On the Frobenius problem and its generalization

Lenny Fukshansky
Claremont McKenna College

Universität des Saarlandes
Oberseminar Zahlentheorie
July 9, 2012
Integer knapsack problem

Given unlimited supply of $N \geq 2$ types of objects of respective integer weights a_1, \ldots, a_N and corresponding integer prices p_1, \ldots, p_N, maximize the value of a knapsack that can hold at most the weight W. In other words, maximize the expression

$$p_1 x_1 + \cdots + p_N x_N$$

under the constraint

$$a_1 x_1 + \cdots + a_N x_N \leq W$$

for nonnegative integers x_1, \ldots, x_N. This problem often arises in resource allocation with financial constraints.
Feasibility of integer knapsacks

Integer knapsack problem is known to be NP-complete. Here is one way to think about it:

- For each integer weight $0 < w \leq W$, decide whether the equation
 \[a_1 x_1 + \cdots + a_N x_N = w \]
 (1)
 has nonnegative integer solutions, i.e. is this problem \emph{feasible}.

- Find all such solutions x_1, \ldots, x_N - there can only be finitely many of them.

- Maximize $p_1 x_1 + \cdots + p_N x_N$ on the finite set of solutions.

Hence it is important to understand for which weights w is equation (1) feasible. This leads us to the main subject of this talk, the Frobenius problem.
Frobenius number

Let \(N \geq 2 \) be an integer, and let

\[
1 < a_1 < a_2 < \cdots < a_N
\]

be relatively prime integers.

Define the **Frobenius number**

\[
g_0 = g_0(a)
\]

of the \(N \)-tuple \(a := (a_1, \ldots, a_N) \) to be the largest positive integer that has NO representation as

\[
\sum_{i=1}^{N} a_i x_i
\]

where \(x_1, \ldots, x_N \) are nonnegative integers.

Fact: \(g_0 \) exists because

\[
gcd(a_1, \ldots, a_N) = 1.
\]
Example

What is \(g_0(5, 7) \)?

\[
\begin{align*}
5 &= 1 \times 5 + 0 \times 7, & 7 &= 0 \times 5 + 1 \times 7, \\
10 &= 2 \times 5 + 0 \times 7, & 12 &= 1 \times 5 + 1 \times 7, \\
14 &= 0 \times 5 + 2 \times 7, & 15 &= 3 \times 5 + 0 \times 7, \\
17 &= 2 \times 5 + 1 \times 7, & 19 &= 1 \times 5 + 2 \times 7, \\
20 &= 4 \times 5 + 0 \times 7, & 21 &= 0 \times 5 + 3 \times 7, \\
22 &= 3 \times 5 + 1 \times 7, & 24 &= 2 \times 5 + 2 \times 7,
\end{align*}
\]

25, 26, 27, ... - in fact, any integer greater than 23 can be represented by 5 and 7 with nonnegative coefficients. Hence:

\[
g_0(5, 7) = 23.
\]
Frobenius problem

How do we find the Frobenius number?

Frobenius Problem (FP): Construct an algorithm that would take N and the relatively prime numbers a_1, \ldots, a_N on the input, and return $g_0(a_1, \ldots, a_N)$ on the output.

Theorem 1 (Ramirez-Alfonsin, 1994). FP is NP-hard.

What if we fix N? When $N = 2$, there is a simple formula:

$$g_0(a_1, a_2) = (a_1 - 1)(a_2 - 1) - 1.$$

This formula is usually attributed to James Sylvester, although there is no formal record of it in Sylvester’s work; Sylvester proposed a related problem in Educational Times in 1884, a solution to which was presented in the same article by Curran Sharp.

For $N \geq 3$ there currently are no known elementary formulas for the Frobenius number, but...
Some work done

Theorem 2 (Kannan, 1992). *For each fixed N, the problem of finding the Frobenius number of a given N-tuple is P.*

The literature on FP is vast, including a book by Ramirez-Alfonsin; FP has numerous applications in graph theory, computer science, group theory, coding theory, tilings, etc. Some recent research on FP included:

Faster algorithms for fixed N (some fast algorithms are implemented in Mathematica).

Lower bounds: Davison (1994) for $N = 3$ (sharp - $\sqrt{3}$ cannot be improved):

$$g_0 \geq \sqrt{3a_1a_2a_3} - a_1 - a_2 - a_3$$

Aliev & Gruber (2007) for any N:

$$g_0 > \left((N-1)! \prod_{i=1}^{N} a_i \right)^{\frac{1}{N-1}} - \sum_{i=1}^{N} a_i.$$
Upper bounds for $N \geq 3$

Erdös, Graham (1972):

$$g_0 \leq 2a_N \left\lceil \frac{a_1}{N} \right\rceil - a_1.$$ \hfill (2)

Vitek (1975):

$$g_0 \leq \left\lfloor \frac{(a_2 - 1)(a_N - 2)}{2} \right\rfloor - 1.$$ \hfill (3)

Selmer (1977):

$$g_0 \leq 2a_{N-1} \left\lceil \frac{a_N}{N} \right\rceil - a_N.$$ \hfill (4)

Beck, Diaz, Robins (2002):

$$g_0 \leq \frac{\sqrt{a_1 a_2 a_3 (a_1 + a_2 + a_3)} - a_1 - a_2 - a_3}{2}.$$ \hfill (5)
Kannan’s approach

Frobenius number g_0 can be related to the covering radius of a certain convex body with respect to a certain lattice.

Lattice:

$$
\mathcal{L} = \left\{ \mathbf{x} \in \mathbb{Z}^{N-1} : \sum_{i=1}^{N-1} a_i x_i \equiv 0 \pmod{a_N} \right\}.
$$

Convex body:

$$
\mathcal{S} = \left\{ \mathbf{x} \in \mathbb{R}_{\geq 0}^{N-1} : \sum_{i=1}^{N-1} a_i x_i \leq 1 \right\}.
$$

Covering radius:

$$
\mu(\mathcal{S}, \mathcal{L}) = \inf \left\{ t \in \mathbb{R}_{>0} : t \mathcal{S} + \mathcal{L} = \mathbb{R}^{N-1} \right\}.
$$
A formula!

Theorem 3 (Kannan, 1992).

\[g_0 = \mu(S, \mathcal{L}) - \sum_{i=1}^{N} a_i. \]

The simplex S is not 0-symmetric, which makes bounds on $\mu(S, \mathcal{L})$ difficult to produce.

However, this approach motivates applying techniques from geometry of numbers to produce upper bounds for g_0.

It is possible to bound the Frobenius number in terms of the covering radius of a Euclidean ball with respect to a different lattice, which is much easier to estimate.
A related geometric approach

Lattice:
\[\Lambda_a = \left\{ x \in \mathbb{Z}^N : \sum_{i=1}^{N} a_i x_i = 0 \right\}. \]

Covering radius:
\[R_a = \inf \{ R \in \mathbb{R}_{>0} : B(R) + \Lambda_a = V_a \}, \]
where \(V_a = \text{span}_{\mathbb{R}} \Lambda_a \), and \(B(R) = \text{ball of radius } R \text{ centered at the origin in } V_a \).

Simplex: For each \(t \in \mathbb{Z}_{>0} \),
\[S_a(t) = \left\{ x \in \mathbb{R}_0^N : \sum_{i=1}^{N} a_i x_i = t \right\}. \]
Then
\[s(a) = \frac{\sum_{i=1}^{N} a_i \sqrt{\|a\|^2 - a_i^2}}{\|a\|^{1-N^{-1}}} \]
is the inverse of the normalized inradius of the simplex \(S_a(1) \).

\(\kappa_{N-1} = \text{the volume of a unit ball in } \mathbb{R}^{N-1}. \)
Two geometric bounds

Theorem 4 (F. - Robins, 2007).

\[g_0 \leq \frac{(N - 1) Ra}{\|a\|} \sum_{i=1}^{N} a_i \sqrt{\|a\|^2 - a_i^2}. \]

For each \(1 \leq i \leq N - 1\), the \(i\)-th **successive minimum** of \(\Lambda_a\) is

\[\lambda_i = \inf \{ \lambda \in \mathbb{R}_{>0} : \dim \text{span}_{\mathbb{R}} (B(\lambda) \cap \Lambda_a) \geq i \}. \]

Corollary 5 (F. - Robins, 2007).

\[g_0 \leq \frac{(N - 1)^2}{(\kappa_{N-1})^{\frac{1}{N-1}}} \times \frac{\lambda_{N-1}}{\lambda_1} \times s(a). \]

These bounds are symmetric in all \(a_1, \ldots, a_N\), unlike the previously known ones.
How good are these bounds?

It is easy to observe that

\[\lambda_1 \leq \lambda_2 \leq \ldots \lambda_{N-1}. \]

The bound of Corollary 5 is especially good compared to the previously known ones when the ratio \(\lambda_{N-1}/\lambda_1 \) is small.

Moreover, the dependence of our bound on the geometric constant \(s(a) \) turns out to be “correct”, in a certain sense, as we will discuss next.
What should we typically expect?

The investigation of asymptotic behavior of the Frobenius number for a “typical” \(N \)-tuple \((a_1, \ldots, a_N)\) was initiated by V. I. Arnold in a series of papers (1999 - 2007).

In particular, let \(\Omega_1^N \) be an ensemble of relatively prime positive integer \(N \)-tuples \(a = (a_1, \ldots, a_N) \) with

\[
\Sigma(a) := a_1 + \cdots + a_N \to \infty.
\]

Arnold conjectured that for a “typical” \(N \)-tuple \(a \) from \(\Omega_1^N \),

\[
g_0 \text{ grows like } \Sigma(a)^{1 + \frac{1}{N-1}} \text{ as } \Sigma(a) \to \infty.
\]
Probabilistically speaking...

In a recent paper (2007), J. Bourgain and Y. Sinai considered a variation of Arnold’s conjecture. Namely, they looked at the set

$$\Omega_N^\infty(\alpha) = \{a \in \mathbb{Z}_N^N : \text{gcd}(a) = 1, \quad a_i > \alpha |\!| a |\!| \quad \forall \ 1 \leq i \leq N\},$$

where $0 < \alpha < 1$ is a fixed real number and

$$|a| = \max_{1 \leq i \leq N} |a_i|,$$

and proved that for a “typical” N-tuple a from $\Omega_N^\infty(\alpha)$,

$$g_0 \text{ grows like } |a|^{1+\frac{1}{N-1}} \text{ as } |a| \to \infty.$$

Specifically, they showed that

$$\text{Prob}_{\infty,\alpha} \left(\frac{g_0(a)}{|a|^{1+\frac{1}{N-1}}} \geq T \right) \to 0 \text{ as } T \to \infty,$$

with respect to a uniform distribution on $\Omega_N^\infty(\alpha)$.
What about $s(a)$?

In 2009, I. Aliev and M. Henk proved the following result. Let

$$\Omega_{N}^{2}(T) = \{ a \in \mathbb{Z}_{>0}^N : \gcd(a) = 1, \|a\| \leq T \}.$$

Then for all $N \geq 3$,

$$\text{Prob}_{N,T} \left(\frac{g_0(a) + \Sigma(a)}{s(a)} > D \right) \ll_N \frac{1}{D^2},$$

where $\text{Prob}_{N,T}$ stands for the uniform probability distribution on $\Omega_{N}^{2}(T)$, and \ll_N is Vinogradov’s big-O notation with the constant depending on N only.

Thus, for a “typical” N-tuple a one can expect $g_0(a) + \Sigma(a)$ to be of the order of magnitude of the geometric constant $s(a)$.

The modified Frobenius number $g_0(a) + \Sigma(a)$ is also meaningful: it is the largest positive integer that has no representations in terms of a_1, \ldots, a_N with positive coefficients.
A generalization

In 2003, Beck & Robins defined the generalized s-Frobenius number $g_s = g_s(a)$ for each nonnegative integer s to be the largest positive integer that has precisely s distinct representations in terms of a with nonnegative coefficients. Properties of s-Frobenius numbers have recently been studied by Beck & Kifer (2010), Shallit & Stankewicz (2010).

The first upper and lower bounds on g_s have been obtained by F. & Schürmann (2010) by an extension of F. & Robins method for g_0:

$$\left(s \prod_{i=1}^{N-1} a_i \right)^{\frac{1}{N-1}} \ll_N g_s(a)$$

$$\ll_N \max \left\{ Ra \frac{\sum_{i=1}^{N} a_i \| \alpha_i \|}{\|a\|}, \left(s \prod_{i=1}^{N-1} a_i \right)^{\frac{1}{N-2}} \right\},$$

where the lower bound holds for sufficiently large s, and α_i is a with i-th coordinate removed.
Idea of the proof

Integer lattice \mathbb{Z}^N in \mathbb{R}^N
Idea of the proof

Subspace

\[V_\alpha = \left\{ \mathbf{x} \in \mathbb{R}^N : \sum_{i=1}^{N} a_i x_i = 0 \right\} \]

with the lattice \(\Lambda_\alpha = V_\alpha \cap \mathbb{Z}^N \) in it
Idea of the proof

Hyperplane

\[V_a(1) = \left\{ \mathbf{x} \in \mathbb{R}^N : \sum_{i=1}^{N} a_i x_i = 1 \right\} \]

with the hyperplane lattice

\[\Lambda_a(1) = V_a(1) \cap \mathbb{Z}^N \] and simplex

\[S_a(1) = V_a(1) \cap \mathbb{R}_{\geq 0}^N \] in it
Idea of the proof

Hyperplane

\[V_a(2) = \left\{ \mathbf{x} \in \mathbb{R}^N : \sum_{i=1}^{N} a_i x_i = 2 \right\} \]

with the hyperplane lattice

\[\Lambda_a(2) = V_a(2) \cap \mathbb{Z}^N \]

and simplex

\[S_a(2) = V_a(2) \cap \mathbb{R}^N_{\geq 0} \]
Idea of the proof

Hyperplane

\[V_a(3) = \left\{ \mathbf{x} \in \mathbb{R}^N : \sum_{i=1}^{N} a_i x_i = 3 \right\} \]

with the hyperplane lattice
\[\Lambda_a(3) = V_a(3) \cap \mathbb{Z}^N \]
and simplex
\[S_a(3) = V_a(3) \cap \mathbb{R}_{\geq 0}^N \]
Idea of the proof

An integer lattice point in $S_a(t)$ corresponds to a representation of t in terms of a with nonnegative coefficients. Hence for every $t > g_0$ such a point must always exist.

Moreover, for every $s \geq 0$, g_s is precisely the smallest positive integer such that for each integer $t > g_s$ the simplex $S_a(t)$ contains more than s points of \mathbb{Z}^N.

Hence bounds on g_s follow from lattice point counting estimates in simplices.
Additional bounds on g_s

Here are further bounds on g_s that work for all s, obtained by a different method.

Theorem 6 (Aliev, F., Henk (2011)). Let $N \geq 3$, $s \geq 0$. Then

$$g_s(a) \geq \left((s + 1)(N - 1)! \prod_{i=1}^{N-1} a_i \right)^{\frac{1}{N-1}} - \frac{N-1}{N-2} \sum_{i=1}^{N-1} a_i$$

and

$$g_s(a) \leq g_0(a) + \left(s (N - 1)! \prod_{i=1}^{N-1} a_i \right)^{\frac{1}{N-1}}.$$
Average value estimate for g_s

These bounds lead to an average value estimate on $g_s(a)$.

Theorem 7 (Aliev, F., Henk (2011)). Let $N \geq 3$, $s \geq 0$. Then:

$$\Pr\left(\frac{g_s(a)}{((s + 1) \prod_{i=1}^{N-1} a_i)^{N-1}} \geq D\right) \ll_N \frac{1}{D^{N-1}},$$

where $\Pr(\cdot)$ is meant with respect to the uniform probability distribution on

$$G(T) = \left\{ a \in \mathbb{Z}_>^N : \gcd(a) = 1, |a|_\infty \leq T \right\}.$$

In case of the classical Frobenius number, i.e. when $s = 0$, this probability estimate has been obtained by H. Li (2011). Our method uses his result.
Idea of the proof

The argument here is an extension of Kannan’s method: g_s can be related to the s-covering radius of the same simplex with respect to the same lattice as in Kannan’s work.

Lattice:

$$\mathcal{L} = \left\{ x \in \mathbb{Z}^{N-1} : \sum_{i=1}^{N-1} a_i x_i \equiv 0 \pmod{a_N} \right\}.$$

Convex body:

$$S = \left\{ x \in \mathbb{R}_{\geq 0}^{N-1} : \sum_{i=1}^{N-1} a_i x_i \leq 1 \right\}.$$

s-Covering radius:

$$\mu_s(S, \mathcal{L}) = \inf \left\{ t \in \mathbb{R}_{>0} : \forall y \in \mathbb{R}^N \right.$$

$$\exists x_1, \ldots, x_s \in \mathcal{L} \quad \text{s.t.} \quad y \in tS + x_i \left\}, \right.$$

hence $\mu(S, \mathcal{L}) = \mu_1(S, \mathcal{L})$.

26
Idea of the proof

We extend Kannan’s formula, connecting \((s−1)\)-Frobenius number to the \(s\)-covering radius:

\[
g_{s−1} = \mu_s(S, L) − \sum_{i=1}^{N} a_i.
\]

On the other hand, we obtain bounds on \(s\)-covering radius:

\[
s^{\frac{1}{N}} \left(\frac{\det L}{\text{Vol} S} \right)^{\frac{1}{N}} \leq \mu_s(S, L)
\]

\[
\leq \mu_1(S, L) + (s − 1)^{\frac{1}{N}} \left(\frac{\det L}{\text{Vol} S} \right)^{\frac{1}{N}}
\]

\[
= g_0 + \sum_{i=1}^{N} a_i + (s − 1)^{\frac{1}{N}} \left(\frac{\det L}{\text{Vol} S} \right)^{\frac{1}{N}},
\]

where the last identity follows by Kannan’s formula.

Our bounds on \(g_s\) are produced by combining these two equations.
Idea of the proof

The probability estimate is then derived from these bounds with the use of Li’s result for g_0 and the estimate

$$\frac{1}{\#G(T)} \sum_{a \in G(T)} \frac{\sum_{i=1}^{N} a_i}{\left(\prod_{i=1}^{N} a_i\right)^{1/N-1}} \ll N T^{-\frac{1}{N-1}},$$

which was previously obtained by Aliev, Henk, and Hinrichs (2009), using the fact that “reverse” arithmetic-geometric mean inequality holds with high probability.

Recall here that

$$G(T) = \left\{ a \in \mathbb{Z}_{>0}^N : \gcd(a) = 1, |a|_\infty \leq T \right\}.$$
Limiting probability distribution for g_0

Finally, we discuss the existence of a limiting probability distribution for the Frobenius number, which was recently obtained by J. Marklof.

Let $N \geq 3$ and let $\mathcal{D} \subset \mathbb{R}^N_{\geq 0}$ be any bounded set with boundary of Lebesgue measure zero. Let

$$\hat{\mathbb{Z}}^N_{\geq 2} := \{a \in \mathbb{Z}^N : \gcd(a_1, \ldots, a_N) = 1, \quad a_i \geq 2 \quad \forall \ 1 \leq i \leq N\}.$$

Theorem 8 (Marklof (2010)). $\forall \ R \geq 0,$

$$\lim_{T \to \infty} \frac{1}{T^N} \# \left\{ a \in \hat{\mathbb{Z}}^N_{\geq 2} \cap T\mathcal{D} : \frac{g_0(a)}{\left(\prod_{i=1}^N a_i\right)^{\frac{1}{N-1}}} > R \right\} \leq \frac{\text{Vol}(\mathcal{D})}{\zeta(N) \Psi_N(R)},$$

where $\Psi_N : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is a non-increasing function with $\Psi_N(0) = 1.$
Limiting probability distribution for g_0

In fact, Marklof shows that $\Psi_N(R)$ is equal to the value of the unique $\text{SL}(N - 1, \mathbb{R})$-right invariant probability measure of the set

$$\{ A \in \text{SL}(N - 1, \mathbb{Z}) \setminus \text{SL}(N - 1, \mathbb{R}) : \rho(A) > R \},$$

where $\rho(A)$ is the covering radius of the simplex

$$\Delta = \left\{ x \in \mathbb{R}_{\geq 0}^{N-1} : \sum_{i=1}^{N-1} x_i \leq 1 \right\}$$

with respect to the lattice $\mathbb{Z}^{N-1}A$, i.e.,

$$\rho(A) = \inf \left\{ \rho \in \mathbb{R}_{>0} : \mathbb{Z}^{N-1}A + \rho \Delta = \mathbb{R}^{N-1} \right\}.$$

Moreover, the expression for $\Psi_N(R)$ connects naturally with the optimal lower bound on g_0, obtained by I. Aliev and P. Gruber (2007):

$$g_0(a) \geq \left(\prod_{i=1}^{N} a_i \right)^{\frac{1}{N-1}} \inf \rho(A),$$

where infimum is taken over all $A \in \text{SL}(N - 1, \mathbb{Z}) \setminus \text{SL}(N - 1, \mathbb{R})$.