, where $W_1+W_2=\{w_1+w_2,\ w_1\in W_1,\ w_2\in W_2\}$).

Problem 4. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by T(a, b, c) = (a + b, b + c, 0).

- 1. Show that T is a linear transformation.
- 2. Find the null space and the range of T.
- 3. Find the nullity and rank of T and verify the dimension theorem.
- 4. Find the matrix of T in the basis $\beta = \{(1,0,0), (1,1,0), (1,1,1)\}.$

Problem 5. Compute the determinant and the trace of the following matrix:

$$\left(\begin{array}{cccc}
0 & 2 & 1 & 3 \\
1 & 0 & -2 & 2 \\
3 & -1 & 0 & 1 \\
-1 & 1 & 2 & 0
\end{array}\right);$$

Is this matrix invertible? If yes, compute the inverse, if not, exaplain why not.

Problem 6. Prove that an upper-diagonal matrix is invertible iff all its diagonal entries are non-zero.

Problem 7. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by $T(a_1, a_2, a_3) = (3a_1 - 2a_3, a_2, 3a_1 + 4a_2)$. Prove that T is an isomorphism and find T^{-1} .

Problem 8. Let A and B be invertible matrices. Prove that AB is invertible and that $(AB)^{-1} = B^{-1}A^{-1}$.

Problem 9. Test the following matrices for diagonalizability. If the matrix A is diagonalizable, find an invertible matrix Q and a diagonal matrix D such that $D = Q^{-1}AQ$.

1.
$$A = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{pmatrix};$$
2. $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix};$

$$2. \ A = \left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right);$$

Problem 10. Suppose that $A \in M_{n \times n}(F)$ has exactly two distinct eigenvalues, λ_1 and λ_2 , and that $\dim(E_{\lambda_1}) = n - 1$. Prove that A is diagonalizable.

Problem 11. Let $T:V\to V$ be a linear operator on an inner product space V. Suppose that ||T(x)||=||x|| for all $x\in V$. Show that T is one-to-one.

Problem 12. Let $V = P(\mathbb{R})$ with the inner product

$$\langle f(x), g(x) \rangle = \int_{-1}^{1} f(t)g(t)dt$$

Let $W=P_3(\mathbb{R})$ be a subspace of V. Use Gramm-Schmidt orthonormalization process to obtain an orthonormal basis of $P_3(\mathbb{R})$ from the standard basis $\{1, x, x^2, x^3\}$ for P_3 .