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Let K be a number field of degree d over Q. Write M(K) for the set
of all places of K, and for each v ∈ M(K) let dv = [Kv : Qv] be the
local degree, where Kv and Qv are completions of K and Q
respectively at the place v. Then if u ∈ M(Q), let
Mu = {v ∈ M(K) : v|u}, and we have

∑

v∈Mu

dv = d.

We normalize our absolute values for v ∈ M(K):

(1) if v|p then |p|v = p−dv/d,
(2) if v|∞ then |α|v = |α|dv/d, where | | is the usual Euclidean

absolute value on R or C.

Then for every α ∈ K, α 6= 0, the product formula reads

∏

v

|α|v = 1.

Let x ∈ KN
v for any v ∈ M(K), then define:

|x|v = max
1≤i≤N

|xi|v.

Then we have the following global height function on KN :

H(x) =
∏

v∈M(K)

|x|v.

For α ∈ K, we also define the height of α to be

h(α) = H(1, α),
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and finally for x ∈ KN , define the inhomogeneous height

h(x) = H(1,x).

Let M,N be positive integers, and define

M =







(i1, ..., iN ) ∈ ZN
+ :

N
∑

j=1

ij ≤ M







,

where Z+ is the set of all non-negative integers. Let

F (X1, ...,XN ) =
∑

i∈M

fiX
i ∈ K[X1, ...,XN ],

be a polynomial of degree M in N variables over K.

For every v ∈ M(K), define

Hv(F ) = max
i∈M

|fi|v,

and then

H(F ) =
∏

v∈M(K)

Hv(F ).

All the heights above are multiplicative. We also define the
additive or logarithmic equivalents by taking log of each
multiplicative height above. We denote this by writing h+,H+

instead of h,H respectively.
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Lehmer’s Conjecture, 1933. There exists an absolute constant C1

such that whenever α 6= 0 or root of 1, is an algebraic number
of degree d over Q, then

h+(α) >
C1

d
.

The best known result in this direction is the following.

Theorem 1 (Dobrowolski, 1979). Notation as in the conjecture, then
if d ≥ 3 there exists an absolute constant C2 such that

h+(α) >
C2

d

(

log(log(d))

log(d)

)3

.

Another direction to work in is try to place some arithmetic conditions
on algebraic numbers and see if better lower bounds can be obtained.

Theorem 2 (Zhang, 1992). There exists an absolute constant C3

such that whenever x, y are algebraic numbers (not 0 or cube roots of 1)
and x + y + 1 = 0, then

h+(x) + h+(y) > C3 > 0.

Theorem 3 (Zagier, 1993). In Zhang’s theorem,

C3 =
1

2
log

(

1 +
√

5

2

)

.
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More generally than that, we have the following.

Theorem 4 (Schmidt, 1996). Let F (X1, ...,XN ) be a polynomial
of degree M in N variables with integer coefficients. Let x1, ..., xN

be non-zero algebraic numbers such that

F (x1, ..., xN ) = 0, F (1/x1, ..., 1/xN ) 6= 0.

Then
N
∑

i=1

h+(xi) ≥
1

24M+2NH(F )
.

These results provide certain motivation for studying lower bounds
of algebraic points that satisfy various arithmetic conditions.

What about upper bounds?

Property of Heights. Let K be a number field, C a positive
constant, N a positive integer. Then the set

SN
C (K) =

{

x ∈ KN : H(x) ≤ C
}

,

has finite cardinality.

Suppose one can show that if a polynomial F (X1, ...,XN ) with
coefficients in a number field K has a zero in K, then it
has such a zero of bounded height, and determine an explicit upper
bound on height of such a zero in terms of H(F ). This would
produce an explicit “search bound” on zeros of F in K due
to the above property of heights. This approach is not entirely
effective, although various bounds on the cardinality of the
set SN

C (K) are known: for instance, asymptotic results due
to Schanuel (1963, 1979).
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There was a large amount of work done in this direction, starting
from the celebrated Siegel’s Lemma, which answers a similar question
for a system of M linear forms in N variables, N > M .

Siegel’s Lemma (Bombieri, Vaaler, 1983). Let L1, ..., LM

be M linear forms in N variables with coefficients in a number
field K. Then there exists 0 6= x ∈ KN such that Li(x) = 0
for each 1 ≤ i ≤ M , and

H(x) ≤ C(K,N,M)

{

M
∏

i=1

H(Li)

}1/(N−M)

.

Remark. The actual result of Bombieri and Vaaler is considerably
stronger than this. Among other things, they produce an explicit
constant C(K,N,M). Other (more recent) important results along
the lines of Siegel’s Lemma include an “absolute version” over
Q by Roy and Thunder (1996), where the solution is searched
for in any algebraic extensions of K, and the constant does not
depend on K, and another version over a number field by Vaaler
(2002), where the best possible constant is produced: the exponent
in the upper bound is best possible in the Bombieri-Vaaler
original result.
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Next we consider quadratic forms and quadratic polynomials.
Let

F (X,Y ) =
N
∑

i=1

N
∑

j=1

fijXiYj ,

be a symmetric bilinear form, and let

F (X) = F (X,X),

be the associated quadratic form in N variables. First suppose
the coefficients fij are in Z.

Theorem 5 (Cassels, 1955). Suppose F is isotropic over Q.
Then there exists 0 6= x ∈ ZN such that F (x) = 0,
and

H(x) ≤
(

3N2H(F )
)

N−1
2 .

This result of Cassels has been generalized to number fields by
S. Raghavan (1975). There was quite a number of further extensions
and generalizations over the years, in particular by Birch, Davenport,
Chalk, Schmidt, Schlikewei, Vaaler, and others.

Now suppose that the coefficients of our quadratic (bilinear) form F
come from a number field K, and let OK be the ring of integers
of K. The following version of Cassels’ original theorem in the
number field case follows from a result of Vaaler.
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Theorem 6 (Vaaler, 1987). If F has a nontrivial zero in KN ,
then there exists 0 6= x ∈ ON

K such that F (x) = 0, and

H(x) ≤ h(x) ≤ AK(N − 1)H(F )(N−1)/2,

where for every positive integer j,

AK(j) =
{

25j(j + 1)j |∆K | j+1
d

}1/2 ∏

v∈M(K)

rv(j)
jdv

d .

In the theorem above some notation needs to be clarified. First of all,
∆K is the discriminant of K and d is the degree of K.
Now for each v ∈ M(K), and a positive integer j define

(1) rv(j) = π−1/2Γ(j/2 + 1)1/j , if v|∞ is real,
(2) rv(j) = (2π)−1/2Γ(j + 1)1/2j , if v|∞ is complex,
(3) rv(j) = 1, if v - ∞.

where Γ is the Gamma-function.

Next, Masser generalized Cassels’ result over rationals to
inhomogeneous quadratic polynomials. Let

P (X1, ...,XN ) =
N
∑

i=1

N
∑

j=1

fijXiXj +
N
∑

i=1

f0jXj + f00

be an inhomogeneous quadratic polynomial in N variables with
rational coefficients. Let

F (X0, ...,XN ) =
N
∑

i=0

N
∑

j=0

fijXiXj

be a quadratic form in N + 1 variables with rational coefficients.



9

Then

H(P ) = H(F ),

and P vanishes at some 0 6= x ∈ QN if and only if
F vanishes at (1,x), where

H(x) ≤ h(x) = H(1,x).

Therefore Masser proves the existence of rational zeros of P of small
height by means of proving the following theorem.

Theorem 7 (Masser, 1998). Suppose F is a quadratic form in N + 1
variables with rational coefficients, and assume that there exists
x = (x0, ..., xN ) ∈ QN+1 with x0 6= 0 such that F (x) = 0.
Then there exists such a point x with

H(x) ≤
(

3(N + 1)2H(F )
)(N+1)/2

.

Notice that the condition X0 6= 0 is a non-vanishing condition
on a very simple linear form. We generalize Masser’s result in the
following way. For positive integers M,N and number field K, define

BK(N,M) =
1

1152
(N + 1)2AK(N)

{

27

2
(N + 1)6AK(N)2

}M−1

×

×(M + 2)!{(M + 3)!}2,

with AK(N) as in Theorem 6 above. Then we have the following.
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Theorem 8 (F., 2003). Let M,N be positive integers. Let

F (X0, ...,XN ) =
N
∑

i=0

N
∑

j=0

fijXiXj

be a quadratic form in N + 1 variables with coefficients in a
number field K of degree d over Q, and

L1(X0, ...,XN ), ..., LM (X0, ...,XN )

be linear forms in N + 1 variables with coefficients in K. Suppose
that there exists 0 6= x ∈ KN+1 such that F (x) = 0, and Li(x) 6= 0

for each 1 ≤ i ≤ M . Then there exists such a point in ON+1
K with

(1) H(x) ≤ BK(N,M)H(F )
N+2M

2 +(M−1)(N+2),

as well as

(2) H(x) ≤ BK(N,M)H(F )
N+1

2 +(M−1)(N+2)
M
∏

i=1

H(Li)
(2M−1)N

M ,

and finally

(3) H(x) ≤ BK(N,M)H(F )
2N+2M+1

4 +(M−1)(N+2)
M
∏

i=1

H(Li)
(2M−1)N

2M .
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Thus Theorem 8 assumes the existence of a zero of F outside of a
collection of N -dimensional subspaces in KN+1, and proves the
existence of such a zero of bounded height.

Notice that if M = 1 and L1(X) = X0, then (2) reduces to

H(x) ≤ 3(N + 1)2AK(N)H(F )(N+1)/2,

which is a direct generalization of Masser’s Theorem 7 over K.

Another interesting consequence of Theorem 8 in case M = 1 is the
following.

Corollary 9. Let F (X) be a quadratic form in N + 1 variables
with coefficients in the number field K, as above. Let

VK(F ) =
{

t ∈ KN+1 : F (t) = 0
}

.

Suppose that there exists a non-singular point 0 6= x ∈ VK(F ).
Then there exists a non-singular point 0 6= u ∈ VK(F ) such that

H(u) ≤ max{3, AK(N)} H(F )
N
2 .

Proof of this is a little involved. However, a weaker bound

H(u) ≤
(

3(N + 1)2H(F )
)(N+1)/2

follows directly from Theorem 8 as follows.

Proof. For each 0 ≤ i ≤ N , define a linear form

Li(X) =
∂F

∂Xi
(X) ∈ K[X0, ...,XN ].

Let 0 6= x be a non-singular point in VK(F ).
Then F (x) = 0, Li(x) 6= 0 for some 0 ≤ i ≤ N .
Hence let M = 1, and the result follows by (1) of Theorem 8.
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Sketch of the proof of Theorem 8. We argue by induction on M .
If M = 1, then our argument is a generalization of Masser’s argument:
• Argue by induction on N . The case N = 1 is simple.
• Start with a point x of small height at which F vanishes -

the existence of such a point is guaranteed by Theorem 6.
Assume that L1(x) = 0.

• If x is a non-singular point in the variety of F , then
construct a point t with coordinates 0,±1 such that
L1(t), F (x, t) 6= 0, and let

y = F (t)x − 2F (x, t)t.

It is easy to check that F (y) = 0, L1(y) 6= 0.
It is also not difficult to estimate the height of y,
since H(t) = 1, and we have an upper bound on H(x).

• If x is a singular point in the variety of F , then
reduce to fewer variables and use induction hypothesis.

Suppose M ≥ 2, and that theorem has been proved for any subset
of L1, ..., LM of k linear forms, where 1 ≤ k ≤ M − 1.
Then there exist points x,y ∈ KN+1 such that

F (x) = F (y) = 0, Li(x) 6= 0 ∀ 1 ≤ i ≤ M − 1, LM (y) 6= 0,

and h(x), h(y) are bounded. The existence of these points is
guaranteed by induction hypothesis.
If LM (x) 6= 0 or Li(y) 6= 0 for all 1 ≤ i ≤ M − 1,
then we are done. So assume it is not so. Then there exists a k,
such that 1 ≤ k < M − 1 and, by reordering the linear forms if
necessary, we have

(1) Li(x) 6= 0, Li(y) 6= 0, for all 1 ≤ i ≤ k,
(2) Li(x) 6= 0, Li(y) = 0, for all k < i ≤ M − 1,
(3) LM (x) = 0, LM (y) 6= 0.
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There exists a positive integer β such that for all 1 ≤ i ≤ M ,

Li(x ± βy) 6= 0,

for the same choice of ±. For this, β needs to be such that
for the same choice of ± none of the linear equations in β

Li(x) ± βLi(y) = 0, 1 ≤ i ≤ k ≤ M − 2,

are true. There are at most M − 2 such equations, and since we can
also choose ±, there exists such a β so that

(4) 1 ≤ β ≤
[

M − 2

2

]

+ 1 ≤ M

2
.

Define
u = x ± βy,

for this choice of ± and β.

Case 1. Suppose F (x,y) = 0. Then

F (u) = F (x) + β2F (y) ± 2βF (x,y) = 0,

and
Li(u) 6= 0, ∀ 1 ≤ i ≤ M.

Case 2. Suppose F (x,y) 6= 0. We need the following auxiliary
result.
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Lemma 10. Let U(X) be a polynomial in l ≥ 1 variables of
degree j ≥ 1 with coefficients in a number field K. Suppose that
U(X) is not identically 0. Then there exists a point w ∈ Zl

such that U(w) 6= 0, and

h(w) ≤ |w| ≤
[

j

2

]

+ 1.

Proof. Induction on l. The idea for an argument was suggested to me
by Professor S. David.

We can take l = N + 1, j = M ,

U(X) =
M
∏

i=1

Li(X),

and conclude that there exists w ∈ KN+1 such that Li(w) 6= 0
for each 1 ≤ i ≤ M and

h(w) ≤ M + 2

2
.

If F (w) = 0, we are done. Assume it is not so. Let β be a positive
integer, and define

u = F (y ± βw)x − 2F (x,y ± βw)(y ± βw).

Notice that F (u) = 0. We want to choose ±β in such a way that
the following is true:

(1) F (y ± βw) = β(βF (w) ± 2F (y,w)) 6= 0,
(2) F (x,y ± βw) = F (x,y) ± βF (x,w) 6= 0,
(3) Li(u) = F (y ± βw)Li(x) − 2F (x,y ± βw)(Li(y) ± βLi(w)) 6= 0,

for each 1 ≤ i ≤ M .
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It is not difficult to see that (1), (2), (3) amount to a total of 2 linear
and M quadratic expressions in β. Selecting ± appropriately we see
that there exists a positive integer β such that (1), (2), (3) are
satisfied, and

β ≤ M + 2.

Finally we need the following two lemmas to estimate heights of the
points we constructed.

Lemma 11. Let x,y ∈ KN , and α, β be positive integers, then

H(αx ± βy) ≤ h(αx ± βy) ≤ (α + β)h(x)h(y).

Lemma 12. If t,w ∈ KN+1, and u = F (t)w − 2F (t,w)t, then

H(u) ≤ h(u) ≤ 3(N + 1)2H(F )h(w)h(t)2.

Proofs of these lemmas are not difficult. Also, while approximating
the heights of our points, we keep in mind that the ordering of the
linear forms is arbitrary, hence we take an average over a subgroup
of M -cycles in the permutation group SM . This completes the
argument.
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What is the next step in the same direction?

• Let F (X) and G(X) be two quadratic forms in N variables
with coefficients in a number field K, and suppose they have a
simultaneous non-trivial zero over K. Prove that they have one
of bounded height.

• Let F (X) be a homogeneous polynomial of degree M > 2 in N
variables with coefficients in a number field K, and suppose it has
a non-trivial zero over K. Prove that it has one of bounded height.
How do we do it for any M > 2, say for M = 3?

Both of these seem to be very difficult questions. To the best of my
knowledge, nothing has yet been done in any of these directions.

This sort of questions also seems to have a certain analogy with the
arithmetic version of Bezout’s Theorem (as stated, for instance, by
Bost, Gillet, Soule, or by Laurent and Roy). This is a theorem that
provides an upper bound on the height of the intersection cycle of
two varieties in terms of the heights of these varieties (for an
appropriately defined notion of height for a variety and a cycle).
Our problems, however, are about providing an upper bound for the
height of a point in a projective variety in terms of the height
of this variety. This seems to be a considerably more difficult
question in general.
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