Small zeros of hermitian forms over quaternion algebras

Lenny Fukshansky
Claremont McKenna College & IHES
(joint work with W. K. Chan)

Institut de Mathématiques de Jussieu
October 21, 2010
Cassels’ Theorem

Let

\[F(X, Y) = \sum_{i=1}^{N} \sum_{j=1}^{N} f_{ij} X_i Y_j \]

be a symmetric bilinear form in \(N \geq 2 \) variables with coefficients in \(\mathbb{Z} \). Write

\[F(X) = F(X, X) \]

for the associated quadratic form.

In 1955, J. W. S. Cassels proved that if \(F \) is isotropic, then there exists \(x \in \mathbb{Z} \setminus \{0\} \) such that \(F(x) = 0 \), and

\[
\max_{1 \leq i \leq N} |x_i| \leq \left(3 \sum_{i=1}^{N} \sum_{j=1}^{N} |f_{ij}| \right)^{\frac{N-1}{2}}.
\]

The expressions on the left and right hand sides of (1) are examples of heights of a vector and of a quadratic form, respectively, and so (1) provides an explicit search bound for non-trivial zeros of \(F \). The exponent \(\frac{N-1}{2} \) in the upper bound is sharp, as shown by an example due to M. Knesser.
A generalization of Cassels’ theorem over number fields has been obtained in 1975 by S. Raghavan, who proved that if a quadratic form \(F \) with coefficients in a number field \(K \) is isotropic over \(K \), then it has a non-trivial zero \(x \) over \(K \) of small height, where the bound is in terms of height of \(F \) for appropriately defined heights of \(x \) and \(F \) which generalize heights in (1). The exponent on height of \(F \) in the upper bound is again \(\frac{N-1}{2} \).

Raghavan also produced an analogous result for zeros of hermitian forms over CM fields, where the exponent in the upper bound is \(\frac{2N-1}{2} \). Although it is not clear whether this is sharp, it seems to be a correct analogue of the result for quadratic forms.

A more general result for quadratic forms was produced by J. D. Vaaler. To state it we need to develop some notation.
Notation and heights: number fields

Let K be a number field of degree d over \mathbb{Q} with the set of places $M(K)$, and let O_K be its ring of integers.

For each $v \in M(K)$, let $d_v = [K_v : \mathbb{Q}_v]$ and let $| \ |_v$ be the unique absolute value on K_v that extends either the usual absolute value on \mathbb{R} or \mathbb{C} if $v|\infty$, or the usual p-adic absolute value on \mathbb{Q}_p if $v|p$, where p is a rational prime.

Then the **product formula** reads:

$$\prod_{v \in M(K)} |a|_v^{d_v} = 1,$$

for each $0 \neq a \in K$.
Let $N \geq 2$, and define the following infinite and finite heights for each $x \in K^N$:

$$H_{\text{inf}}(x) = \prod_{v|\infty} \max_{1 \leq i \leq N} |x_i|_v,$$

$$H_{\text{fin}}(x) = [O_K : O_Kx_1 + \cdots + O_Kx_N]^{-1}.$$

The global heights on K^N are defined by:

$$H(x) = (H_{\text{inf}}(x)H_{\text{fin}}(x))^{\frac{1}{d}},$$

$$\mathcal{H}(x) = (H_{\text{inf}}(x)H_{\text{fin}}(x))^{\frac{1}{d}},$$

and the inhomogeneous height is given by

$$h(x) := H(1, x) \geq H(x) \geq 1.$$
Due to the normalizing exponent $1/d$, our global height functions are absolute, i.e. for points over $\overline{\mathbb{Q}}$ their values do not depend on the field of definition, i.e. if $x \in \overline{\mathbb{Q}}^N$ then height can be evaluated over any number field containing the coordinates of x.

For a polynomial F with coefficients in K, $H(F)$ is the height of its coefficient vector.

For an L-dimensional subspace

$$V = \{ x \in K^N : Cx = 0 \} \subseteq K^N,$$

where C is an $(N - L) \times N$ matrix of rank $N - L < N$ over K, let $\text{Gr}(C)$ be the vector of Grassmann coordinates of C (i.e. determinants of $(N - L) \times (N - L)$ minors).
Then define

\[H_{\text{inf}}(V) = \mathcal{H}_{\text{inf}}(\text{Gr}(C)) \].

Also define

\[H_{\text{fin}}(V) = [O_K^{N-L} : C(O_K^N)]^{-1}, \]

where \(C \) is viewed as a linear map

\[C : O_K^N \to O_K^{N-L}. \]

Then define

\[H(V) = (\mathcal{H}_{\text{inf}}(V)H_{\text{fin}}(V))^{\frac{1}{d}}. \]

This definition is independent of the choice of the basis by the product formula.
Vaaler’s Theorem

In 1989, J. D. Vaaler proved the following result. Let $V \subseteq K^N$ be an L-dimensional subspace, and let F be a quadratic form in N variables with coefficients in K which is isotropic over V. Then there exists a basis $x_1, \ldots, x_L \in O_K^N$ for V such that $F(x_i) = 0$ for all $1 \leq i \leq L$ with

$$h(x_1) \leq h(x_2) \leq \cdots \leq h(x_L),$$

and

$$h(x_1)h(x_i) \ll_{K,N,L} H(F)^{L-1} H(V)^2,$$

for $1 \leq i \leq L$, where the constant in the upper bound is explicitly determined. In particular,

$$h(x_1) \ll_{K,N,L} H(F)^{L-1/2} H(V),$$

which is the analogue of Cassels’ bound, and is sharp at least with respect to the exponent on $H(F)$.

Our main result is an analogue of Vaaler’s theorem over a certain class of quaternion algebras.
Notation and heights: quaternion algebras

Here we explain the notation and height machinery used in the statement of our result.

Let K as above be a totally real number field of degree d, and let $\alpha, \beta \in O_K$ be totally negative. Let $D = \left(\frac{\alpha, \beta}{K}\right)$ be a positive definite quaternion algebra over K, generated by the elements i, j, k which satisfy the following relations:

$$i^2 = \alpha, \quad j^2 = \beta, \quad ij = -ji = k, \quad k^2 = -\alpha\beta.$$

As a vector space, D has dimension four over K, and $1, i, j, k$ is a basis. We fix this basis, and will always write each element $x \in D$ as

$$x = x(0) + x(1)i + x(2)j + x(3)k,$$

where $x(0), x(1), x(2), x(3) \in K$ are respective components of x, and the standard involution on D is conjugation:

$$\bar{x} = x(0) - x(1)i - x(2)j - x(3)k.$$
Trace and norm on D are defined by

$$\text{Tr}(x) = x + \bar{x} = 2x(0),$$

$$N(x) = x\bar{x} = x(0)^2 - \alpha x(1)^2 - \beta x(2)^2 + \alpha\beta x(3)^2$$

The algebra D is positive definite meaning that the norm $N(x)$ is given by a positive definite quadratic form. In fact, since the norm form $N(x)$ is positive definite,

$$D_v := D \otimes_K K_v$$

is isomorphic to the real quaternion

$$\mathbb{H} = \mathbb{R} + \mathbb{R}i + \mathbb{R}j + \mathbb{R}k$$

for each $v \in M(K)$ such that $v|_{\infty}$; there are d such places, corresponding to the embeddings of K, call them v_1, \ldots, v_d. Then each embedding $\sigma_n : K \to \mathbb{R}$, $1 \leq n \leq d$, induces an embedding $\sigma_n : D \to D_{v_n}$, given by

$$\sigma_n(x) = x(0)^{(n)} + x(1)^{(n)}i + x(2)^{(n)}j + x(3)^{(n)}k$$
Write $x^{(n)}$ for $\sigma_n(x)$, then the local norm
\[N^{(n)}(x) = x^{(n)} \overline{x}^{(n)} \]
at each archimedean place is also a positive definite quadratic form over the respective real completion K_{v_n}, $1 \leq n \leq d$. We now have archimedean absolute values on D, corresponding to the infinite places v_1, \ldots, v_d of K: for each $x \in D$, define
\[|x|_{v_n} = \sqrt{N^{(n)}(x)}. \]

We can now define heights over D, following the work of C. Liebendorfer, 2004. First, we define the infinite height on D^N by
\[H_{\text{inf}}(x) = \prod_{n=1}^{d} \max_{1 \leq l \leq N} |x_l|_{v_n} \]
for every $x \in D^N$.
Let us next fix an order \mathcal{O} in D; our definition of \textbf{finite height} will be with respect to \mathcal{O}. For each $x \in \mathcal{O}^N$, let

$$H^{\mathcal{O}}_{\text{fin}}(x) = [\mathcal{O} : \mathcal{O}x_1 + \cdots + \mathcal{O}x_N]^{-1/4}.$$

This is well defined, since $\mathcal{O}x_1 + \cdots + \mathcal{O}x_N$ is a left submodule of \mathcal{O}. Now we can define the \textbf{global homogeneous height} on \mathcal{O}^N by

$$H^{\mathcal{O}}(x) = \left(H_{\inf}(x)H^{\mathcal{O}}_{\text{fin}}(x) \right)^{1/d},$$

and the \textbf{global inhomogeneous height} by

$$h(x) := H_{\inf}(1, x) \geq H^{\mathcal{O}}(x),$$

since $\mathcal{O} + \mathcal{O}x_1 + \cdots + \mathcal{O}x_N = \mathcal{O}$. To extend this definition to D^N, notice that for each $x \in D^N$ there exists $a \in O_K$ such that $ax \in \mathcal{O}^N$, and define $H^{\mathcal{O}}(x)$ to be $H^{\mathcal{O}}(ax)$ for any such a. This is well defined by the product formula, and $H^{\mathcal{O}}(xt) = H^{\mathcal{O}}(x)$ for all $t \in D^\times$.

12
We can now define height on the set of proper right D-subspaces of D^N.

D splits over $E = K(\sqrt{\alpha})$, meaning that there exists a K-algebra homomorphism

$$\rho : D \rightarrow \text{Mat}_{22}(E),$$

given by

$$\rho(x) = \begin{pmatrix} x(0) + x(1)\sqrt{\alpha} & x(2) + x(3)\sqrt{\alpha} \\
\beta(x(2) - x(3)\sqrt{\alpha}) & x(0) - x(1)\sqrt{\alpha} \end{pmatrix},$$

so that $\rho(D)$ spans $\text{Mat}_{22}(E)$ as an E-vector space. This map extends naturally to matrices over D.

Let $Z \subseteq D^N$ be an L-dimensional right vector subspace of D^N, $1 \leq L < N$. Then there exists an $(N - L) \times N$ matrix C over D with left row rank $N - L$ such that

$$Z = \{x \in D^N : Cx = 0\}.$$
Define

\[H_{\text{inf}}(C) = \left(\prod_{n=1}^{d} \sum_{C_0} |\det(\rho(C_0))|^{2}_{v_n} \right)^{1/2}, \]

where the sum is over all \((N - L) \times (N - L)\) minors \(C_0\) of \(C\).

Also define

\[H_{\text{fin}}^{O}(C) = [O^{N-L} : C(O^N)]^{-1/4}, \]

where \(C : O^N \rightarrow O^{N-L}\) is viewed as a linear map.

Then we can define

\[H^{O}(Z) = \left(H_{\text{inf}}(C) H_{\text{fin}}^{O}(C) \right)^{1/d}. \]

This definition does not depend on the specific choice of such matrix \(C\).

For a polynomial \(F\) over \(D\), heights of \(F\) are heights of its coefficient vector.
Let $D = \left(\frac{\alpha, \beta}{K} \right)$ be a positive definite quaternion algebra over a totally real number field K, where α, β are totally negative algebraic integers in K. Let \mathcal{O} be an order in D. Let $N \geq 2$ be an integer, and let $Z \subseteq D^N$ be an L-dimensional right D-subspace, $1 \leq L \leq N$. Let $F(X, Y) \in D[X, Y]$ be a hermitian form in $2N$ variables, and assume that F is isotropic on Z. Then there exists a basis y_1, \ldots, y_L for Z over D such that

$$F(y_n) := F(y_n, y_n) = 0$$

for all $1 \leq n \leq L$ and

$$(4) \quad h(y_1) \ll_{K, \mathcal{O}, N, L, \alpha, \beta} \inf(F) \frac{4L-1}{2} H^O(Z)^4,$$

and

$$(5) \quad h(y_1)h(y_n) \ll_{K, \mathcal{O}, N, L, \alpha, \beta} \inf(F)^4L-1H^O(Z)^8,$$

where the constants in the upper bounds of (4) and (5) are explicitly determined.
Idea of the proof

Define a K-vector space isomorphism

$$[] : D \to K^4,$$

given by

$$[x] = (x(0), x(1), x(2), x(3)),$$

for each $x = x(0) + x(1)i + x(2)j + x(3)k \in D,$

which extends naturally to $[] : D^N \to K^{4N},$

given by $[x] = ([x_1], \ldots, [x_N])$ for each $x = (x_1, \ldots, x_N) \in D^N.$

Define the **trace form**

$$Q([X]) := \text{Tr}(F(X, X)),$$

which is a quadratic form in $4N$ variables over $K.$ Then $F(x) = 0$ for some $x \in D^N$ if and only if $Q([x]) = 0.$

Then apply Vaaler’s theorem to $Q([X])$ on the $4L$-dimensional subspace $[Z] \subseteq K^{4N}.$ For this method to produce our result, we develop collection of height comparison lemmas between heights over K and heights over $D.$
Height comparison lemmas

First we compare the height of a vector $x \in \mathcal{O}^N$ over D with its image in K^{4N} under the map $[\cdot]$.

Lemma 1. For each $x \in \mathcal{O}^N$,

$$
t(\alpha, \beta)H([x]) \leq H_{\inf}(x) \leq h(x) \leq 2s(\alpha, \beta)h([x]),
$$

where

$$s(\alpha, \beta) = \prod_{n=1}^{d} \max\{1, |\alpha|_{v_n}, |\beta|_{v_n}, |\alpha\beta|_{v_n}\}^{\frac{1}{2}},$$

and

$$t(\alpha, \beta) = \prod_{n=1}^{d} \min\{1, |\alpha|_{v_n}, |\beta|_{v_n}, |\alpha\beta|_{v_n}\}^{\frac{1}{2}}.$$

Next we have the comparison for heights of the hermitian form F over D and its trace form Q over K.
Lemma 2. Let F be a hermitian form over D and let Q be its associated trace form over K, as above. Then

$$\frac{t(\alpha, \beta)}{2s(\alpha, \beta)^2} H(Q) \leq H_{\inf}(F),$$

and

$$H^{O}(F) \leq 2^{\frac{d+1}{d}} s(\alpha, \beta) N(\alpha \beta)^{\frac{1}{d}} N(O) H(Q),$$

where N stands for the norm on K, and

$$N(O) = \min \left\{ |N(\gamma)|^{\frac{1}{d}} : \gamma \in O_K \text{ is such that } \gamma_i, \gamma_j, \gamma_k \in O \right\}.$$

In the next lemma we compare the heights of a D-subspace of D^N with respect to two different orders, O_1 and O_2 in D.
Lemma 3. Let \mathcal{O}_1 and \mathcal{O}_2 be two orders in D, and let $Z \subseteq D^N$ be an L-dimensional right vector D-subspace of D^N, $1 \leq L \leq N$. Then
\[M - (N - L) H^{\mathcal{O}_1}(Z) \leq H^{\mathcal{O}_2}(Z) \leq M^{N-L} H^{\mathcal{O}_1}(Z), \]
where $M = M(\mathcal{O}_1, \mathcal{O}_2)$ is defined as
\[M = \max \left\{ N \left(\Delta_{\mathcal{O}_1} \Delta_{\mathcal{O}_2}^{-1} \right)^{\frac{1}{2}}, N \left(\Delta_{\mathcal{O}_2} \Delta_{\mathcal{O}_1}^{-1} \right)^{\frac{1}{2}} \right\}. \]

Here $\Delta_\mathcal{O}$ is the discriminant of the order \mathcal{O}, which is the ideal in O_K generated by all the elements of the form
\[\det \left(\text{Tr}(\omega_h \omega_n) \right)_{0 \leq h, n \leq 3} \in O_K, \]
where $\omega_0, \ldots, \omega_3$ are in \mathcal{O}.

Finally, Lemma 3 can be used, along with the following identity, to relate height of a D-subspace of D^N to its image under $[\]$.

Lemma 4. Let Z be as in Lemma 3, then $V_Z := [Z] \subseteq K^{4N}$ is a $4L$-dimensional K-subspace of K^{4N}, and
\[H(V_Z) = H^{O_D}(Z)^4, \]
where
\[O_D = O_K + O_K i + O_K j + O_K k. \]
Remarks

The height $H_{\text{inf}}(F')$ in our inequalities cannot be replaced by the height $H^{O}(F)$: there are specific examples where the bounds would no longer hold.

While it is not clear whether our bounds are optimal, it is worth a note that starting from our bounds and applying our height comparison lemmas, one retrieves a Cassels-type bound with correct exponents for the corresponding quadratic trace form over K in $4N$ variables.

Moreover, our exponent on $H_{\text{inf}}(F')$ in (4) is completely analogous to the bound obtained by Raghavan for hermitian forms over CM fields.