1 Problem 1.6.7

The vectors $u_1 = (2,-3,1)$, $u_2 = (1,4,-2)$, $u_3 = (-8,12,-4)$, $u_4 = (1,37,-17)$, and $u_5 = (-3,-5,8)$ generate \mathbb{R}^3. Find a subset of the set $\{u_1, u_2, u_3, u_4, u_5\}$ that is a basis for \mathbb{R}^3.

Solution: To do so, it suffices to find a linearly independent subset. This is easily done by picking u_1 and u_2, which are clearly independent, and verifying independence with the other vectors. Doing so gives that u_5 is independent from u_1 and u_2:

$$
\begin{bmatrix}
2 & 1 & -3 \\
-3 & 4 & -5 \\
1 & -2 & 8
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 1/2 & -3/2 \\
0 & 1 & -1/11 \\
1 & -2 & 8
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 1/2 & 3/2 \\
0 & 1 & -1/11 \\
0 & -5/2 & 13/2
\end{bmatrix}
$$

which reduces, of course, to,

$$
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
$$

which is sufficient to show independence. Thus, the subset $\{u_1, u_2, u_5\}$ is a basis for \mathbb{R}^3.

2 Problem 1.6.13

The set of solutions to the system,

\begin{align*}
 x_1 - 2x_2 + x_3 &= 0 \\
 2x_1 - 3x_2 + x_3 &= 0
\end{align*}

Solution: Well, first, we notice that if we add the second equation’s negation to the first, we have,

$$
-x_1 + x_2 = 0
$$

in other words, the system is satisfied for x_1, x_2 so that $x_1 = x_2$. x_3 is seen to depend on the choice of x_1, since plugging in x_1 for x_2 gives that the system is satisfied for $x_1 = x_3$. What emerges is that the solution set of this system is,

$$
S = \text{span}(1,1,1)
$$

which is, in fact, a subspace of \mathbb{R}^3.

3 Problem 1.6.19

Complete the proof of Theorem 1.8.

Proof: It remains to be seen that (using the same notation as in the text), if each \(v \in V \) can be uniquely represented as a linear combination of vectors of \(\beta \), then \(\beta \) is a basis of \(V \). Suppose the vectors in \(\beta \) are not linearly independent. Then there exist scalars \(\alpha_i \) not all zero such that,

\[
\sum_{i=1}^{n} \alpha_i \beta_i = 0
\]

But notice that \(\alpha_i = 0 \) for all \(i \) also solves the equation. Thus, 0 has at least two different linear representations, which contradicts uniqueness. Thus, \(\beta \) is linearly independent. Now, we need to show that \(V = \text{span}(\beta) \). If \(v \in V \), then \(v \) can be represented as a linear combination of elements in \(\beta \) and thus \(v \in \text{span}(\beta) \). If \(v \in \text{span}(\beta) \), then obviously \(v \in V \) by closure of \(V \) under addition and scalar multiplication. Thus, \(v = \text{span}(\beta) \) and \(\beta \) is a basis for \(V \).

4 Problem 2.1.2

Let \(T : \mathbb{R}^3 \to \mathbb{R}^2 \) be defined by \(T(a_1, a_2, a_3) = (a_1 - a_2, 2a_3) \). Prove that \(T \) is linear and find bases for \(N(T) \) and \(R(T) \). Then, compute the nullity and rank of \(T \), and verify the dimension theorem. Finally, use the appropriate theorems to determine whether \(T \) is injective or surjective.

Solution: Let’s start with linearity. We take two vectors, \((a, b, c) \) and \((x, y, z) \) in \(\mathbb{R}^3 \). Then \(T(a + x, b + y, c + z) = (a + x - b - y, 2c + 2z) \) by definition. Then, take \(T(a, b, c) + T(x, y, z) \). This is just \((a - b, 2c) + (x - y, 2z) = (a + x - b - y, 2c + 2z) \). Finally, take \(T(ka, kb, kc) \) for \(k \in F \). This is \((ka - kb, 2kc) \). Also, \(kT(a, b, c) = k(a - b, 2c) = (ka - kb, 2kc) \). We conclude that \(T \) is linear by definition.

Now, for \(N(T) \), suppose \(T(a, b, c) = 0 \). Then \((a - b, 2c) = 0 \). Thus, for any vector \((a, b, c) \) such that \(a = b \) and \(c = 0 \), we have that \((a, b, c) \in N(T) \). Hence, the basis is \(N(T) = \text{span}(1, 1, 0) \).

Now, we claim that any vector in \(\mathbb{R}^2 \) can be written using transformed elements of \(\mathbb{R}^3 \). Well, take \((x, y) \in \mathbb{R}^2 \). Then we want to see if,

\[
(x, y) = (a - b, 2c)
\]

for some real \(a, b, c \). But the equation \(a - b = x \) has infinitely many solutions. Finally, if \(\frac{1}{2}y = c \), then we have the desired result. Since the range is all of \(\mathbb{R}^2 \), we can simply use the standard basis as a basis for \(R(T) \).

Finally, we notice that \(T \) is not injective since it’s nullspace does not consist only of the zero vector. However, by the previous argument, the transformation is onto (since its range is all of \(\mathbb{R}^2 \)).

5 Problem 2.1.15

Recall the definition of \(P(\mathbb{R}) \) given on page 10 of the text. Define \(T : P(\mathbb{R}) \to P(\mathbb{R}) \) by,
\[T(f(x)) = \int_0^x f(t)\,dt \]

Prove that \(T \) is linear and injective, but not surjective.

Proof: Linearity is straightforward. Take \(f, g \in P(\mathbb{R}) \). Then,

\[T(f + g) = \int_0^x (f + g)(t)\,dt = \int_0^x f(t)\,dt + \int_0^x g(t)\,dt = T(f) + T(g) \]

In the most pure sense, however, this is not completely justified. To justify this completely, you need at least one academic quarter of real analysis and a thorough understanding of *partitions* and *integrability* (it suffices, in this case, to just understand the Riemann Integral; yes, there are other types of integrals!). For now, just rely on the properties you learned in elementary calculus.

Now, we show injectivity. Suppose \(T(f) = T(g) \) for some \(f, g \). Then,

\[\int_0^x f(t)\,dt = \int_0^x g(t)\,dt \]

Now, we have the following,

\[\int_0^x f(t)\,dt - \int_0^x g(t)\,dt = 0 \]

By the fundamental theorem of calculus (which you can assume), we differentiate both sides

\[f(x) - g(x) = 0 \]

Thus, since \(f(x) = g(x) \), we have proven injectivity. Another way of doing this is by showing that the nullspace is zero. This is equally valid:

\[\int_0^x f(t)\,dt = 0 \]

differentiating,

\[f(x) = 0 \]

for arbitrary \(f(x) \). Thus, \(N(T) = \{0\} \); that is, the zero function. However, it is not onto. To see this, notice that for any constant function \(c \), there exists no function in \(P(\mathbb{R}) \) so that \(P(f) = c \).
6 Problem 2.1.18

Give an example of a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that $N(T) = R(T)$.

Solution: An example of such is this. Let,

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

That is, for any (x, y), $T(x, y) = (y, 0)$. Then we can see that $N(T) = \text{span}(1, 0)$ and so is $R(T)$.

7 Online Problem 1

Let $T : V \to W$ be a linear map, show the null space, null(T), is a subspace of V.

Proof: Choose $x, y \in (T)$. Choose $c \in F$. Notice that $0 = T(x) + T(y) = T(x + y)$. Hence, $x + y \in \text{null}(T)$. But also, $0 = cT(x) = T(cx)$. Thus, $cx \in \text{null}(T)$. We conclude that null(T) is a subspace by definition.

8 Problem 2.2.4

Define $T : M_{2 \times 2}(\mathbb{R}) \to P_2(\mathbb{R})$ by,

$$T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = (a + b) + (2d)x + bx^2$$

Let,

$$\beta = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

and $\gamma = \{1, x, x^2\}$. Compute $[T]_\beta^\gamma$.

Solution: Apply T to the basis elements to get $1, 1 + x^2, 0$, and $2x$ respectively. Then, if β_i represent the various elements of β, we take,

$$[T]_\beta^\gamma = \left([T(\beta_1)]_\gamma, [T(\beta_2)]_\gamma, [T(\beta_3)]_\gamma, [T(\beta_4)]_\gamma \right)$$

This is,

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
9 Problem 2.2.5a

Let,
\[
\alpha = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
and \(\beta = \{1, x, x^2\}\). Finally, let \(\gamma = \{1\}\). Define \(T : M_{2 \times 2}(F) \to M_{2 \times 2}(F)\) by \(T(A) = A^t\). Compute \([T]_{\alpha}\).

Solution: This is straightforward. All we must do, again, is apply the transformation to the basis elements. Let \(\alpha_i\) denote the basis elements of \(\alpha\). Then \(T(\alpha_1)\) and \(T(\alpha_4)\) remain unchanged. However, \(T(\alpha_2) = \alpha_3\). Also, \(T(\alpha_3) = T(\alpha_2)\). The matrix, then, is,
\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

10 Problem 2.2.16

Let \(V\) and \(W\) be vector spaces such that \(\dim(V) = \dim(W)\), and \(T : V \to W\) be linear. Show that there exist ordered bases \(\beta\) and \(\gamma\) for \(V\) and \(W\) respectively, such that \([T]_{\gamma}^{\beta}\) is a diagonal matrix.

Proof: Let \(\alpha = \{v_1, ..., v_k\}\) be an ordered basis for \(\text{N}(T)\). Extend \(\alpha\) to an ordered basis for the whole space: \(\beta = \{v_1, ..., v_k, v_{k+1}, ..., v_n\}\). Now, we write the vectors \(\{T(v_{k+1}), ..., T(v_n)\}\) as are an ordered basis for \(\text{R}(T)\) (as per the proof of the dimension theorem). Extend this to the ordered basis \(\gamma = \{w_1, ..., w_k, T(v_{k+1}), ..., T(v_n)\}\) for \(W\). Now,
\[
[T(v_i)]_\gamma = \begin{cases}
0 & \text{if } 1 \leq i \leq k \\
e_i & \text{if } k + 1 \leq i \leq n
\end{cases}
\]
This gives the desired result,
\[
[T]_\gamma^{\beta} = (0, ..., 0, e_{k+1}, ..., e_k)
\]
That is,
\[
\begin{bmatrix}
0 & 0 \\
0 & I_{\frac{n-k}{2} \times \frac{n-k}{2}}
\end{bmatrix}
\]