
Math 115A HW1 Solutions

August 13, 2012 University of California, Los Angeles

1 Problem 1.2.7

In any vector space V , show that (a + b)(x + y) = ax + ay + bx + by for any x, y ∈ V and any
a, b ∈ F .

Proof: By definition, F is closed under addition, so write a + b := c ∈ F . Then we have,

c(x + y) = cx + cy

by VS7. But now,

(a + b)x + (a + b)y = ax + bx + ay + by

by VS8. Finally, this is ax + ay + bx + by by VS1.

2 Problem 1.2.13

Let V denote a set of ordered pairs of real numbers. If (a1, a2) and (b1, b2) are elements of V and
c ∈ R, define,

(a1, a2) + (b1, b2) = (a1 + b1, a2b2)

and,

c(a1, a2) = (ca1, a2)

Is V a vector space over R under these operations? Justify your answer.

Solution: Nope. Check VS8 (c, d ∈ R):

(c + d)(a1, a2) = (ca1 + da1, a2)

But notice,

c(a1, a2) + d(a1, a2) = (ca1 + da2, a
2
2)

by definition. Hence, VS8 fails.
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3 Problem 1.2.17

Let V = {(a1, a2) : a1, a2 ∈ F} where F is a field. Define addition of elements of V coordinatewise
and, for c ∈ F and (a1, a2) ∈ V , define,

c(a1, a2) = (a1, 0)

Is V a vector space over F with these operations? Justify your answer.

Solution: Again, no is the answer. There doesn’t exist an identify scalar element! Choose a scalar
c. Then,

c(a1, a2) = (a1, 0) = (a1, a2)

only if a2 = 0. Thus, not every element x ∈ V has the property that the scalar identify (whatever
that may be) takes it to itself.

4 Problem 1.3.4

Prove that (At)t = A for any A ∈Mm×n(F ).

Proof: Choose an entry of A and call it Aij where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Take At. Then by
definition, the At

ji element of At is Aij . Take (At)t. Then the (At)tij element of (At)t is the At
ji

element from At. But this is exactly Aij . Thus, the (At)tij element is Aij . Since Aij is arbitrary,
we conclude that A = (At)t.

5 Problem 1.3.19

Let W1, W2 be subspaces of a vector space V . Prove that W1 ∪W2 is a subspace if and only if
W1 ⊆W2 or W1 ⊇W2.

Proof: Well, to prove this statement, first show that, if W1, W2 are subspaces of a vector space
V and W1 ∪W2 is a subspace, then W1 ⊆ W2 or W1 ⊇ W2. Choose v1, v2 ∈ W1,W2 respectively.
Then obviously v1, v2 ∈W1 ∪W2. But by our assumption, v1 + v2 ∈W1 ∪W2. This indicates that
v1 + v2 ∈W1 or v1 + v2 ∈W2.

Now, suppose the former. Then again, by closure under addition, v1+v2−v1 ∈W1. Thus, v2 ∈W1.
Since we chose v2 ∈W2, we have shown than W1 ⊇W2. Now, suppose that v1 + v2 ∈W2. Then by
the same reasoning, we have that v1 + v2− v2 ∈W2. Thus, v1 ∈W2. But v1 was chosen arbitrarily
in w1. Thus, in this case, W1 ⊆W2. It follows that either W1 ⊆W2 or W2 ⊆W1.

Now, we must prove the converse. We wish to show that, given either W1 ⊆ W2 or W2 ⊆ W1, we
have that W1 ∪W2 is a subspace of V . Choose a scalar c ∈ F and a vector v ∈W1 ∪W2. Then v is
an element of W1 or W2. But in either case, since W1 and W2 are subspaces, cv is an element of W1

or W2. Thus, cv ∈ W1 ∪W2. Now, choose v1, v2 ∈ W1 ∪W2. If both vectors are in one subspace,
the conclusion follows (why?). Suppose then, without loss of generality, that v1 ∈W1 and v2 ∈W2.
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Suppose also that W1 ⊆W2. Then since v1 ∈W1 implies that v1 ∈W2 and W2 is a subspace, then
v1 + v2 ∈ W2 and, thus, v1 + v2 ∈ W1 ∪W2. A similar result holds for W1 ⊇ W2 (see if you can
show this).

Finally, it remains to be seen that the zero vector is in W1 ∪W2. But this is clear, since the zero
vector is in W1 and W2. It must also, therefore, be in their union.

We conclude that W1 ∪W2 is a subspace and the proof is complete.

6 Problem 1.3.20

Prove that if W is a subspace of a vector space V and w1, ..., wn are in W for arbitrary n, then,

n∑
i=1

aiwi ∈W (1)

for any a1, ..., an ∈ F (the field).

Proof: If n = 1, then we simply have that w1 ∈ W . Since W is a subspace, then by definition,
a1w1 ∈W . Suppose then that (1) holds for n and consider n + 1. Then we want to show that,

n∑
i=1

aiwi + an+1wn+1 ∈W (2)

But by assumption,
∑

aiwi ∈ W . Also, by similar reasoning to above, since W is a subspace,
an+1wn+1 ∈ W . Finally then, let

∑
aiwi = v. Then since v ∈ W and an+1wn+1 ∈ W , since W is

a subspace, v + an+1wn+1 ∈W . Ergo, (2) holds. This is enough to show (1).

The proof follows by induction.

7 Problem 1.3.23

Let W1 and W2 be subspaces of a vector space V .

1. Prove that W1 + W2 is a subspace of V that contains both W1 and W2.

2. Prove that any subspace of V that contains both W1 and W2 must also contain W1 + W2.

Proof: We’ll start with (1). First, we want to show that W1 ⊆ W1 + W2. Choose x ∈ W1. Since
W2 is a subspace, 0 ∈ W2 where 0 is the zero vector of V . But x = x + 0 and x ∈ W1. Thus,
x ∈ W1 + W2 by definition. Ergo, W1 ⊆ W1 + W2. We also must show that W2 ⊆ W1 + W2, but
this result is completely analogous (see if you can formalize it).

Now, we’ll prove (2). Let X be a subspace of V such that W1,W2 ⊆ X. Choose x ∈ W1 + W2.
Then x = a + b for some a ∈ W1 and b ∈ W2. But by assumption then, a, b ∈ X. Since X is a
subspace, a + b ∈ X. But a + b = x, so x ∈ X. This proves that W1 + W2 ⊆ X. Since X was
arbitrary, we are done.
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8 Problem 1.4.12

Show that a subset W of a vector space V is a subspace of V if and only if span W = W .

Proof: Suppose W is a subspace. Then choose a vector v ∈ span W . Then v can be written as,

v =

n∑
i=1

aiwi

for some n, ai ∈ F and wi ∈ W . But W is a subspace, so it is closed under addition and scalar
multiplication. Hence, v ∈W . Now, choose v ∈W . Then v is clearly in the span of W by definition
of span. Hence, span W = W .

Now, suppose span W = W . The zero vector is in span W , so the zero vector is also in W .
Suppose a ∈ F and v ∈ W . Then since av ∈ span W , av ∈ W . Finally, suppose v, w ∈ W . Then
v + w ∈ span W so v + w ∈W . We conclude that W is a subspace by definition.

Done.

9 Problem 1.5.2e

Show that the following set is linearly independent,

{(1,−1, 2), (1,−2, 1), (1, 1, 4)} in R3

Solution: No, the set is not linearly independent. Simple calculations you learned in 33A will
prove this. For example, set up the following matrix, 1 1 1

−1 −2 1
2 1 4


Reducing this gives this matrix (if my arithmetic is correct):1 1 1

0 1 −2
0 0 0


which implies dependence. One could also take the determinant of this matrix and find that it is
zero, which proves dependence. Of course, theoretically, you don’t know why this is true yet!

10 Problem 1.5.17

Let M be a square upper triangular matrix with nonzero diagonal entries. Prove that the columns
of M are linear independent.
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Proof: Let M be n × n. If n = 1, then the result is obvious (since the matrix must be nonzero
by assumption). Suppose the n case holds and consider n + 1. The first n column vectors have
an additional zero in their final entry, so they are still independent (check this!). Thus, adding the
last column vector still results in an independent set (since the only way to kill the last entry is to
multiply it by the zero vector). Hence, the n + 1 case holds and the induction is complete.

Note: this proof is fairly intuitive, so I’ve given a sketch. I’d like to see you fill in the blanks if you
had trouble.
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