Also, be sure to do the review sheet handed out on the last day of class.
1. Annie dances with Danny only if he is neither bashful nor clumsy.
1. Valid
2. Invalid. R: F; S: T; T: F
3. Valid.
4. Invalid. P: T; Q: F; R: T; S: T
Expansions
1. (Ga -> Fa v Ha) & (Gb -> Fb v Hb) TRUE
2. (~Ga & Ha) v (~Gb & Hb) -> Fa & Fb FALSE
3. (Ga -> (Fa & Ha) v (Fb & Hb)) & (Gb -> (Fa & Ha) v (Fb & Hb)) TRUE
4. ((Fa -> ~Ga) & (Fb -> ~Gb)) & Hb TRUE
Countermodels
Remember: these are just sample answers. There are lots of
other possibilities for countermodels to these sequents.
1. U: {a,b,c} F: {a} G: {a,b}
2. U: {a,b} B: { } C: {a} F: {a,b}
Note: to get a countermodel for this sequent,
the extension of B must be empty.
3. U: {a,b} F: {a} G: {a,b} H: {b}
Proofs
1. (P -> Q) v (R -> S) |- (P -> S) v (R -> Q)
1 (1) (P->Q)v(R->S)
.A
2 (2) ~((P->S)v(R->Q))
.A
2 (3) ~(P->S)&~(R->Q)
.2 DM
2 (4) ~(P->S)
.3 &E
2 (5) P&~S
.4 NEG->
2 (6) ~(R->Q)
.3 &E
2 (7) R&~Q
.6 NEG->
2 (8) P
.5 &E
2 (9) ~S
.5 &E
2 (10) R
.7 &E
2 (11) ~Q
.7 &E
2 (12) P&~Q
.8,11 &I
2 (13) R&~S
.9,10 &I
2 (14) ~(P->Q)
.12 NEG->
2 (15) ~(R->S)
.13 NEG->
2 (16) ~(P->Q)&~(R->S)
.14,15 &I
2 (17) ~((P->Q)v(R->S))
.16 DM
1 (18) (P->S)v(R->Q)
.1,17 RAA (2)
2. @x(Gx v Fx -> (Hx -> Bx)), @y((Hy -> Hy & By) -> Ky) |- @x(Gx
-> Kx)
1 (1) @x(Gx v Fx -> (Hx ->
Bx)) .A
2 (2) @y((Hy -> Hy & By)
->Ky) .A
1 (3) Ga v Fa -> (Ha -> Ba)
.1 @E
2 (4) (Ha -> Ha & Ba)
-> Ka .2 @E
5 (5) ~(Ga -> Ka)
.A [for RAA]
5 (6) Ga & ~Ka
.5 NEG->
5 (7) Ga
.6 &E
5 (8) Ga v Fa
.7 vI
1,5 (9) Ha -> Ba
.3,8 ->E
5 (10) ~Ka
.6 &E
2,5 (11) ~(Ha -> Ha & Ba)
.4,10 MTT
2,5 (12) Ha & ~(Ha & Ba)
.11 NEG->
2,5 (13) Ha
.12 &E
2,5 (14) ~(Ha & Ba)
.12 &E
1,2,5 (15) Ba
.9,13 ->E
2,5 (16) ~Ha v ~Ba
.14 DM
1,2,5 (17) ~Ha
.15,16 vE
1,2 (18) Ga -> Ka
.13,17 RAA (5)
1,2 (19) @x(Gx -> Kx)
.18 @I
Note: Another obvious way to do this proof would be to assume Ga for -> and then ~Ka for RAA instead of assuming ~(Ga -> Ka) for RAA.
3. @x(~Fx & ~Gx -> ~Hx), $x(Hx & ~Gx) |- $xFx
1 (1) @x(~Fx &
~Gx -> ~Hx) A
2 (2) $x(Hx &
~Gx) A
3 (3) ~Fa
A [for RAA]
1 (4) ~Fa &
~Ga -> ~Ha 1 @E
5 (5) Ha &
~Ga
A [for $E on 2]
5 (6) ~Ga
5 &E
3,5 (7) ~Fa & ~Ga
3,6 &I
1,3,5 (8) ~Ha
4,7 -> E
5 (9) Ha
5 &E
1,5 (10) Fa
8,9 RAA (3)
1,5 (11) $xFx
10 $I
1,2 (12) $xFx
2,11 $E (5)
Another way to do the same sequent.
1 (1) @x(~Fx &
~Gx -> ~Hx) A
2 (2) $x(Hx &
~Gx) A
3 (3) ~$xFx
A [for RAA]
3 (4) @x~Fx
3 QE
3 (5) ~Fa
4 @E
1 (6) ~Fa &
~Ga -> ~Ha 1 @E
7 (7) Ha &
~Ga
A [for $E on 2]
7 (8) ~Ga
7 &E
3,7 (9) ~Fa & ~Ga
5,8 &I
1,3,7 (10) ~Ha
6,9 ->E
7 (11) Ha
7 &E
1,7 (12) $xFx
10,11 RAA (3)
1,2 (13) $xFx
2,12 $E (7)
5. @x$y(Fx & ~Gy), @x(Hx -> Gx) |- ~@x(Fx -> Hx) A looping problem
1 (1) @x$y(Fx & ~Gy)
A
2 (2) @x(Hx -> Gx)
A
3 (3) @x(Fx -> Hx)
A [for RAA]
1 (4) $y(Fa & ~Gy)
1 @E
5 (5) Fa & ~Gb
A [for $E on 4, b]
5 (6) Fa
5 &E
3 (7) Fa -> Ha
3 @E
3,5 (8) Ha
6,7 ->E
2 (9) Ha -> Ga
2 @E
2,3,5 (10) Ga
8,9 ->E
1 (11) $y(Fc & ~Gy)
1 @E
12 (12) Fc & ~Ga
A [for $E on 11, a]
12 (13) ~Ga
12 &E
2,5,12 (14) ~@x(Fx -> Hx) 10,13
RAA (3)
1,2,12 (15) ~@x(Fx -> Hx) 4,14
$E (5)
1,2 (16) ~@x(Fx -> Hx)
11,15 $E (12)
You are not responsible for proofs like
4, i.e. proofs with two-place predicates.