1 Problem 2.2.10

Let V be a vector space with the ordered basis $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$. Define $v_{0}=0$. By Theorem 2.6, there exists a linear transformation $T: V \rightarrow V$ such that $T\left(v_{j}\right)=v_{j}+v_{j-1}$ for all $j=1,2, \ldots, n$. Compute $[T]_{\beta}$.
Solution: Well, we want to set up something like this,

$$
\left[\begin{array}{llll}
{\left[T\left(v_{1}\right)\right]_{\beta}} & {\left[T\left(v_{2}\right)\right]_{\beta}} & \ldots & {\left[T\left(v_{n}\right)\right]_{\beta}}
\end{array}\right]
$$

Computing these is straightforward, given that $v_{0}=0$ (for this yields $T\left(v_{1}\right)=v_{1}$). The $T\left(v_{j}\right)$ entry has a one in the $j t h$ column component and in the $j-1$ th column component. This yields,

$$
\left[\begin{array}{ccccc}
1 & 1 & 0 & \ldots & 0 \\
0 & 1 & 1 & \ddots & \vdots \\
0 & 0 & 1 & \ddots & 0 \\
0 & 0 & 0 & \ldots & 1 \\
0 & 0 & 0 & \ldots & 1
\end{array}\right]
$$

2 Problem 2.3.10

Let A be $n \times n$. Prove that A is diagonal if and only if $A_{i j}=\delta_{i j} A_{i j}$ for all i and j.
Proof: If A is diagonal, then all entries other than those in the diagonal are necessarily 0 . Let $A_{i j}$ be an entry of A. Then since,

$$
\delta_{i j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

then if A is diagonal, it certainly holds that $A_{i} j=\delta_{i} j A_{i} j$. Now, if $A_{i} j=\delta_{i} j A_{i} j$, then the only entries that are not necessarily zero are in those where $i=j$, namely, the diagonal entries. Hence, A is diagonal.

3 Problem 2.3.12

Let V, W, Z be vector spaces and let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear.

1. Prove that if $U T$ is one to one, then T is one to one. Must U also be one to one?
2. Prove that if $U T$ is onto, then U is onto. Must T also be onto?
3. Prove that if U and T are one to one and onto, then $U T$ is also.

Proof: For 1), let $v \in \operatorname{ker} T$. Then $U T(v)=U(T(v))=0$. Hence, $v \in \operatorname{ker}(U T)$, so $U T$ is one to one. This shows that $\operatorname{ker} T \subset \operatorname{ker}(U T)=\{0\}$. This is enough to show that T is one to one. Notice, however, that U may not be one to one. For, consider $T: F^{1} \rightarrow F^{2}$ where $T(a)=(a, 0)$ and $U: F^{2} \rightarrow F^{1}$ where $U(a, b)=(a)$. Then $U T(a)=a$ for all a so that $U T$ is one to one but $\operatorname{ker} U=\{(0, b): b \in F\}$. Hence, U is not one to one.
Now, for 2), let $z \in Z$. We must show that $z \in R(U)$. Since $U T$ is onto, there is a $v \in V$ so that $U T(v)=z$. But then $z=U T(v)=U(T(v))$ by definition, so $z \in R(U)$. Notice, however, that T doesn't need to be onto. For, consider the counterexample in part 1). UT is onto, but T isn't since $R(T)=\{(a, 0): a \in F\} \neq F^{2}$.
Finally, we prove 3). Let $V \in \operatorname{ker} U T$. Then $T(v) \in \operatorname{ker} U$ by definition: $0=U T(v)=U(T(v))$. But U is one to one which means that U has a kernel of zero only. So $T(v)=0$ so $v \in \operatorname{ker} T=\{0\}$ as T is one to one. Thus, $v=0$ and $\operatorname{ker} U T=\{0\}$.

4 Problem 2.3.13

Let A and B be $n \times n$ matrices. Prove that $\operatorname{tr} A B=\operatorname{tr} B A$ and $\operatorname{tr} A=\operatorname{tr} A^{t}$.
Proof: The second fact is quite clear; for, $A_{i i}=A_{i i}^{t}$. Since by definition,

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i i}
$$

we see that the second fact holds. For the first, we need to utilize the definition of matrix multiplication. By definition, the product of A and B is given by these entries,

$$
(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
$$

for $1 \leq i, j \leq n$. But notice,

$$
(A B)_{i i}=\sum_{k=1}^{n} A_{i k} B_{k i}
$$

Also,

$$
(B A)_{i i}=\sum_{k=1}^{n} B_{i k} A_{k i}
$$

Then we have that,

$$
\begin{aligned}
& \operatorname{tr} A B=\sum_{i=1}^{n} \sum_{k=1}^{n} A_{i k} B_{k i} \\
& \operatorname{tr} B A=\sum_{i=1}^{n} \sum_{k=1}^{n} B_{i k} A_{k i}
\end{aligned}
$$

The scalars will now commute, and now what is seen is that all possible combinations of $A_{i k} B_{k i}$ will be in both sums. Hence, the traces are equal.

5 Problem 2.3.16

Let V be a finite-dimensional vector space. Let $T: V \rightarrow V$ be linear.

1. If $\operatorname{rank}(T)=\operatorname{rank}\left(T^{2}\right)$, prove that $R(T) \cap N(T)=\{0\}$. Deduce that $V=R(T) \oplus N(T)$.
2. Prove that $V=R\left(T^{k}\right)+N\left(T^{k}\right)$ for some positive integer k.

Proof:

For 1), we need this first:

Lemma: $\operatorname{ker} T=\operatorname{ker} T^{2}$.

Proof: Choose $v \in \operatorname{ker} T$. Then $T v=0$. But also $T^{2} v=0$, so $v \in \operatorname{ker} T^{2}$. This gives that $\operatorname{ker} T \subseteq \operatorname{ker} T^{2}$. To prove equality, it suffices to show that the dimensions are equal. But this follows from rank-nullity; for by rank-nullity, we have that nullity $T^{2}=V-\mathrm{rk} T^{2}=V-\mathrm{rk} T=$ nullity T. Thus, equality is proven, concluding the lemma.

Now, choose $v \in R(T) \cap N(T)$. Then for some $\alpha \in V, T \alpha=v$. But also $T^{2} \alpha=T v=0$ since $v \in N(T)$. Hence, $\alpha \in \operatorname{ker} T^{2}$. But the nullspaces of T and T^{2} are equal, so $T \alpha=v=0$. Thus, their intersection is only in the zero vector. To show that V is the direct sum of the range and nullspace, first notice that $V \supseteq R(T)+N(T)$ since $T: V \rightarrow V$. The dimension of their sum is equal to V since,

$$
\operatorname{dim}(R(T)+N(T))=\operatorname{dim}(R(T))+\operatorname{dim}(N(T))-\operatorname{dim}(R(T) \cap N(T))=V
$$

so equality follows. Finally, we concluded that the intersection of the range and nullspace is zero, so V is the direct sum of the range and nullspace by definition.
Now, we prove 2). First, we claim that $R\left(T^{k+1}\right) \subseteq R\left(T^{k}\right)$ for any k. Indeed, choose $v \in R\left(T^{k+1}\right)$. Then for some $\alpha, T^{k+1} \alpha=v$. But $T^{k}(T \alpha)=v$, so $v \in R\left(T^{k}\right)$.
Now, assume that no $k \in \mathbb{Z}^{+}$exists to give the fact that $R\left(T^{k+1}\right) \supseteq R\left(T^{k}\right)$. Then we have strict containment and $\operatorname{rk} T^{k+1}<\operatorname{rk} R\left(T^{k}\right)$ for every k. This gives this infinite chain,

$$
\ldots<\mathrm{rk} T^{n}<\ldots<\mathrm{rk} T^{2}<\mathrm{rk} T
$$

But this means that,

$$
0 \leq \mathrm{rk} T^{k} \leq \operatorname{dim} V
$$

for all k, so there exist infinitely many distinct k so that the dimension of the range can be squeezed between that of 0 and V. But this contradicts the finiteness of the dimension of V.
We conclude that there exists a $k \in \mathbb{Z}^{+}$such that $\mathrm{rk} T=\mathrm{rk} T^{2}$. Now, the 2) follows the same way as 1) if we replace T by T^{k} and T^{2} by T^{k+1}.
This problem is arguable one of the most beautiful results you have yet shown!

6 Problem 2.4.4

Let A and B be $n \times n$ invertible matrices. Prove that $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$. Proof: We guess that $(A B)^{-1}=B^{-1} A^{-1}$. Since A and B are invertible, we have,

$$
A B B^{-1} A^{-1}=A A^{-1}=I
$$

Also,

$$
B^{-1} A^{-1} A B=B^{-1} B=I
$$

Thus, $A B$ is invertible and it's inverse is $B^{-1} A^{-1}$.

7 Problem 2.4.6

Prove that if A is invertible and $A B=O$, then $B=O$.
Proof: If A is invertible, apply its inverse to the left hand side of both sides:

$$
A^{-1} B=A^{-1} O \Rightarrow B=O
$$

8 Problem 2.4.7

Let A be $n \times n$.

1. Suppose that $A^{2}=O$. Prove that A is not invertible.
2. Suppose that $A B=O$ for some nonzero $n \times n B$. Could A be invertible? Explain.

Solution: For 1), suppose A is invertible. Let B be its inverse. Then $A B=B A=I$. But notice that,

$$
B A A=A=B O=O
$$

Then apply B once again and we get that $B A=0 \neq I$.
This is obviously a problem. Thus, A can't be invertible. Now, suppose $A B=O$ for some B that is $n \times n$. Notice that A cannot be invertible. For if it could and its inverse was C, then $C A B=B=C O=O$. But $B \neq O$. Thus, A isn't invertible.

9 Problem 2.4.15

Let V and W be n-dimensional vector spaces, and let $T: V \rightarrow W$ be a linear transformation. Suppose β is a basis for V. Prove that T is an isomorphism if and only if $T(\beta)$ is a basis for W.
Proof: First, suppose that T is isomorphic. We want to show that, if $\beta=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$,

$$
\sum_{i=1}^{n} c_{i} T\left(\beta_{i}\right)=0
$$

only when all $c_{i}=0$. Well, notice that,

$$
\sum_{i=1}^{n} c_{i} T\left(\beta_{i}\right)=T\left(\sum_{i=1}^{n} c_{i} \beta_{i}\right)=0
$$

This shows that the linear combination of basis elements is in the kernel of T, which is zero since T is an isomorphism. Thus, since β is a basis for V, all $c_{i}=0$. Hence, $T(\beta)$ is linearly independent. Finally, it is, in fact, a basis since their are n elements in $T(\beta)$ and $\operatorname{dim} W=n$.
Now, suppose $T(\beta)$ is a basis for W. Choose $v \in \operatorname{ker} T$. Well, $v=\sum c_{i} \beta_{i}$ for some c_{i}. Therefore, $\sum c_{i} \beta_{i} \in \operatorname{ker} T$. But this also means, by linearity, that,

$$
\sum_{i=1}^{n} c_{i} T\left(\beta_{i}\right)=0
$$

Thus, $c_{i}=0$ for all i since it was assumed that $T(\beta)$ is a basis. Thus, $v=0$ and T is injective. Now, choose $v \in W$. Then $v=\sum c_{i} T\left(\beta_{i}\right)$ for some c_{i}. But then $v=T\left(\sum c_{i} \beta_{i}\right)$ and, since $\sum c_{i} \beta_{i} \in V$, we have that v is the mapping of some vector in V. Thus, T is surjective and we conclude that T is an isomorphism.

10 Problem 2.4.17

Let V and W be finite dimensional vector spaces and $T: V \rightarrow W$ be an isomorphism. Prove that,

1. $T\left(V_{0}\right)$ is a subspace of W.
2. $\operatorname{dim}\left(V_{0}\right)=\operatorname{dim}\left(T\left(V_{0}\right)\right)$.

Proof: The zero vector is certainly in $T\left(V_{0}\right)$ since $T(0)=0$. Choose $x, y \in T\left(V_{0}\right)$. Then $x=T\left(x^{\prime}\right)$, $y=T\left(y^{\prime}\right)$ for $x^{\prime}, y^{\prime} \in V_{0}$. But notice that $\left.T\left(x^{\prime}+y^{\prime}\right)=T\left(x^{\prime}\right)\right) T\left(y^{\prime}\right)=x+y$. Hence, $x+y \in T\left(V_{0}\right)$ since $x^{\prime}+y^{\prime} \in V_{0}$. The same follows with scalar multiplication: if $c \in F$ and $x \in T\left(V_{0}\right)$, then $c x=c T\left(x^{\prime}\right)=T\left(c x^{\prime}\right)$ for some $x^{\prime} \in V_{0}$. Hence $c x \in T\left(V_{0}\right)$.
Now, we must prove that $\operatorname{dim}\left(V_{0}\right)=\operatorname{dim}\left(T\left(V_{0}\right)\right)$. Restrict T to the subspace V_{0}. Call this restriction $T_{V_{0}}: V_{0} \rightarrow T\left(V_{0}\right)$. Then by definition, $T_{V_{0}}$ is surjective and it is still injective, since the nullspace of the map is still zero (it's the same map; we are just applying it to V_{0} only). Then $T_{V_{0}}$ remains an isomorphism and by theorem 2.19, $\operatorname{dim}\left(V_{0}\right)=\operatorname{dim}\left(T\left(V_{0}\right)\right)$.

