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Compressed sensing
From Wikipedia:

“Compressed sensing (also known as compressive sensing, compres-
sive sampling, or sparse sampling) is a signal processing technique for
efficiently acquiring and reconstructing a signal, by finding solutions
to underdetermined linear systems.”

The main goal of compressed sensing is sparse recovery – the ro-
bust reconstructon of a sparse signal from a small number of linear
measurements.

Ideally, given a signal x ∈ Rd , the goal is to accurately reconstruct
x from its noisy measurements

b = Ax + e ∈ Rm.

Here, A is an underdetermined matrix A ∈ Rm×d (m � d), and
e ∈ Rm is a vector modeling noise in the system.
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Sparsity

Since the system is highly underdetermined, the problem is ill-posed
until one imposes additional constraints. We say that a vector x ∈
Rd is s-sparse if it has at most s nonzero entries:

‖x‖0 := |{i : xi 6= 0}| ≤ s � d .

Any matrix A that is one-to-one on 2s-sparse signals will allow re-
construction in the noiseless case (e = 0). However, compressed
sensing seeks the ability to reconstruct even in the presence of noise.

This problem has been extensively studied on real signals. We focus
on the case when the signal x comes from the integer lattice Zd .
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Basic setup

Let
Zd
s :=

{
x ∈ Zd : ‖x‖0 ≤ s

}
.

To reconstruct x ∈ Zd
s from its image Ax , we need to be sure that

there does not exist x 6= y ∈ Zd
s such that Ax = Ay , i.e.

A(x − y) 6= 0 ∀ y ∈ Zd
s .

This is equivalent to requiring that

Az 6= 0 ∀ z ∈ Zd
2s ,

which is to say that

no 2s columns of the m × d matrix A are Q-linearly dependent,

where 2s ≤ m < d .
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Basic setup

We start with a trivial observation.

Lemma 1

Let A = (α1 . . . αd) be a 1× d matrix with real Q-linearly
independent entries. Then the equation Ax = 0 has no solutions in
Zd except for x = 0.

In practice, we want to be able to tolerate noise in the system and
decode robustly. The noise e typically scales with the entries of A,
so we ask for the following two properties:

i. the entries of A are uniformly bounded in absolute value

ii. ‖Az‖ is bounded away from zero for any nonzero vector z in
our signal space.
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Problem formulation

Hence we have the following optimization problem.

Problem 1

Construct an m × d matrix A with m < d such that

|A| := max{|aij | : 1 ≤ i ≤ m, 1 ≤ j ≤ d} ≤ C1,

and for every nonzero x ∈ Zd
s , s ≤ m,

‖Ax‖ ≥ C2,

where C1,C2 > 0.



Existence of such matrices

Theorem 2 (F., Needell, Sudakov – 2017)

There exist m× d integer matrices A with m < d and bounded |A|
such that for any nonzero x ∈ Zd

s , 0 < s ≤ m,

‖Ax‖ ≥ 1. (1)

In fact, for sufficiently large m, there exist such matrices with

|A| = 1 and d = 1.2938m,

and there also exist such matrices with

|A| = k and d = Ω(
√
k m).

The bound (1) can be replaced by ‖Ax‖ ≥ ` > 1 multiplying A by
` at the expense of making |A| larger by the constant factor of `.
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Proof of Theorem 2

First we need to prove the existence of an m × d matrix A with

|A| = 1 and d = 1.2938m,

so that every m ×m submatrix is nonsingular.

We use a powerful result of Bourgain, Vu and Wood (2010):

Let Mm be an m×m random matrix whose entries are 0 with prob-
ability 1/2 and ±1 with probability 1/4 each. Then the probability
that matrix Mm is singular is at most (1/2− o(1))m.

Form an m × d random matrix A by taking its entries to be 0 with
probability 1/2 and ±1 with probability 1/4 each. Then |A| = 1 and
any m columns of A form a matrix distributed according to Mm.
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Proof of Theorem 2

Therefore the probability that any m×m submatrix of A is singular
is at most

(1/2− o(1))m.

Since the number of such submatrices is
(d
m

)
we have (by union

bound) that the probability that A contains an m×m singular sub-
matrix is at most (

d

m

)
(1/2− o(1))m.

Bounding
(d
m

)
we see that this probability is < 1 for d ≤ 1.2938m,

and hence an m×d matrix A with |A| = 1 and all m×m submatrices
nonsingular exists.
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Proof of Theorem 2
Next, we want to prove existence of an m × d matrix A with

|A| = k and d = Ω(
√
k m),

so that every m ×m submatrix is nonsingular.

We use another result of Bourgain, Vu and Wood (2010) from the
same paper:

If Nm is an m×m random matrix whose entries come from the set
{−k , · · · , k} with equal probability, then the probability that Nm is
singular is at most (1/

√
2k − o(1))m.

Consider an m × d random matrix A whose entries come from the
set {−k , · · · , k} with equal probability. Then |A| ≤ k and the
probability that any m ×m submatrix of A is singular is at most

(1/
√

2k − o(1))m.



Proof of Theorem 2
Next, we want to prove existence of an m × d matrix A with

|A| = k and d = Ω(
√
k m),

so that every m ×m submatrix is nonsingular.

We use another result of Bourgain, Vu and Wood (2010) from the
same paper:

If Nm is an m×m random matrix whose entries come from the set
{−k , · · · , k} with equal probability, then the probability that Nm is
singular is at most (1/

√
2k − o(1))m.

Consider an m × d random matrix A whose entries come from the
set {−k , · · · , k} with equal probability. Then |A| ≤ k and the
probability that any m ×m submatrix of A is singular is at most

(1/
√

2k − o(1))m.



Proof of Theorem 2
Next, we want to prove existence of an m × d matrix A with

|A| = k and d = Ω(
√
k m),

so that every m ×m submatrix is nonsingular.

We use another result of Bourgain, Vu and Wood (2010) from the
same paper:

If Nm is an m×m random matrix whose entries come from the set
{−k , · · · , k} with equal probability, then the probability that Nm is
singular is at most (1/

√
2k − o(1))m.

Consider an m × d random matrix A whose entries come from the
set {−k , · · · , k} with equal probability. Then |A| ≤ k and the
probability that any m ×m submatrix of A is singular is at most

(1/
√

2k − o(1))m.



Proof of Theorem 2

Since the number of such submatrices is
(d
m

)
we have that the prob-

ability that A contains an m ×m singular submatrix is at most(
d

m

)(
1√
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.

Again, estimating the binomial coefficient and choosing d to be a
sufficiently small multiple of

√
km, this probability can be made

smaller than 1.

Thus with positive probability A does not have singular m×m sub-
matrices, implying again that for any x ∈ Zd

s , 0 < s ≤ m, ‖Ax‖ ≥ 1.
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How much bigger than m can d be?

Theorem 3 (F., Needell, Sudakov – 2017)

For any integers m ≥ 3, k ≥ 1 and m × d integer matrix A with
|A| = k satisfying (1) for all s ≤ m, we must have

d ≤ (2k2 + 2)(m − 1) + 1.

Theorem 4 (Konyagin – 2018)

If m ≥ 2(log k + 1), then

d < 144k(log k + 1)m.

Theorem 5 (Sudakov – 2018)

For sufficiently large m,

d = O(k
√

log k m).
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Proof of Theorem 3

Let
Cm(k) = {x ∈ Zm : |x | ≤ k},

then |Cm(k)| = (2k + 1)m. Let ` = (2k2 + 2)(m − 1) + 1 and let
x1, . . . , x` be any ` vectors from Cm(k).

If there are m vectors with the first or second coordinate equal to 0,
then they all lie in the same (m − 1)-dimensional subspace.

If not, there are 2k2m vectors with the first two coordinates nonzero.
Multiplying some of these vectors by −1, if necessary (does not
change linear independence properties) we can assume that all of
them have positive first coordinate.

Hence there are a total of k × 2k = 2k2 choices for the first two
coordinates, so there must exist a subset of m of these vectors that
have these first two coordinates the same, let these be x1, . . . , xm.
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Proof of Theorem 3

Then there exists a vector y = (a, b, 0, . . . , 0)> ∈ Cm(k) such that
the vectors

z1 = x1 − y , . . . , zm = xm − y

all have the first two coordinates equal to 0. This means that these
vectors lie in an (m − 2)-dimensional subspace

V = {z ∈ Rm : z1 = z2 = 0}

of Rm. Then let V ′ = spanR{V , y}, so dimR V ′ = m − 1. On the
other hand, x1, . . . , xm ∈ V ′, and hence the m × m matrix with
rows x1, . . . , xm must have determinant equal to 0.

Therefore if an m × d matrix A with column vectors in Cm(k) has
all nonsingular m ×m submatrices, then

d ≤ (2k2 + 2)(m − 1) + 1.
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Question and example

Question 1

What is the optimal upper bound on d in terms of k and m? In
particular, is it true that d = O(km)?

Here is a low-dimensional example.

Example 1

Let m = 3, d = 6, k = 1, and define a 3× 6 matrix

A =

1 1 1 1 1 1
1 1 0 0 −1 −1
1 0 1 −1 0 −1

 .

This matrix has |A| = 1 and any three of its columns are linearly
independent. Then for s ≤ 3 and any x ∈ Z6

s , ‖Ax‖ ≥ 1.
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Algebraic matrices

While our Theorem 2 gives the image vector Ax bounded away
from 0, many of its coordinates may still be 0. It is natural to ask
if a matrix A can be constructed so that Ax bounded away from 0
and its coordinates are nonzero?

Corollary 6 (F., Needell, Sudakov – 2017)

Let B be the d ×m-transpose of a matrix satisfying (1) as
guaranteed by Theorem 2. Let θ be an algebraic integer of degree
m, and let θ = θ1, θ2, . . . , θm be its algebraic conjugates. For each
1 ≤ i ≤ m, let θi = (1 θi . . . θ

m−1
i )>, compute the d ×m matrix

B
(
θ1 . . . θm

)
,

and let A be its transpose. Then |A| = O (|B|m), for any x ∈ Zd
s ,

0 < s ≤ m, ‖Ax‖ ≥
√
m and the vector Ax has all nonzero

coordinates.



Algebraic matrices

While our Theorem 2 gives the image vector Ax bounded away
from 0, many of its coordinates may still be 0. It is natural to ask
if a matrix A can be constructed so that Ax bounded away from 0
and its coordinates are nonzero?

Corollary 6 (F., Needell, Sudakov – 2017)

Let B be the d ×m-transpose of a matrix satisfying (1) as
guaranteed by Theorem 2. Let θ be an algebraic integer of degree
m, and let θ = θ1, θ2, . . . , θm be its algebraic conjugates. For each
1 ≤ i ≤ m, let θi = (1 θi . . . θ

m−1
i )>, compute the d ×m matrix

B
(
θ1 . . . θm

)
,

and let A be its transpose. Then |A| = O (|B|m), for any x ∈ Zd
s ,

0 < s ≤ m, ‖Ax‖ ≥
√
m and the vector Ax has all nonzero

coordinates.



Proof of Corollary 6

We use the AM-GM inequality:

1

m
‖Ax‖2 =

1

m

m∑
i=1

|(Bθi )x |2

≥

(
m∏
i=1

|(Bθi )x |2
)1/m

= |NK ((Bθ1)x)|2/m ,

where NK is the field norm, which is ≥ since (Bθ1)x is an algebraic
integer.

Since (Bθ1)x 6= 0, its algebraic conjugates, which are the rest of
the coordinates of the vector Ax must all be nonzero.
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Algebraic matrix example

Let m = 3, d = 6, and take K = Q(θ), where θ = 21/3, then

θ =

 1
θ
θ2

 .

Let k = 1 and take B to be the transpose of the matrix from
Example 1, i.e.

B =



1 1 1
1 1 0
1 0 1
1 0 −1
1 −1 0
1 −1 −1

 .
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Algebraic matrix example

The number field K has three embeddings into C, given by

θ 7→ θ, θ 7→ ξθ, θ 7→ ξ2θ,

where ξ = e
2πi
3 is a third root of unity, i.e. θ is mapped to roots of

its minimal polynomial by injective field homomorphisms that fix Q.

Hence we get the following 3× 6 matrix:

A =

 1+θ+θ2 1+θ 1+θ2 1−θ2 1−θ 1−θ−θ2

1+ξθ+ξ2θ2 1+ξθ 1+ξ2θ2 1−ξ2θ2 1−ξθ 1−ξθ−ξ2θ2

1+ξ2θ+ξθ2 1+ξ2θ 1+ξθ2 1−ξθ2 1−ξ2θ 1−ξ2θ−ξθ2


with |A| ≤ 3 3

√
2 and ‖Ax‖ ≥

√
3 for every x ∈ Z6

s , s ≤ 3.
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Upper bound on ‖Ax‖
While these results show the existence of matrices A such that ‖Ax‖
is bounded away from 0 on sparse vectors, it is also clear that for
any m × d matrix A there exist sparse vectors with ‖Ax‖ not too
large: for instance, if x ∈ Zd is a standard basis vector, then

‖Ax‖ ≤
√
m |A|. (2)

We prove a determinantal upper bound on ‖Ax‖ in the spirit of
Minkowski’s Geometry of Numbers, which is often better.

Theorem 7 (F., Needell, Sudakov – 2017)

Let A be an m × d real matrix of rank m ≤ d, and let A′ be the
d ×m real matrix so that AA′ is the m ×m identity matrix. There
exists a nonzero point x ∈ Zd

m such that

‖Ax‖ ≤
√
m
∣∣∣det

(
(A′)>A′

)∣∣∣−1/2m . (3)
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Upper bound examples

Example 2

Let d = 5, m = 3, and let

A =

 15 15 4 13 15
2 −1 −15 2 −13
−13 2 1 −15 4

 ,

then

A′ =


3392/3905 23/355 3021/3905
−1949/2130 3/710 −1697/2130
−6409/9372 −19/284 −5647/9372
−6407/9372 −17/284 −6353/9372
13869/15620 1/1420 12047/15620

 ,

and so the bound of (3) is 8.375..., which is better than 25.980...,
the bound given by (2).



Upper bound examples

Example 3

Let d = 6, m = 3, and let

A =

 50000 20 40 3 −50000 30
−1 −50000 20 40 4 −50000
−50000 −1 −50000 −50000 20 40

 ,

then the bound of (3) is 7651.170... and (2) is 86602.540...

Let d = 8, m = 4, and let

A =


6 13 13 11 6 12 11 10
7 12 6 13 7 11 11 9
8 11 12 9 12 12 12 11

13 10 7 8 13 13 13 13

 ,

then the bound of (3) is 2.412... and (2) is 26.
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Sparse Geometry of Numbers

Let us now sketch the strategy of proof of Theorem 7. For this, we
develop sparse analogues of some classical theorems in Minkowski’s
Geometry of Numbers. We start with a result of J. D. Vaaler (1979).

Lemma 8 (Vaaler’s Cube Slicing Inequality)

Let Cd(1) be a cube of sidelength 1 centered at the origin in Rd ,
i.e.

Cd(1) = {x ∈ Rd : |xi | ≤ 1/2 ∀ 1 ≤ i ≤ d}.

Let V be an m-dimensional subspace of Rd , m ≤ d. Then the
m-dimensional volume of the section Cd(1) ∩ V is

Volm(Cd(1) ∩ V ) ≥ 1.
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Sparse Geometry of Numbers

We can use Vaaler’s lemma to prove a sparse version of Minkowski’s
Convex Body Theorem for parallelepipeds.

Proposition 9 (F., Needell, Sudakov – 2017)

Let m ≤ d be positive integers. Let A ∈ GLd(R), and let
PA = ACd(1). Assume that for some I ⊂ [d ] with |I | = m,√

| det(A>I AI )| ≥ 2m. (4)

Then PA contains a nonzero point of Zd
m.



Sparse Geometry of Numbers
This implies a sparse version of Minkowski’s Linear Forms Theorem.

Theorem 10 (F., Needell, Sudakov – 2017)

Let m ≤ d be positive integers and B ∈ GLd(R). For each
1 ≤ i ≤ d, let Li (X1, . . . ,Xd) =

∑d
j=1 bijXj be the linear form with

entries of the i-th row of B for its coefficients. Let c1, . . . , cd be
positive real numbers such that for some
I = {1 ≤ j1 < · · · < jm ≤ d} ⊂ [d ],

cj1 · · · cjm ≥
∣∣∣det

(
(B−1)>I (B−1)I

)∣∣∣−1/2 . (5)

Then there exists a nonzero point x ∈ Zd
m such that

|Lji (x)| ≤ cji ∀ 1 ≤ i ≤ m. (6)



Sparse Geometry of Numbers

Taking I = {1, . . . ,m} and

ci =
∣∣∣det

(
(B−1)>I (B−1)I

)∣∣∣−1/2m
for each 1 ≤ i ≤ m in Theorem 10 implies –

Corollary 11 (F., Needell, Sudakov – 2017)

Let A be an m× d real matrix of rank m ≤ d. Let B ∈ GLd(R) be
a matrix whose first m rows are the rows of A. Let I = {1, . . . ,m}.
Then there exists a nonzero point x ∈ Zd

m such that

‖Ax‖ ≤
√
m
∣∣∣det

(
(B−1)>I (B−1)I

)∣∣∣−1/2m .

Theorem 7 follows immediately.
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Closest Vector Problem

Let us also say a few words about the reconstruction algorithm for
our matrix construction in the situation when s = m.

First recall the Closest Vector Problem (CVP) in Rm:

Input: A matrix C ∈ GLn(R) and a point y ∈ Rm.
Output: A point x in the lattice Λ := CZn such that

‖x − y‖ = min{‖z − y‖ : z ∈ Λ}.

It is known that CVP in Rm can be solved by a deterministic O(22m)
time and O(2m) space algorithm, or by a randomized 2m+o(m)-time
and space algorithm.
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Reconstruction algorithm
Let A be an m×d matrix with no m column vectors linearly depen-
dent, so that for all x ∈ Zd

m,

‖Ax‖ ≥ α

for some real α > 0. Let [d ] = {1, . . . , d} and define

J = {I ⊂ [d ] : |I | = m},

then |J | =
(d
m

)
. For each I ∈ J , let AI be the m×m submatrix of A

indexed by the elements of I and let ΛI = AIZm be the corresponding
lattice of rank m in Rm. Suppose now that x ∈ Zd

m, then Ax is a
vector in some ΛI .

Let us write

J = {I1, . . . , It},

where t =
(d
m

)
. Given a CVP oracle, we can propose the following

reconstruction algorithm for our problem.
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Reconstruction algorithm

1. Input: A vector y = Ax + e (here x ∈ Zd
m and error e ∈ Rm

with ‖e‖ < α/2).

2. CVP: Make t calls to the CVP oracle in Rm with the input ΛIj

and y for each 1 ≤ j ≤ t; let

z1 ∈ ΛI1 , . . . , z t ∈ ΛIt

be the vectors returned.

3. Comparison: Out of z1, . . . , z t , pick z i such that

‖z i − y‖ < α/2.

By our construction, there can be only one such vector.

4. Matrix inverse: Compute (AIi )
−1.

5. Reconstruction: Take x = (AIi )
−1z i .



Reconstruction algorithm

On the other hand, suppose we had an oracle for some reconstruction
algorithm with the error bound α. Given a point y ∈ Rm, make a call
to this oracle, returning a vector x ∈ Zd

m. Compute z = Ax , then z
is in one of the lattices ΛI1 , . . . ,ΛIt , and, assuming that ‖z − y‖ <
α/2, we have

‖z − y‖ = min

‖u − y‖ : u ∈
t⋃

j=1

ΛIj

 .

Hence z is a CVP solution for y in
⋃t

j=1 ΛIj . In other words, the
problem of reconstructing the sparse signal from the image under
such a matrix A in Rm has essentially the same computational com-
plexity as CVP in Rm.



A final question

Classical compressed sensing methods offer far more efficient com-
plexity, but also require the sparsity level s to be much less than m.
Our theoretical framework allows any s ≤ m, which is a much taller
order.

This consideration suggests a natural question for future investiga-
tion.

Question 2

Can our construction be improved to yield a faster reconstruction
algorithm under the assumption that s � m?
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