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August 22, 2012 University of California, Los Angeles

1 Problem 1.6.7

The vectors u1 = (2,−3, 1), u2 = (1, 4,−2), u3 = (−8, 12,−4), u4 = (1, 37,−17), and u5 =
(−3,−5, 8) generate R3. Find a subset of the set {u1, u2, u3, u4, u5} that is a basis for R3.

Solution: To do so, it suffices to find a linearly independent subset. This is easily done by picking
u1 and u2, which are clearly independent, and verifying independence with the other vectors. Doing
so gives that u5 is independent from u1 and u2: 2 1 −3

−3 4 −5
1 −2 8

→
1 1/2 −3/2

0 1 −1/11
1 −2 8

→
1 1/2 3/2

0 1 −1/11
0 −5/2 13/2


which reduces, of course, to, 1 0 0

0 1 0
0 0 1


which is sufficient to show independence. Thus, the subset {u1, u2, u5} is a basis for R3.

2 Problem 1.6.13

The set of solutions to the system,

x1 − 2x2 + x3 = 0

2x1 − 3x2 + x3 = 0

Solution: Well, first, we notice that if we add the second equation’s negation to the first, we have,

−x1 + x2 = 0

in other words, the system is satisfied for x1, x2 so that x1 = x2. x3 is seen to depend on the choice
of x1, since plugging in x1 for x2 gives that the system is satisfied for x1 = x3. What emerges is
that the solution set of this system is,

S = span(1, 1, 1)

which is, in fact, a subspace of R3.
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3 Problem 1.6.19

Complete the proof of Theorem 1.8.

Proof: It remains to be seen that (using the same notation as in the text), if each v ∈ V can be
uniquely represented as a linear combination of vectors of β, then β is a basis of V . Suppose the
vectors in β are not linearly independent. Then there exist scalars αi not all zero such that,

n∑
i=1

αiβi = 0

But notice that αi = 0 for all i also solves the equation. Thus, 0 has at least two different linear
representations, which contradicts uniqueness. Thus, β is linearly independent. Now, we need to
show that V = span() = β). If v ∈ V , then v can be represented as a linear combination of elements
in β and thus v ∈ span(β). If v ∈ span(β), then obviously v ∈ V by closure of V under addition
and scalar multiplication. Thus, v = span(β) and β is a basis for V .

4 Problem 2.1.2

Let T : R3 → R2 be defined by T (a1, a2, a3) = (a1 − a2, 2a3). Prove that T is linear and find bases
for N(T ) and R(T ). Then, compute the nullity and rank of T , and verify the dimension theorem.
Finally, use the appropriate theorems to determine whether T is injective or surjective.

Solution: Let’s start with linearity. We take two vectors, (a, b, c) and (x, y, z) in R3. Then
T (a+ x, b+ y, c+ z) = (a+ x− b− y, 2c+ 2z) by definition. Then, take T (a, b, c) + T (x, y, z). This
is just (a− b, 2c) + (x− y, 2z) = (a+ x− b− y, 2c+ 2z). Finally, take T (ka, kb, kc) for k ∈ F . This
is (ka− kb, 2kc). Also, kT (a, b, c) = k(a− b, 2c) = (ka− kb, 2kc). We conclude that T is linear by
definition.

Now, for N(T ), suppose T (a, b, c) = 0. Then (a − b, 2c) = 0. Thus, for any vector (a, b, c) such
that a = b and c = 0, we have that (a, b, c) ∈ N(T ). Hence, the basis is N(T ) = span(1, 1, 0).
Now, we claim that any vector in R2 can be written using transformed elements of R3. Well, take
(x, y) ∈ R2. Then we want to see if,

(x, y) = (a− b, 2c)

for some real a, b, c. But the equation a − b = x has infinitely many solutions. Finally, if 1
2y = c,

then we have the desired result. Since the range is all of R2, we can simply use the standard basis
as a basis for R(T ).

Finally, we notice that T is not injective since it’s nullspace does not consist only of the zero vector.
However, by the previous argument, the transformation is onto (since its range is all of R2).

5 Problem 2.1.15

Recall the definition of P (R) given on page 10 of the text. Define T : P (R)→ P (R) by,
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T (f(x)) =

x∫
0

f(t)dt

Prove that T is linear and injective, but not surjective.

Proof: Linearity is straightforward. Take f, g ∈ P (R). Then,

T (f + g) =

x∫
0

(f + g)dt =

x∫
0

fdt+

x∫
0

gdt = T (f) + T (g)

In the most pure sense, however, this is not completely justified. To justify this completely, you
need at least one academic quarter of real analysis and a thorough understanding of partitions and
integrability (it suffices, in this case, to just understand the Riemann Integral; yes, there are other
types of integrals!). For now, just rely on the properties you learned in elementary calculus.

Now, we show injectivity. Suppose T (f) = T (g) for some f, g. Then,

x∫
0

fdt =

x∫
0

gdt

Now, we have the following,

x∫
0

fdt−
x∫

0

gdt = 0

By the fundamental theorem of calculus (which you can assume), we differentiate both sides

f(x)− g(x) = 0

Thus, since f(x) = g(x), we have proven injectivity. Another way of doing this is by showing that
the nullspace is zero. This is equally valid:

x∫
0

f(t)dt = 0

differentiating,

f(x) = 0

for arbitrary f(x). Thus, N(T ) = {0}; that is, the zero function. However, it is not onto. To see
this, notice that for any constant function c, there exists no function in P (R) so that P (f) = c.
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6 Problem 2.1.18

Give an example of a linear transformation T : R2 → R2 such that N(T ) = R(T ).

Solution: An example of such is this. Let,

A =

[
0 1
0 0

]
That is, for any (x, y), T (x, y) = (y, 0). Then we can see that N(T ) = span(1, 0) and so is R(T ).

7 Online Problem 1

Let T : V →W be a linear map, show the null space, null(T ), is a subspace of V .

Proof: Choose x, y ∈ (T ). Choose c ∈ F . Notice that 0 = T (x) + T (y) = T (x + y). Hence,
x + y ∈ null(T ). But also, 0 = cT (x) = T (cx). Thus, cx ∈ null(T ). We conclude that null(T ) is a
subspace by definition.

8 Problem 2.2.4

Define T : M2×2(R)→ P2(R) by,

T

[
a b
c d

]
= (a+ b) + (2d)x+ bx2

Let,

β =

{[
1 0
0 0

]
,

[
0 1
0 0

] [
0 0
1 0

] [
0 0
0 1

]}
and γ =

{
1, x, x2

}
. Compute [T ]

γ
β .

Solution: Apply T to the basis elements to get 1, 1 + x2, 0, and 2x respectively. Then, if βi
represent the various elements of β, we take,

[T ]
γ
β =

(
[T (β1)]γ , [T (β2)]γ , [T (β3)]γ , [T (β4)]γ

)
This is, 1 1 0 0

0 0 0 2
0 1 0 0
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9 Problem 2.2.5a

Let,

α =

{[
1 0
0 0

]
,

[
0 1
0 0

] [
0 0
1 0

] [
0 0
0 1

]}
and β =

{
1, x, x2

}
. Finally, let γ = {1}. Define T : M2×2(F ) → M2 × 2(F ) by T (A) = At.

Compute [T ]α.

Solution: This is straightforward. All we must do, again, is apply the transformation to the
basis elements. Let αi denote the basis elements of α. Then T (α1) and T (α4) remain unchanged.
However, T (α2) = α3. Also, T (α3) = T (α2). The matrix, then, is,

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



10 Problem 2.2.16

Let V and W be vector spaces such that dim(V ) = dim(W ), and T : V →W be linear. Show that
there exist ordered bases β and γ for V and W respectively, such that [T ]

γ
β is a diagonal matrix.

Proof: Let α = {v1, ..., vk} be an ordered basis for N(T ). Extend α to an ordered basis for the
whole space: β = {v1, ..., vk, vk+1, ..., vn}. Now, we write the vectors {T (vk+1), ..., T (vn)} as are an
ordered basis for R(T ) (as per the proof of the dimension theorem). Extend this to the ordered
basis γ = {w1, ..., wk, T (vk+1), ..., T (vn)} for W . Now,

[T (vi)]γ =

{
0 if 1 ≤ i ≤ k
ei if k + 1 ≤ i ≤ n

This gives the desired result,

[T ]
γ
β = (0, ..., 0, ek+1, ..., ek)

That is, [
0 0
0 In

2 ×n
2

]
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