ACCOUNTING FOR TASTE: TEMPORAL DYNAMICS OF DECISION-MAKING FOR ONESELF VS. OTHERS

Alison Harris,¹ Cendri Hutcherson² & Antonio Rangel²

¹ Department of Psychology, Claremont McKenna College, Claremont, CA USA
² Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA USA

INTRODUCTION

- We often must take into account the preferences of others
 - Preparing a meal for a child or buying a gift for a friend
- How do we construct representations of others’ preferences?
 - Especially when others differ from us?
- When does social cognition influence neural value signals?
 - Do our preferences emerge earlier?
 - Do we use the same neural system to assign value for others as for ourselves?

METHODS

- Food decisions for self and two partners
 - Different: Self-identified healthy eater
 - Similar: No dietary restrictions
- Decision task (6 runs) for:
 - Different partner
 - Self
- 600 trials (200 per recipient) in 10-trial blocks
- 128-channel EEG
- ERP – Event-related potentials
 - Data time-locked to stimulus onset
- Relative weighting of taste and health depends on recipient
 - Self: Greater weighting on taste
 - Different: Greater weighting on health
- RT significantly longer (~120 ms) for Similar partner (p = 10⁻⁴)
- Greater uncertainty about preferences?

RESULTS

ERp RESULTS: STIMULUS VALUE

- Prediction: Neural correlates of stimulus value
 - From ~490 ms after stimulus onset (Harris et al., 2011, 2013)
 - Localized to ventromedial prefrontal cortex (vmPFC)
- Similar neural regions involved in assigning values for others
- Social info represented relatively early in decision process
- Similar neural regions involved in assigning values for others
 - Even when they have very different preferences from our own

CONCLUSIONS

ERp RESULTS: SELF VS. OTHER

- When does the brain differentiate choices for others?
- Prediction: Social representation before value signals
 - Theory of Mind regions: e.g., superior temporal sulcus (STS)
- Late value signal (700-850 ms) strongest for Self
 - May reflect sustained attention or arousal for own choices
 - Interaction of stimulus value and social cognition

ERp RESULTS: ATTRIBUTE CODING

- Prediction: Differential neural weighting on taste and health
 - Self: Greater weighting on taste
 - Different: Greater weighting on health
 - During stimulus value computation window (Harris et al., 2013)

VEr

- Greater weighting on taste
 - Ventromedial prefrontal cortex
 - Late value signal (700-850 ms) largest for Self
 - Late value signal (700-850 ms) strongest for Self
 - May reflect sustained attention or arousal for own choices

Self/Others

- How does social representation interact with stimulus value?
 - Late value signal (700-850 ms) strongest for Self
 - May reflect sustained attention or arousal for own choices
 - Interaction of stimulus value and social cognition

**Data time-locked to stimulus onset
Subject-level linear regression:
\[
\beta_0 + \beta_1 \text{Stimulus Value} + \beta_2 \text{Self/Other} + \beta_3 \text{Stimulus Value \times Self/Other} + \epsilon
\]
Distributed source reconstruction in SPM8 (group inversion)