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115A PRACTICE FINAL

Problem 1. True or False. For each of the following statements, indicate if it is true or
false. This problem will be graded as follows: you will receive n points for a correct answer,
0 points if there is no answer, and —n points if the answer is wrong.

1.

10.

The set of polynomials of degree exactly 3 is not a vector space.
FALSE: for example, the sum of 3 + 1 and —z is not of degree 3. Hence, this space
is not closed under addition.

. The set W = {(a1, as,a3) € R® : a; + as + a3 = 1} is a subspace of R®.

FALSE: notice that the zero vector is not in W.

. A subset of a linearly dependent set is linearly dependent.

FALSE: for a non-zero vector v € V and a constan a € F, the set {v, a - v} is linearly
dependent. However, its subset consisting of just v is linearly independent.

. If dim(V') = n, any generating set of V' contains at least n vectors.

TRUE: since dim(V) = n, the number of elements in a basis is n. The number of
elements in a generating set is bigger or equal then the number of elements in a basis.

. If a set of vectors S generates vectors space V', any vector in V' can be written as a

linear combination of vectors in S in a unique way.

FALSE: for example, vectors (1,0), (1,1) and (0,1) generate R2. However, (2,2) can
be written as a linear combination of these vectors in more then one way: e.g., (2,2) =
2-(1,1)=2-(1,0)+2-(0,1).

. A linear transformation 7' : V' — V carries linearly independent subsets of V' into lin-

early independent subsets of V.

FALSE: for a set oflinearly independent vectors in V' we can construct a linear trans-
formation which maps this set into any (not necessarily linearly independent) given set
of V. For example, the zero transformation maps all the vectors into zero, which forms
a linearly dependent set.

. The function det : M,,«,(F) — F which maps a matrix A to its determinant det(A) is

linear.
FALSE: The determinant has the property of n-linearity, but not the usual linearity.

. Every square matrix is similar to a diagonal one.

FALSE: If a matrix is similar to a diagonal, it is diagonalizable. Not all matrices are.
For example, A = ... is not.

. A linear operator on an n-dimensional vector space that has less then n distinct eigen-

values can not be diagonalizable.
FALSE: The identity operator on an n-dimensional vector space has exactly one distinct
eigenvalue (A = 1), but is clearly diagonalizable.

For any non-zero vector x in an inner-product space V' its norm ||x|| > 0.
TRUE: it is one of the axioms of an inner product.
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Problem 2. Let V be the set of all pairs (x,y), where z is a real number and y is a positive
real number. Define addition on V' by

(@, 9) + (z,2) = (z + 2,y - V)

and scalar multiplication by
c(z,y) = (cz, y°) force R
v

Let 0" =(0,1).

1. Show that V' is a vector space with these operations.

2. Find the dimension of V.

3. Let n be the dimension of V' which you found in part 2 of this problem. Construct an
explicit isomorphism from V' to R".

SOLUTION. (1) We must check the axioms of a vector space. Commutativity and asso-
ciativity of addition follow from the respective properties of addition and multiplication of
numbers. Next,

ﬁ%—(z,y): O0+z,1-y)=(z,y).

Given (z,y), we have

@Y+ 2y ) =@-2y)=7.

Thus inverses exist and —(z,y) = (—z,y™').

We have

L- (x,y) = (1 'xayl) = (l',y)
For a, b scalars,

(ab)(z,y) = (abz,y™) = (a(bz), (¥*)*) = a(bz,y’) = a(b(z,y)).
Also,

a((z,y) + («,)) = alz + 2',yy) = (az + az’, (y/)*) = alz,y) + a(', ¢/).
Lastly,
(a+0)(z,y) = ((a +b)z,y**") = (az + bz, y"y") = a(z,y) + b(z,y).

(2) We claim that the set {v,w}, where v = (1,0) and w = (0,¢) is a basis for V' (here
e is the base of the natural logarithm, e = 2.7 18281828459045.;2 First, the two vectors are
linearly independent. If av + bw = 0, then a(1,0) + b(0,e) = 0" = (0,1). Thus a = 0 and
e’ = 1, so that b = 0. Next, any vector (z,y) can be written as (z,y) = (v - 1,€!°8%) =
z(1,0) + y(0,e) = zv + logyw. Thus V is the span of {v,w}. So {v,w} is a basis and thus
dimV = 2.

(3) We take the unique linear map from V' to R? | which takes v to (1,0) and w to (0, 1).
Explicitely, the map is

T(z,y) = T(zv + logyw) = (z,logy).

It is easily checked that 7" is linear. Since it maps a basis to a basis, it is an isomorphism.
The inverse of T is (z,y) — (z,€Y).
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Problem 3. Let W; and W5 be subspaces of a vector space V. Prove that V = W; & W,
if and only if each vector x in V' can be uniquely written in the form z = x; + x5, where
T € W1 and Ty € WQ.

(Recall that a vector space V' is called the direct sum of Wi and Wy if W; and W, are
subspaces of V such that W,NW, = {ﬁ)} and V = Wi +Ws, where Wi+ Wo = {w;+wsq, wy €
Wl, Wy € WQ})

Solution. Assume first that V = W, @ W,. Let x € V. Since by assumption V = W; + W5,
it follows that there exist 1 € Wi and zo € Wy so that x = x1 + 2. We claim that z; and
xo with this property are unique. Assume that z = 2| + 2, with 2} € W) and 2}, € W,.
Then

O0=z—2z= (21 —2)) + (z2 — 7).
It follows that
x — 1) =T — 39,
Since x1, ¢} € Wy, x1 — 2} € Wy, Since xq, 2, € Wa, o, — 29 € Wy, Thus 2y — 2} =}, — 29
lies in both W; and W, and thus is in the intersection W7 N W, . But W; N W, was assumed
to consist of the zero vector. So z; — x| = 2}, — 29 = 0. But then z; = 2 and z, = 2.
For the converse, assume that every x € W can be written uniquely as x = z1 + x5 with

1 € Wi and zo € Ws. Then clearly W = W1+ W,. So we need to check that W NWy = {ﬁ}
Let x € Wi N Ws,. Then

T =T+ To, $1:?€W1,J)2:$€W2
z=a+a,, o =zeW,z,=T0 €W,
are two ways of writing x as a sum of vectors from W; and W, . Since by assumption the

way to represent z as such a sum is unique, it follows that z; = 2, so that x = (0". Thus
WiNWy = {ﬁ)} and so V =W; @ Ws.
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Problem 4. Let T : R? — R?® be given by T'(a,b,c) = (a + b,b+ ¢, 0).

1. Show that T' is a linear transformation.

2. Find the null space and the range of T'.

3. Find the nullity and rank of 7" and verify the dimension theorem.

4. Find the matrix of 7" in the basis 8 = {(1,0,0), (1, 1,0), (1,1, 1) }.public_html/115a.1.03w/27p188.pdf
SOLUTION. 1. We must check that T preserves sums and scalar multiples. Let o € R, and
let v,w € R®. Assume taht v = (vi, vy, v3) and w = (w1, wy, w3). Then av = (awy, avy, avs)
and v + w = (v + w1, vy + we, v3 + w3). We now compare:

T(v+w) = (vy + wy + v + we, vy + Wy + v3 + w3, 0)
T(v)+T(w) = (v1 + v2,v2 + v3,0) + (w1 + we, ws + w3,0) = T(v+w).
Similarly,
T(aw) = (avy + awvy, ave + aws, 0)
oT'(v) = a(vy + ve,v9 +v3,0) = T(awv).

Thus T is indeed linear.

2. Tt is clear that any vector in the range of 7" must have the third coordinate equal to
zero. On the other hand, the vector (a,b,0) = T'(a,0,b). Thus the range of T consists of all
vectors of the form (a, b,0) with a and b arbitrary numbers.

To find the null space of T, assume that Tv = 0 for some v = (v, vg,v3). Thus v; +ve =0
and vy + vy = 0. It follows that v» = —v; and v3 = —vs. Hence the null space of 1" consists
of all vectors of the form (a, —a,a), where a is an arbitrary number.

3. It follows from 2. that the null space is spanned by the vector (1,—1,1) and the range
is spanned by the vectors (1,0,0) and (0, 1,0), which are clearly linearly independent. Thus
the nullity of T is one, and the rank is 2. The dimension theorem predicts that 2 + 1 is the
dimension of the vector space R?, which is indeed 2 + 1 = 3.

4. We have: 7(1,0,0) = (1,0,0); 7'(1,1,0) = (2,1,0) = (1,0,0) + (1,1,0); 7'(1,1,1) =
(2,2,0) = 2(1,1,0). Thus the matrix of T is

co -
o= =
oo

in the given basis.
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Problem 5. Compute the determinant and the trace of the following matrix:

0 2 1 3
1 0 -2 2|
3 -1 0 1|
-1 1 2 0

Is this matrix invertible? If yes, compute the inverse, if not, exaplain why not.
ANSWERS. The trace is the sum of the diagonal entires and is zero. The determinant is
-3.
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Problem 6. Prove that an upper-diagonal matrix is invertible iff all its diagonal entries are
NON-zero.

PROOF: Let A be an upper-triangular matrix. Its determinant is equal to the product of
the diagonal entries:

det(A) = Ayy - Agg - - - Apn

(This can be shown, for example, by induction on the size of the matrix. In the induction
step, use expansion of the determinant in the first column).

Since a matrix is invertible iff its determinant is not zero, it follows that an A is invertible
iff all its diagonal entries are not zero.
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Problem 7. Let T : R? — R3 be given by T'(ai, as,a3) = (3a; — 2a3, as, 3a; + 4ay). Prove
that T is an isomorphism and find 7!,
PROOF: Relative to the standard basis, the matrix of T' is

3 0 =2
01 O
34 0

It is sufficient to prove that this matrix is invertible. Its determinant is, using the column
expansion for the last column, —2-(0-4 —1-3) =6 # 0. Thus the matrix is invertble. The
inverse of the matrix is

401
0 -3 3
0o 1 0|,
1 1
—3 —2 3
so that 7! is given by:
4 1
T_l(al, ao, ag) = (——ag — —-Q3,09, — =01 — 2@2 + —a3).

3 3 2 2



115A PRACTICE FINAL 9

Problem 8. Let A and B be invertible matrices. Prove that AB is invertible and that
(AB)"' = B7'A~L.

SOLUTION. We know that det(AB) = det(A)det(B). Since A and B are invertible, their
determinants are nonzero. Thus det A det B is also nonzero, so AB has a nonzero determi-
nant, and so is invertible.

Since the inverse of a matrix is unique, we need only to check that (AB) - (B 'A™!)

is the identity matrix. Since matrix multiplication is associative, this is the same as
ABBThYA'=AA7 =T
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Problem 9. Test the following matrices for diagonalizability. If the matrix A is diagonal-
izable, find an invertible matrix () and a diagonal matrix D such that D = Q~tAQ.

3 1 1
LA=| 2 4 2 |;
-1 -1 1

1 2
2 a=(12),

SOLUTION. 1. Consider the characteristic polynomial of A,

3—-A 1 1
f(A) = det 2 4-X 2
-1 -1 1-=2A
=@B=-N(A-N1-XN)+2)—22-N~+2)+(-2+(4-N)
= A% — 8)\% + 20\ — 16.
Note that A = 2 is clearly a root, since 8 — 32 + 40 — 16 = 0. Dividing by A — 2 gives

z? — 6z + 8. This has two roots, 2 and 4. Thus the eigenvalues of A are {2,4}, with the
eigenvalue 2 having multiplicity 2. We try to find eigenvectors of A with eigenvalue 2:

3 1 1
2 4 2 |v=2w.
-1 -1 1

We are interested in the dimension of the set of solutions of this equation, i.e., in the solutions
to the equation

3—2 1 1
2 4-2 2 v =0.
-1 -1 1-2

The following vectors solve this equation, and are therefore eigenvectors for A with eigenvalue
2:

v, = (0,-1,1), ve = (2,—1,—1).
Similarly, the vector
vy = (—1,-2,1)
is an eigenvector with eigenvalue 4. Thus the matrix is diagonalizable. Letting

0 2 -1
Q= -1 -1 =2
1 -1 1

we find that
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as required.
2. The characteristic polynomial of A is (1 — \)? and so 1 is the only eigenvalue. Solving the
equation

Av=v

0 2
(0 0)1)—0.

The set of solution is one-dimensional and is spanned by v = (1,0), which is the sole eigen-
vector of A. It follows that A is not diagonalizable.

leads us to finding all solutions to
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Problem 10. Suppose that A € M, ., (F) has exactly two distinct eigenvalues, A\; and A,
and that dim(E),,) = n — 1. Prove that A is diagonalizable.

SOLUTION. Since dimFE),, > 1 and dimFE), + dimE,, = n — 1 + dimE,, <
dim Span(E)y,, E»,) < dim F™ = n, we find that dim E), = 1. The multiplicity of A\; must be
at most n — 1, since the total degree of the characteristic polynomial is n, and it has another
root, Ao. On the other hand, the multiplicity of any eigenvalue is at least as large as the
dimension of the associated eigenspace. Thus the multiplicity of A\; must be n — 1, and the
multiplicity of g is 1. Since the multiplicity of each eigenvalue is equal to the dimension of
the corresponding eigenspace, the matrix A is diagonalizable.
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Problem 11. Let T : V — V be a linear operator on an inner product space V. Suppose

that ||T'(x)|| = ||z|| for all z € V. Show that T is one-to-one.
SOLUTION. It suffices to show that ker T is zero. Let x € kerT. Then T'(xz) = 0 and so
|IT(x)|| = 0. But we are given that ||T'(x)|| = ||z||, so that ||z|| = 0. Thus z = 0 and so

ker "= {0}.
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Problem 12. Let V = P(R) with the inner product

(f(2), g(z) = / fa)ar

Let W = P3(R) be a subspace of V. Use Gramm-Schmidt orthonormalization process to
obtain an orthnormal basis of P5(R) from the standard basis 1, z, 2%, 23 for P;.
SOLUTION. Let v} = 1. Then ||v}]| = 1/(1,1) = /2. Let

V1 = ——=.

V2

To find vy, we set v§ = x. Then v = vj — (v}, v1)v; is perpendicular to v;. Since (v, v1) =0

(by symmetry), we find that vy = z. We have ||v}|| = \/(z,z) = \/g Let

v_ﬁx
2 = 9t

Then {v;,v5} is an orthonormal set. To find v3, we set v§ = 2. Then v} = v§ — (v, vy)vy —
(v§,v1)vy is perpendicular to both vy and ve. We have (vf,v9) = 0 by symmetry and

1 [t 2 V2
3

Thus

Then

Thus if we set

452 V5

8 22’

then {v;,vy,v3} is an orthonormal set. Finally, we let v] = x3. Then v} = v} — (v}, v3)vs —

(v}, va)vy — (v],v1) is orthogonal to {1}1,1)2,?)3} Because of symmetry, v, is orthogonal to
any even polynomial, so only (v}, v,) can be nonzero. We have

r_— 3 _ V6 [3.,._ .3 3 H — 8 :
Thus v} = x —T\/;x—x — :x. Now, ||vj]| = 4/ 175-Thus if we set

5\ﬁ3 3\ﬁ
= /=2 — 4/ =7,
2V2" 2V2

then {vy, vo, v3,v4} is the desired orthonormal basis.v8



