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1 Problem 4.1.3b

Calculate the determinant, [
5− 2i 6 + 4i
−3 + i 7i

]
Solution: The textbook’s instructions give us,

(5− 2i)7i− (6 + 4i)(−3 + i) = 35i+ 14− (−22− 6i) = 36 + 41i

2 Problem 4.1.7

Prove that det(At) = det(A) for any A ∈M2×2(F ).

Proof: Write out,

A =

[
a b
c d

]
so that,

At =

[
a c
b d

]
Then we have det(A) = ad− bc = ad− cb = det(At).

3 Problem 4.1.9

Prove that det(AB) = det(A) · det(B) for any A,B ∈M2×2(F ).

Proof: Since we are just dealing with 2 × 2 matrices, we can just write out what AB is and take
its determinant, showing that it will be the same as det(A) · det(B). We have,

AB =

[
a11 a12
a21 a22

]
·
[
b11 b12
b21 b22

]
=

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]
The determinant of this is:

(a11b11 + a12b21) · (a21b12 + a22b22)− (a11b12 + a12b22) · (a21b11 + a22b21) (1)
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But we also have,

det(A) · det(B) = (a11a22 − a12a21) · (b11b22 − b12b21)

Multiplying this out clearly gives (1).

4 Problem 4.2.9

Evaluate the determinant along the third row: 0 1 + i 2
−2i 0 1− i

3 4i 0


Solution: We proceed carefully, taking the correct signs into account, yielding,

3 det

[
1 + i 2

0 1− i

]
− 4i det

[
0 2
−2i 1− i

]
+ 0 det

[
0 1 + i
−2i 0

]
= 6 + 16 = 22

5 Problem 4.2.14

Calculate the determinant, 2 3 4
5 6 0
7 0 0


Solution: There are a bunch of zeros in the third row and third column. The last problem asked
us to calculate the determinant along the third row, so let’s do the third column. Again, we check
to see when to multiply by −1 and we have (since there are 0’s in the second and third entries of
the last column),

4 det

[
5 6
7 0

]
= −168

6 Problem 4.3.9

Prove that an upper triangular n × n matrix is invertible if and only if all its diagonal entries are
nonzero.

Proof: Let Ω denote the set of all invertible matrices. Suppose A ∈ Mn×n(F ) and is triangular.
We must first prove the following,
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Lemma: If A is triangular, then,

det(A) =

n∏
i=1

Aii (2)

(That is, the determinant is the product of the diagonal entries.)

Proof: If A is 1 × 1, the determinant is simply the A11 entry. Suppose that (2) holds for all
n− 1× n− 1 matrices. Suppose then that A is n× n and suppose also, without loss of generality,
that A is upper triangular (if not, then by theorem 4.8, det(At) = det(A)). We have a matrix that
looks something like this, A11 ∗

. . .

0 Ann


Notice that I used a ∗ to denote the nonzero entries above the diagonal. This is because these
entries will become largely irrelevant momentarily. Well, let’s expand along the first column (since
the determinant does not depend on how we calculate it). Then what results is,

det(A) = A11 detA∗

where A∗ denotes the matrix consisting of all entries Aij where 2 ≤ i, j ≤ n. But the A∗ matrix
is n− 1× n− 1, so its determinant follows (2), except the limit is n− 1 instead of n. Thus, what
results is,

det(A) = A11

n−1∏
i=1

Aii

which is exactly (2). The result follows by induction.

Now, by the lemma, if A ∈ Ω, it suffices to show that det(A) 6= 0. But this follows by a corollary
to theorem 4.7 in the textbook. Thus, no Aii entry can possibly be zero. On the other hand, if all
Aii 6= 0, then by the lemma, det(A) 6= 0. By the same corollary, A ∈ Ω.

7 Problem 4.3.11

Prove that if M is skew-symmetric and n is odd, then M is not invertible. What happens if n is
even?

Proof: Well, M is skew-symmetric, so, M t = −M . But we also know that det(M) = det(M t),
so det(M) = det(−M). But also, det(−M) = (−1)n detM . Since n is odd, we conclude that
detM = −detM , which is not possible unless detM = 0. Ergo, M /∈ Ω (notation from previous
problem).
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Notice, however, that if n is even, M may be invertible. Consider, for instance,[
0 −1
1 0

]
It’s determinant is 1, so it is invertible.

8 Problem 4.3.13b

Prove that if Q is a unitary matrix, then |det(Q)| = 1.

Proof: By the previous result (which you were not required to show), det(M) = det(M). But we
also know that,

det(QQ∗) = det(I)

Therefore, we have,

det(Q) det(Q∗) = 1

But this is,

det(Q)det(Qt) = det(Q)det(Q) = |det(Q)| = 1

Done. If the last step isn’t clear, if c = a+ bi, then cc̄ = (a+ bi)(a− bi) = a2 + b2 = |c|.

9 Problem 5.1.3c

See text for instructions. The matrix given is,[
i 1
2 −i

]
Solution: Let A be the matrix. Then det(A− λI) = λ2 − 1. Hence, the eigenvalues are 1 and −1.
Now, we find a vector b such that, [

i− 1 1
2 −i− 1

]
b = 0

It is apparent that a vector that will work is,[
1

−i+ 1

]
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We do the same thing for the eigenvalue 1 and get the following eigenvector,[
1

−i− 1

]
What emerges then is that a basis for C2 is this,

B =

{[
1

−i+ 1

]
,

[
1

−i− 1

]}
since these vectors are clearly linearly independent. The matrix Q that we want then is,[

1 1
−i− 1 −1 + 1

]
And we are done.

10 Problem 5.1.14

For any square matrix A, prove that A and At have the same characteristic polynomial (and hence
the same eigenvalues).

Proof: We have often used the property that detA = detAt and we will use this again. The
characteristic polynomial, P (λ) for a matrix A is given by,

P (λ) = det(A− λI) =

But notice,

det(A− λI) = det((A− λI)t)

Since I is diagonal, (A− λI)t = At − λI, so we get the desired result,

det(A− λI) = det(At − λI)
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