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Abstract

Of all of the subjects encountered when studying mathematics, none are more
intimidating than the rigorous proof. Proofs are what mathematics is based on; in fact,
mathematics relies on the notion of completely correct and well written proofs that flow
methodically and logically. Such can be a difficult feat for prospective mathematics
undergraduates that have had little or no exposure to proof writing. In this paper, we
summarize a few fundamental methods of proof.
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1 Introduction

We assume the reader is familiar with most elementary mathematical subjects, from linear
algebra to general calculus (single and multivariable). To understand the underlying logic
of proofs requires a thorough course in mathematical logic. Here, we assume no such prior
experience and jump right into some fundamental methods of proof.

It goes without saying that a basic understanding of set theory is required for anyone to
prove anything ! Let A and B be arbitrary sets. We say that,

A = B

if and only if A ⊆ B and A ⊇ B. Furthermore, we say that,

A ⊆ B

if and only if, for any x ∈ A, x ∈ B. By the union of a collection of sets, we mean that,
for any x in this union, x appears in at least one set in the collection. We write,⋃

n∈I

An

for a collection of sets {An} and some index set I. For instance, I could be the natural
numbers up to some N , in which case the union is taken over all n = 1, 2, ..., N . Let A be
this union. Then x ∈ A implies that x ∈ Ai for some i ∈ I. This is merely a redundancy of
what was stated above, but we used mathematical language, as you should in your proofs.

By the intersection of a collection of sets, we mean that, for any x in the intersection,
x appears in all sets in the collection. We write,⋂

n∈I

An

with all notation as described above. Notice that x ∈ A for A being the intersection
implies that x ∈ Ai for all i ∈ I. To see how this all works together, consider the following.

Theorem 1.1. Let A,B, and C be sets. Then,

(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)

Proof. We first prove,

(A ∪B) ∩ C ⊆ (A ∩ C) ∪ (B ∩ C) (1)

Let x ∈ (A ∪ B) ∩ C. Then x ∈ A ∪ B and x ∈ C. If x ∈ A ∪ B, then x ∈ A or x ∈ B.
In either instance, x ∈ A and C or x ∈ B and C. This proves (1). We now prove that,

(A ∪B) ∩ C ⊇ (A ∩ C) ∪ (B ∩ C) (2)

Letting x be in the right side, we see that x ∈ A and C or x ∈ B and C. In both cases,
x ∈ C, so we notice that we are only concerned with x ∈ A or x ∈ B. In this case, x ∈ A∪B,
so x ∈ (A ∪B) ∩ C. This proves (2). The theorem follows.
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Understanding this, we now proceed to summarize some methods of proof.

2 Direct Proof

Theorem 2.1. Let V be a vector space over a field F . Let Wα be a collection of subspaces
of V with α ∈ I for some index I. Then, ⋂

α∈I

Wα (3)

is a subspace of V .

Proof. To prove that (3) is a subspace, it suffices to show closure under addition and scalar
multiplication. Let x, y be elements of (3) and let c ∈ F . Then x, y ∈ Wα for all α. But
each Wα is a subspace, so cx + y ∈ Wα for all α. This implies that cx + y is in (3). Thus,
the intersection is a subspace of V . Done.

3 Contradiction

Theorem 3.1.
√

2 /∈ Q. That is,
√

2 is irrational.

Proof. Suppose
√

2 is rational. Then for some relatively prime p, q ∈ Z, we have,

√
2 =

p

q

In other words, p
q

is in lowest terms. But notice,

2 =
p2

q2

Hence, 2q2 = p2. This shows that p2 is even, so p is even. Thus, write p = 2k for k ∈ Z.
Then 2q2 = 4k2, so q2 = 2k2. Hence, q is even. Since both p and q have a factor of 2, this
contradicts the notion that p

q
is in lowest terms.

Hence, what we assumed is false and
√

2 ∈ Q.

Remark: Remember that contradiction may be a good choice when the consequence of
a proof is a “black and white” statement. Here, for instance, a number is either rational or
it isn’t. In the previous proof in the “Direct Proof” section, it may not be so easy to prove
the theorem if you assume that the intersection is not a subspace (for, if not, what is it??).
Contradiction is tempting to use and you should avoid getting in the habit of turning to it
first for any proof.

Also, remember that when you choose to use proof by contradiction, you must show how
you used the negation of the consequence. What I commonly see people do is proceed via
“contradiction,” but then they just use direct proof. They see this as a contradiction because
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the consequence obviously contradicts the negation of the consequence. But they failed to
show how the negation of the consequence results in some fundamental mathematical flaw.
Take caution with this.

4 Induction

This next theorem is really a very silly example of induction, but it shows how all of the steps
work. The result after this next theorem is from the textbook and demonstrates induction
in a slightly less trivial way.

Theorem 4.1.
n∑
i=1

n =
n(n+ 1)

2

Proof. First, assume n = 1. Then 1 = 1(1+1)
2

= 1. Hence, the first case (”base case”) holds.
Assume that the theorem holds for n and consider n+ 1. Well, the n+ 1 sum is,

n+1∑
i=1

n

But this is,

n+ 1 +
n∑
i=1

n

By the induction hypothesis, we have,

n+ 1 +
n(n+ 1)

2
=

(n+ 1)(n+ 2)

2

Thus, the n+ 1 case holds as expected. The theorem therefore follows by induction.

Theorem 4.2. If W is a subspace of a vector space V and w1, ..., wn are in W for arbitrary
n, then,

n∑
i=1

aiwi ∈ W (4)

for any a1, ..., an ∈ F (the field).

Proof. If n = 1, then we simply have that w1 ∈ W . Since W is a subspace, then by definition,
a1w1 ∈ W . Suppose then that (1) holds for n and consider n + 1. Then we want to show
that,

n∑
i=1

aiwi + an+1wn+1 ∈ W (5)
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But by assumption,
∑
aiwi ∈ W . Also, by similar reasoning to above, since W is a

subspace, an+1wn+1 ∈ W . Finally then, let
∑
aiwi = v. Then since v ∈ W and an+1wn+1 ∈

W , since W is a subspace, v + an+1wn+1 ∈ W . Ergo, (2) holds. This is enough to show (1)
by induction.

5 Final Note

Please bear in mind that these are only examples of the vast power these methods of proof
have. Also, I neglected to show another method of proof (my personal favorite!): contrapos-
itive. As contrapositive is a bit of a mess with logic, I will leave this to your Professor. You
likely won’t need it much anyway for 115A.
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