Math 115A HW1 Solutions

August 13, 2012
University of California, Los Angeles

1 Problem 1.2.7

In any vector space V, show that $(a+b)(x+y)=a x+a y+b x+b y$ for any $x, y \in V$ and any $a, b \in F$.
Proof: By definition, F is closed under addition, so write $a+b:=c \in F$. Then we have,

$$
c(x+y)=c x+c y
$$

by VS7. But now,

$$
(a+b) x+(a+b) y=a x+b x+a y+b y
$$

by VS8. Finally, this is $a x+a y+b x+b y$ by VS1.

2 Problem 1.2.13

Let V denote a set of ordered pairs of real numbers. If $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b_{2}\right)$ are elements of V and $c \in \mathbb{R}$, define,

$$
\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2} b_{2}\right)
$$

and,

$$
c\left(a_{1}, a_{2}\right)=\left(c a_{1}, a_{2}\right)
$$

Is V a vector space over \mathbb{R} under these operations? Justify your answer.
Solution: Nope. Check VS8 $(c, d \in \mathbb{R})$:

$$
(c+d)\left(a_{1}, a_{2}\right)=\left(c a_{1}+d a_{1}, a_{2}\right)
$$

But notice,

$$
c\left(a_{1}, a_{2}\right)+d\left(a_{1}, a_{2}\right)=\left(c a_{1}+d a_{2}, a_{2}^{2}\right)
$$

by definition. Hence, VS8 fails.

3 Problem 1.2.17

Let $V=\left\{\left(a_{1}, a_{2}\right): a_{1}, a_{2} \in F\right\}$ where F is a field. Define addition of elements of V coordinatewise and, for $c \in F$ and $\left(a_{1}, a_{2}\right) \in V$, define,

$$
c\left(a_{1}, a_{2}\right)=\left(a_{1}, 0\right)
$$

Is V a vector space over F with these operations? Justify your answer.
Solution: Again, no is the answer. There doesn't exist an identify scalar element! Choose a scalar c. Then,

$$
c\left(a_{1}, a_{2}\right)=\left(a_{1}, 0\right)=\left(a_{1}, a_{2}\right)
$$

only if $a_{2}=0$. Thus, not every element $x \in V$ has the property that the scalar identify (whatever that may be) takes it to itself.

4 Problem 1.3.4

Prove that $\left(A^{t}\right)^{t}=A$ for any $A \in M_{m \times n}(F)$.
Proof: Choose an entry of A and call it $A_{i j}$ where $1 \leq i \leq m$ and $1 \leq j \leq n$. Take A^{t}. Then by definition, the $A_{j i}^{t}$ element of A^{t} is $A_{i j}$. Take $\left(A^{t}\right)^{t}$. Then the $\left(A^{t}\right)_{i j}^{t}$ element of $\left(A^{t}\right)^{t}$ is the $A_{j i}^{t}$ element from A^{t}. But this is exactly $A_{i j}$. Thus, the $\left(A^{t}\right)_{i j}^{t}$ element is $A_{i j}$. Since $A_{i j}$ is arbitrary, we conclude that $A=\left(A^{t}\right)^{t}$.

5 Problem 1.3.19

Let W_{1}, W_{2} be subspaces of a vector space V. Prove that $W_{1} \cup W_{2}$ is a subspace if and only if $W_{1} \subseteq W_{2}$ or $W_{1} \supseteq W_{2}$.
Proof: Well, to prove this statement, first show that, if W_{1}, W_{2} are subspaces of a vector space V and $W_{1} \cup W_{2}$ is a subspace, then $W_{1} \subseteq W_{2}$ or $W_{1} \supseteq W_{2}$. Choose $v_{1}, v_{2} \in W_{1}, W_{2}$ respectively. Then obviously $v_{1}, v_{2} \in W_{1} \cup W_{2}$. But by our assumption, $v_{1}+v_{2} \in W_{1} \cup W_{2}$. This indicates that $v_{1}+v_{2} \in W_{1}$ or $v_{1}+v_{2} \in W_{2}$.

Now, suppose the former. Then again, by closure under addition, $v_{1}+v_{2}-v_{1} \in W_{1}$. Thus, $v_{2} \in W_{1}$. Since we chose $v_{2} \in W_{2}$, we have shown than $W_{1} \supseteq W_{2}$. Now, suppose that $v_{1}+v_{2} \in W_{2}$. Then by the same reasoning, we have that $v_{1}+v_{2}-v_{2} \in W_{2}$. Thus, $v_{1} \in W_{2}$. But v_{1} was chosen arbitrarily in w_{1}. Thus, in this case, $W_{1} \subseteq W_{2}$. It follows that either $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$.
Now, we must prove the converse. We wish to show that, given either $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$, we have that $W_{1} \cup W_{2}$ is a subspace of V. Choose a scalar $c \in F$ and a vector $v \in W_{1} \cup W_{2}$. Then v is an element of W_{1} or W_{2}. But in either case, since W_{1} and W_{2} are subspaces, $c v$ is an element of W_{1} or W_{2}. Thus, $c v \in W_{1} \cup W_{2}$. Now, choose $v_{1}, v_{2} \in W_{1} \cup W_{2}$. If both vectors are in one subspace, the conclusion follows (why?). Suppose then, without loss of generality, that $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$.

Suppose also that $W_{1} \subseteq W_{2}$. Then since $v_{1} \in W_{1}$ implies that $v_{1} \in W_{2}$ and W_{2} is a subspace, then $v_{1}+v_{2} \in W_{2}$ and, thus, $v_{1}+v_{2} \in W_{1} \cup W_{2}$. A similar result holds for $W_{1} \supseteq W_{2}$ (see if you can show this).

Finally, it remains to be seen that the zero vector is in $W_{1} \cup W_{2}$. But this is clear, since the zero vector is in W_{1} and W_{2}. It must also, therefore, be in their union.
We conclude that $W_{1} \cup W_{2}$ is a subspace and the proof is complete.

6 Problem 1.3.20

Prove that if W is a subspace of a vector space V and w_{1}, \ldots, w_{n} are in W for arbitrary n, then,

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} w_{i} \in W \tag{1}
\end{equation*}
$$

for any $a_{1}, \ldots, a_{n} \in F$ (the field).
Proof: If $n=1$, then we simply have that $w_{1} \in W$. Since W is a subspace, then by definition, $a_{1} w_{1} \in W$. Suppose then that (1) holds for n and consider $n+1$. Then we want to show that,

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} w_{i}+a_{n+1} w_{n+1} \in W \tag{2}
\end{equation*}
$$

But by assumption, $\sum a_{i} w_{i} \in W$. Also, by similar reasoning to above, since W is a subspace, $a_{n+1} w_{n+1} \in W$. Finally then, let $\sum a_{i} w_{i}=v$. Then since $v \in W$ and $a_{n+1} w_{n+1} \in W$, since W is a subspace, $v+a_{n+1} w_{n+1} \in W$. Ergo, (2) holds. This is enough to show (1).

The proof follows by induction.

7 Problem 1.3.23

Let W_{1} and W_{2} be subspaces of a vector space V.

1. Prove that $W_{1}+W_{2}$ is a subspace of V that contains both W_{1} and W_{2}.
2. Prove that any subspace of V that contains both W_{1} and W_{2} must also contain $W_{1}+W_{2}$.

Proof: We'll start with (1). First, we want to show that $W_{1} \subseteq W_{1}+W_{2}$. Choose $x \in W_{1}$. Since W_{2} is a subspace, $0 \in W_{2}$ where 0 is the zero vector of V. But $x=x+0$ and $x \in W_{1}$. Thus, $x \in W_{1}+W_{2}$ by definition. Ergo, $W_{1} \subseteq W_{1}+W_{2}$. We also must show that $W_{2} \subseteq W_{1}+W_{2}$, but this result is completely analogous (see if you can formalize it).
Now, we'll prove (2). Let X be a subspace of V such that $W_{1}, W_{2} \subseteq X$. Choose $x \in W_{1}+W_{2}$. Then $x=a+b$ for some $a \in W_{1}$ and $b \in W_{2}$. But by assumption then, $a, b \in X$. Since X is a subspace, $a+b \in X$. But $a+b=x$, so $x \in X$. This proves that $W_{1}+W_{2} \subseteq X$. Since X was arbitrary, we are done.

8 Problem 1.4.12

Show that a subset W of a vector space V is a subspace of V if and only if span $W=W$.
Proof: Suppose W is a subspace. Then choose a vector $v \in \operatorname{span} W$. Then v can be written as,

$$
v=\sum_{i=1}^{n} a_{i} w_{i}
$$

for some $n, a_{i} \in F$ and $w_{i} \in W$. But W is a subspace, so it is closed under addition and scalar multiplication. Hence, $v \in W$. Now, choose $v \in W$. Then v is clearly in the span of W by definition of span. Hence, span $W=W$.
Now, suppose span $W=W$. The zero vector is in span W, so the zero vector is also in W. Suppose $a \in F$ and $v \in W$. Then since $a v \in \operatorname{span} W$, $a v \in W$. Finally, suppose $v, w \in W$. Then $v+w \in \operatorname{span} W$ so $v+w \in W$. We conclude that W is a subspace by definition.
Done.

9 Problem 1.5.2e

Show that the following set is linearly independent,

$$
\{(1,-1,2),(1,-2,1),(1,1,4)\} \text { in } \mathbb{R}^{3}
$$

Solution: No, the set is not linearly independent. Simple calculations you learned in 33A will prove this. For example, set up the following matrix,

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & -2 & 1 \\
2 & 1 & 4
\end{array}\right]
$$

Reducing this gives this matrix (if my arithmetic is correct):

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]
$$

which implies dependence. One could also take the determinant of this matrix and find that it is zero, which proves dependence. Of course, theoretically, you don't know why this is true yet!

10 Problem 1.5.17

Let M be a square upper triangular matrix with nonzero diagonal entries. Prove that the columns of M are linear independent.

Proof: Let M be $n \times n$. If $n=1$, then the result is obvious (since the matrix must be nonzero by assumption). Suppose the n case holds and consider $n+1$. The first n column vectors have an additional zero in their final entry, so they are still independent (check this!). Thus, adding the last column vector still results in an independent set (since the only way to kill the last entry is to multiply it by the zero vector). Hence, the $n+1$ case holds and the induction is complete.
Note: this proof is fairly intuitive, so I've given a sketch. I'd like to see you fill in the blanks if you had trouble.

