1 Problem 1.6.7

The vectors $u_{1}=(2,-3,1), u_{2}=(1,4,-2), u_{3}=(-8,12,-4), u_{4}=(1,37,-17)$, and $u_{5}=$ $(-3,-5,8)$ generate \mathbb{R}^{3}. Find a subset of the set $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ that is a basis for \mathbb{R}^{3}.
Solution: To do so, it suffices to find a linearly independent subset. This is easily done by picking u_{1} and u_{2}, which are clearly independent, and verifying independence with the other vectors. Doing so gives that u_{5} is independent from u_{1} and u_{2} :

$$
\left[\begin{array}{ccc}
2 & 1 & -3 \\
-3 & 4 & -5 \\
1 & -2 & 8
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 / 2 & -3 / 2 \\
0 & 1 & -1 / 11 \\
1 & -2 & 8
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 / 2 & 3 / 2 \\
0 & 1 & -1 / 11 \\
0 & -5 / 2 & 13 / 2
\end{array}\right]
$$

which reduces, of course, to,

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

which is sufficient to show independence. Thus, the subset $\left\{u_{1}, u_{2}, u_{5}\right\}$ is a basis for \mathbb{R}^{3}.

2 Problem 1.6.13

The set of solutions to the system,

$$
\begin{gathered}
x_{1}-2 x_{2}+x_{3}=0 \\
2 x_{1}-3 x_{2}+x_{3}=0
\end{gathered}
$$

Solution: Well, first, we notice that if we add the second equation's negation to the first, we have,

$$
-x_{1}+x_{2}=0
$$

in other words, the system is satisfied for x_{1}, x_{2} so that $x_{1}=x_{2} . x_{3}$ is seen to depend on the choice of x_{1}, since plugging in x_{1} for x_{2} gives that the system is satisfied for $x_{1}=x_{3}$. What emerges is that the solution set of this system is,

$$
S=\operatorname{span}(1,1,1)
$$

which is, in fact, a subspace of \mathbb{R}^{3}.

3 Problem 1.6.19

Complete the proof of Theorem 1.8.
Proof: It remains to be seen that (using the same notation as in the text), if each $v \in V$ can be uniquely represented as a linear combination of vectors of β, then β is a basis of V. Suppose the vectors in β are not linearly independent. Then there exist scalars α_{i} not all zero such that,

$$
\sum_{i=1}^{n} \alpha_{i} \beta_{i}=0
$$

But notice that $\alpha_{i}=0$ for all i also solves the equation. Thus, 0 has at least two different linear representations, which contradicts uniqueness. Thus, β is linearly independent. Now, we need to show that $V=\operatorname{span}()=\beta$). If $v \in V$, then v can be represented as a linear combination of elements in β and thus $v \in \operatorname{span}(\beta)$. If $v \in \operatorname{span}(\beta)$, then obviously $v \in V$ by closure of V under addition and scalar multiplication. Thus, $v=\operatorname{span}(\beta)$ and β is a basis for V.

4 Problem 2.1.2

Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined by $T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}-a_{2}, 2 a_{3}\right)$. Prove that T is linear and find bases for $N(T)$ and $R(T)$. Then, compute the nullity and rank of T, and verify the dimension theorem. Finally, use the appropriate theorems to determine whether T is injective or surjective.
Solution: Let's start with linearity. We take two vectors, (a, b, c) and (x, y, z) in \mathbb{R}^{3}. Then $T(a+x, b+y, c+z)=(a+x-b-y, 2 c+2 z)$ by definition. Then, take $T(a, b, c)+T(x, y, z)$. This is just $(a-b, 2 c)+(x-y, 2 z)=(a+x-b-y, 2 c+2 z)$. Finally, take $T(k a, k b, k c)$ for $k \in F$. This is $(k a-k b, 2 k c)$. Also, $k T(a, b, c)=k(a-b, 2 c)=(k a-k b, 2 k c)$. We conclude that T is linear by definition.

Now, for $N(T)$, suppose $T(a, b, c)=0$. Then $(a-b, 2 c)=0$. Thus, for any vector (a, b, c) such that $a=b$ and $c=0$, we have that $(a, b, c) \in N(T)$. Hence, the basis is $N(T)=\operatorname{span}(1,1,0)$. Now, we claim that any vector in \mathbb{R}^{2} can be written using transformed elements of \mathbb{R}^{3}. Well, take $(x, y) \in \mathbb{R}^{2}$. Then we want to see if,

$$
(x, y)=(a-b, 2 c)
$$

for some real a, b, c. But the equation $a-b=x$ has infinitely many solutions. Finally, if $\frac{1}{2} y=c$, then we have the desired result. Since the range is all of \mathbb{R}^{2}, we can simply use the standard basis as a basis for $R(T)$.
Finally, we notice that T is not injective since it's nullspace does not consist only of the zero vector. However, by the previous argument, the transformation is onto (since its range is all of \mathbb{R}^{2}).

5 Problem 2.1.15

Recall the definition of $P(\mathbb{R})$ given on page 10 of the text. Define $T: P(\mathbb{R}) \rightarrow P(\mathbb{R})$ by,

$$
T(f(x))=\int_{0}^{x} f(t) d t
$$

Prove that T is linear and injective, but not surjective.
Proof: Linearity is straightforward. Take $f, g \in P(\mathbb{R})$. Then,

$$
T(f+g)=\int_{0}^{x}(f+g) d t=\int_{0}^{x} f d t+\int_{0}^{x} g d t=T(f)+T(g)
$$

In the most pure sense, however, this is not completely justified. To justify this completely, you need at least one academic quarter of real analysis and a thorough understanding of partitions and integrability (it suffices, in this case, to just understand the Riemann Integral; yes, there are other types of integrals!). For now, just rely on the properties you learned in elementary calculus.
Now, we show injectivity. Suppose $T(f)=T(g)$ for some f, g. Then,

$$
\int_{0}^{x} f d t=\int_{0}^{x} g d t
$$

Now, we have the following,

$$
\int_{0}^{x} f d t-\int_{0}^{x} g d t=0
$$

By the fundamental theorem of calculus (which you can assume), we differentiate both sides

$$
f(x)-g(x)=0
$$

Thus, since $f(x)=g(x)$, we have proven injectivity. Another way of doing this is by showing that the nullspace is zero. This is equally valid:

$$
\int_{0}^{x} f(t) d t=0
$$

differentiating,

$$
f(x)=0
$$

for arbitrary $f(x)$. Thus, $N(T)=\{0\}$; that is, the zero function. However, it is not onto. To see this, notice that for any constant function c, there exists no function in $P(\mathbb{R})$ so that $P(f)=c$.

6 Problem 2.1.18

Give an example of a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $N(T)=R(T)$.
Solution: An example of such is this. Let,

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

That is, for any $(x, y), T(x, y)=(y, 0)$. Then we can see that $N(T)=\operatorname{span}(1,0)$ and so is $R(T)$.

7 Online Problem 1

Let $T: V \rightarrow W$ be a linear map, show the null space, null (T), is a subspace of V.
Proof: Choose $x, y \in(T)$. Choose $c \in F$. Notice that $0=T(x)+T(y)=T(x+y)$. Hence, $x+y \in \operatorname{null}(T)$. But also, $0=c T(x)=T(c x)$. Thus, $c x \in \operatorname{null}(T)$. We conclude that null (T) is a subspace by definition.

8 Problem 2.2.4

Define $T: M_{2 \times 2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ by,

$$
T\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=(a+b)+(2 d) x+b x^{2}
$$

Let,

$$
\beta=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

and $\gamma=\left\{1, x, x^{2}\right\}$. Compute $[T]_{\beta}^{\gamma}$.
Solution: Apply T to the basis elements to get $1,1+x^{2}, 0$, and $2 x$ respectively. Then, if β_{i} represent the various elements of β, we take,

$$
[T]_{\beta}^{\gamma}=\left(\left[T\left(\beta_{1}\right)\right]_{\gamma},\left[T\left(\beta_{2}\right)\right]_{\gamma},\left[T\left(\beta_{3}\right)\right]_{\gamma},\left[T\left(\beta_{4}\right)\right]_{\gamma}\right)
$$

This is,

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

9 Problem 2.2.5a

Let,

$$
\alpha=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

and $\beta=\left\{1, x, x^{2}\right\}$. Finally, let $\gamma=\{1\}$. Define $T: M_{2 \times 2}(F) \rightarrow M_{2} \times 2(F)$ by $T(A)=A^{t}$. Compute $[T]_{\alpha}$.
Solution: This is straightforward. All we must do, again, is apply the transformation to the basis elements. Let α_{i} denote the basis elements of α. Then $T\left(\alpha_{1}\right)$ and $T\left(\alpha_{4}\right)$ remain unchanged. However, $T\left(\alpha_{2}\right)=\alpha_{3}$. Also, $T\left(\alpha_{3}\right)=T\left(\alpha_{2}\right)$. The matrix, then, is,

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

10 Problem 2.2.16

Let V and W be vector spaces such that $\operatorname{dim}(V)=\operatorname{dim}(W)$, and $T: V \rightarrow W$ be linear. Show that there exist ordered bases β and γ for V and W respectively, such that $[T]_{\beta}^{\gamma}$ is a diagonal matrix.
Proof: Let $\alpha=\left\{v_{1}, \ldots, v_{k}\right\}$ be an ordered basis for $N(T)$. Extend α to an ordered basis for the whole space: $\beta=\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$. Now, we write the vectors $\left\{T\left(v_{k+1}\right), \ldots, T\left(v_{n}\right)\right\}$ as are an ordered basis for $R(T)$ (as per the proof of the dimension theorem). Extend this to the ordered basis $\gamma=\left\{w_{1}, \ldots, w_{k}, T\left(v_{k+1}\right), \ldots, T\left(v_{n}\right)\right\}$ for W. Now,

$$
\left[T\left(v_{i}\right)\right]_{\gamma}=\left\{\begin{array}{cc}
0 & \text { if } 1 \leq i \leq k \\
e_{i} & \text { if } k+1 \leq i \leq n
\end{array}\right.
$$

This gives the desired result,

$$
[T]_{\beta}^{\gamma}=\left(0, \ldots, 0, e_{k+1}, \ldots, e_{k}\right)
$$

That is,

$$
\left[\begin{array}{cc}
0 & 0 \\
0 & I_{\frac{n}{2} \times \frac{n}{2}}
\end{array}\right]
$$

