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1 Problem 2.2.10

Let V be a vector space with the ordered basis 8 = {v1,...,v,}. Define vy = 0. By Theorem 2.6,
there exists a linear transformation T : V' — V such that T'(v;) = v; + v, for all j = 1,2,...,n.
Compute [T7,.

Solution: Well, we want to set up something like this,
[T(v)]g [T(w2)lg - [T(vn)l4]

Computing these is straightforward, given that vy = 0 (for this yields T'(vi) = v1). The T'(v;) entry
has a one in the jth column component and in the j — 1th column component. This yields,

110 .. 0
0 1 1

0 0 1 0
0 0 0 1
0 0 0 1

2 Problem 2.3.10

Let A be n x n. Prove that A is diagonal if and only if A;; = 6;;A;; for all ¢ and j.

Proof: If A is diagonal, then all entries other than those in the diagonal are necessarily 0. Let A;;
be an entry of A. Then since,

1 i=g
b = {0 Y
then if A is diagonal, it certainly holds that A;j = 9,jA4;j. Now, if A;j = §;jA;j, then the only

entries that are not necessarily zero are in those where i = j, namely, the diagonal entries. Hence,
A is diagonal.

3 Problem 2.3.12
Let V, W, Z be vector spaces and let T : V — W and U : W — Z be linear.

1. Prove that if UT is one to one, then T is one to one. Must U also be one to one?



2. Prove that if UT is onto, then U is onto. Must T also be onto?

3. Prove that if U and T are one to one and onto, then UT is also.

Proof: For 1), let v € kerT. Then UT(v) = U(T(v)) = 0. Hence, v € ker(UT), so UT is one
to one. This shows that kerT" C ker(UT) = {0}. This is enough to show that T is one to one.
Notice, however, that U may not be one to one. For, consider T': F' — F? where T'(a) = (a,0)
and U : F? — F! where U(a,b) = (a). Then UT(a) = a for all a so that UT is one to one but
kerU = {(0,b) : b € F'}. Hence, U is not one to one.

Now, for 2), let z € Z. We must show that z € R(U). Since UT is onto, there is a v € V so that
UT(v) = z. But then z = UT(v) = U(T(v)) by definition, so z € R(U). Notice, however, that T
doesn’t need to be onto. For, consider the counterexample in part 1). UT is onto, but T isn’t since
R(T)={(a,0):a € F} # F%

Finally, we prove 3). Let V € kerUT. Then T'(v) € ker U by definition: 0 = UT(v) = U(T (v)).
But U is one to one which means that U has a kernel of zero only. So T'(v) = 0so v € ker T = {0}
as T is one to one. Thus, v = 0 and ker UT = {0}.

4 Problem 2.3.13

Let A and B be n x n matrices. Prove that trAB = trBA and trd = trA*.

Proof: The second fact is quite clear; for, A;; = A%,. Since by definition,

we see that the second fact holds. For the first, we need to utilize the definition of matrix multipli-
cation. By definition, the product of A and B is given by these entries,

(AB)i; =Y AuBu;
k=1

for 1 <i,5 < n. But notice,

(AB)ii =Y AiB
k=1

Also,

(BA)ii = Y _ BirAgi

k=1

Then we have that,



n n

trAB = Z Z A1 By

i=1 k=1

trBA = i zn: B Ay

=1 k=1

The scalars will now commute, and now what is seen is that all possible combinations of A;i By
will be in both sums. Hence, the traces are equal.

5 Problem 2.3.16

Let V be a finite-dimensional vector space. Let T : V' — V be linear.

1. If rank(T) = rank(7?), prove that R(T) N N(T) = {0}. Deduce that V = R(T) & N(T).

2. Prove that V = R(T*) + N(T*) for some positive integer k.

Proof:
For 1), we need this first:

Lemma: ker T = ker T2.

Proof: Choose v € kerT. Then Tv = 0. But also T?v = 0, so v € kerT?. This gives that
ker T C ker T2. To prove equality, it suffices to show that the dimensions are equal. But this fol-
lows from rank-nullity; for by rank-nullity, we have that nullity7? = V —1kT? = V —1kT = nullityT.
Thus, equality is proven, concluding the lemma.

Now, choose v € R(T) N N(T). Then for some o € V, Ta = v. But also T?a = Tv = 0 since
v € N(T). Hence, a € kerT?. But the nullspaces of T and T? are equal, so Ta = v = 0. Thus,
their intersection is only in the zero vector. To show that V is the direct sum of the range and
nullspace, first notice that V'O R(T)+ N(T') since T : V' — V. The dimension of their sum is equal
to V since,

dim(R(T) + N(T)) = dim(R(T)) + dim(N(T)) — dim(R(T) N N(T)) = V

so equality follows. Finally, we concluded that the intersection of the range and nullspace is zero,
so V' is the direct sum of the range and nullspace by definition.

Now, we prove 2). First, we claim that R(T**1) C R(T*) for any k. Indeed, choose v € R(T*+1).
Then for some a, T**la = v. But T*(Ta) = v, so v € R(T*).

Now, assume that no k € ZT exists to give the fact that R(T**!) D R(T*). Then we have strict
containment and rkT**! < tkR(T*) for every k. This gives this infinite chain,



o <TkT™ < ... < tkT? < tkT

But this means that,

0 <1kT* < dimV

for all k&, so there exist infinitely many distinct & so that the dimension of the range can be squeezed
between that of 0 and V. But this contradicts the finiteness of the dimension of V.

We conclude that there exists a k € ZT such that rk7 = rk7?. Now, the 2) follows the same way
as 1) if we replace T' by T* and T? by T*+1,

This problem is arguable one of the most beautiful results you have yet shown!
6 Problem 2.4.4

Let A and B be n x n invertible matrices. Prove that AB is invertible and (AB)~! = B=1A~1.
Proof: We guess that (AB)~! = B~'A~!. Since A and B are invertible, we have,

ABB A ' = AA =1

Also,

B 'A'AB=B"'B=1

Thus, AB is invertible and it’s inverse is B~1A™!.

7 Problem 2.4.6

Prove that if A is invertible and AB = O, then B = O.
Proof: If A is invertible, apply its inverse to the left hand side of both sides:

AT'B=A"'0=B=0

8 Problem 2.4.7
Let A be n x n.

1. Suppose that A2 = O. Prove that A is not invertible.

2. Suppose that AB = O for some nonzero n X n B. Could A be invertible? Explain.



Solution: For 1), suppose A is invertible. Let B be its inverse. Then AB = BA = I. But notice
that,

BAA=A=BO=0

Then apply B once again and we get that BA =0 # 1.

This is obviously a problem. Thus, A can’t be invertible. Now, suppose AB = O for some B
that is n x n. Notice that A cannot be invertible. For if it could and its inverse was C, then
CAB =B =CO = 0. But B # O. Thus, A isn’t invertible.

9 Problem 2.4.15

Let V and W be n—dimensional vector spaces, and let T': V. — W be a linear transformation.
Suppose [ is a basis for V. Prove that T is an isomorphism if and only if T'(3) is a basis for W.

Proof: First, suppose that T is isomorphic. We want to show that, if 8 = {f1,..., Bn},

Z aT(Bi) =0
i=1

only when all ¢; = 0. Well, notice that,

z}JWOT<z}mOO

=1 i=1

This shows that the linear combination of basis elements is in the kernel of T', which is zero since T’
is an isomorphism. Thus, since § is a basis for V, all ¢; = 0. Hence, T'() is linearly independent.
Finally, it is, in fact, a basis since their are n elements in T(8) and dim W = n.

Now, suppose T'(3) is a basis for W. Choose v € ker T. Well, v = >_ ¢;5; for some ¢;. Therefore,
> ¢;B; € kerT. But this also means, by linearity, that,

> aT(Bi) =0
=1

Thus, ¢; = 0 for all ¢ since it was assumed that T'(8) is a basis. Thus, v = 0 and T is injective. Now,
choose v € W. Then v = > ¢;T(f;) for some ¢;. But then v = T(> ¢;8;) and, since Y ¢;5; € V,
we have that v is the mapping of some vector in V. Thus, T is surjective and we conclude that T
is an isomorphism.

10 Problem 2.4.17

Let V and W be finite dimensional vector spaces and 7' : V' — W be an isomorphism. Prove that,



1. T(Vp) is a subspace of W.

Proof: The zero vector is certainly in T'(Vp) since T'(0) = 0. Choose z,y € T(Vp). Then z = T'(a),
y=T(y') for 2/,y" € Vp. But notice that T'(a' + ') = T(2'))T(y') =  +y. Hence, x +y € T (V)
since ' +y € Vy. The same follows with scalar multiplication: if ¢ € F and z € T(V}), then
cx = cT'(2') = T(cx') for some 2’ € V. Hence cx € T(Vp).

Now, we must prove that dim(Vp) = dim(7'(Vp)). Restrict T" to the subspace V;. Call this restriction
Ty, : Vo — T'(Vp). Then by definition, Ty, is surjective and it is still injective, since the nullspace
of the map is still zero (it’s the same map; we are just applying it to Vo only). Then Ty, remains
an isomorphism and by theorem 2.19, dim(Vp) = dim(7'(Vp)).



