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Cassels’ Theorem

Let

N N
F(X,Y)= ) > fiX;Y]
i=1j=1
be a symmetric bilinear form in N > 2 vari-
ables with coefficients in Z. Write

F(X)=F(X,X)
for the associated quadratic form.

In 1955, J. W. S. Cassels proved that if F
is isotropic, then there exists x € Z\ {0} such
that F(x) = 0, and
N—1

N N T2
(1) 12%>§Vlwzl < (3;]; Ifwl)
The expressions on the left and right hand
sides of (1) are examples of heights of a
vector and of a quadratic form, respectively,
and so (1) provides an explicit search bound
for non-trivial zeros of F'. The exponent %
in the upper bound is sharp, as shown by an
example due to M. Knesser.



Over number fields

A generalization of Cassels’ theorem over num-
ber fields has been obtained in 1975 by S.
Raghavan, who proved that if a quadratic
form F' with coefficients in a number field
K is isotropic over K, then it has a non-
trivial zero & over K of small height, where
the bound is in terms of height of F' for ap-
propriately defined heights of  and F' which
generalize heights in (1). The exponent on

height of F'in the upper bound is again N2 1

Raghavan also produced an analogous result
for zeros of hermitian forms over CM fields,
where the exponent in the upper bound is
2N=1_ Although it is not clear whether this
IS sharp, it seems to be a correct analogue of

the result for quadratic forms.

A more general result for quadratic forms was
produced by J. D. Vaaler. To state it we need
to develop some notation.



Notation and heights: number fields

Let K be a number field of degree d over Q
with the set of places M(K), and let Ok be
its ring of integers.

For each v € M(K), let dy = [Ky : Q] and let
| |» be the unique absolute value on K, that
extends either the usual absolute value on R
or C if v|oo, or the usual p-adic absolute value
on Qp if v|p, where p is a rational prime.

Then the product formula reads:
I Jlalte =1,
veM(K)
for each 0 #a € K.



Let N > 2, and define the following infinite
and finite heights for each « € K:

Hinr(z) = |] 1@.§>§V|$z‘|v,
v|oo =

N
Hine(x) = [ | |47,
v|oo\i=1

Hein(z) = [Og : Ogx1+ -+ + Ogay] T

The global heights on K% are defined by:
1
H(x) = (Hins(xz)Hfin(x))d,

H(x) = (Hins(z) Hein(z))d,

and the inhomogeneous height is given by

h(x) = H(1l,x) > H(x) > 1.



Due to the normalizing exponent 1/d, our
global height functions are absolute, i.e. for
points over Q their values do not depend on
the field of definition, i.e. if & € Q" then
height can be evaluated over any number
field containing the coordinates of x.

For a polynomial F with coefficients in K,
H(F) is the height of its coefficient vector.

For an L-dimensional subspace
Vz{xEKN:C;czo}gKN,

where C is an (N — L) x N matrix of rank
N — L < N over K, let Gr(C) be the vector
of Grassmann coordinates of C (i.e. deter-
minants of (N — L) x (N — L) minors).



Then define
Hins (V) = Hins(Gr(C)).

Also define

Hen (V) = [OR 2 C(Oi)] 71,
where C' is viewed as a linear map

C: O% —> O%_L.
Then define
1
H(V) = (Hins(V)Hin(V))4d .

This definition is independent of the choice
of the basis by the product formula.



Vaaler’s Theorem

In 1989, J. D. Vaaler proved the follow-
ing result. Let V C KN be an L-dimensional
subspace, and let F' be a quadratic form in
N variables with coefficients in K which is
isotropic over V. Then there exists a basis
T1,...,x;, € OX for V such that F(z;) = 0
for all 1 <1< L with

h(xz1) < h(xp) <--- < h(zp),
and

(2)  h(zp)h(x) <gnp HFE)THV)?,

forl <: < L, where the constant in the upper
bound is explicitly determined. In particular,

(3) h(x1) <k N,L H(F) 2 H(V),

which is the analogue of Cassels’ bound, and
is sharp at least with respect to the exponent
on H(F).

Our main result is an analogue of Vaaler's
theorem over a certain class of quaternion
algebras.



Notation and heights: quaternion
algebras

Here we explain the notation and height ma-
chinery used in the statement of our result.

Let K as above be a totally real number
field of degree d, and let a, 8 € Oy be totally
negative. Let D = (O‘[’(ﬁ) be a positive defi-
nite quaternion algebra over K, generated by
the elements ¢, 5, kK which satisfy the following
relations:

iP=q, j2=208, ij=—ji=k, k= —af.

AsS a vector space, D has dimension four over
K, and 1,2,7,k is a basis. We fix this basis,
and will always write each element x € D as

x=x(0)+x2(1)i+ 2(2)7 + 2(3)k,

where z(0),z(1),z(2),2(3) € K are respec-
tive components of x, and the standard in-
volution on D is conjugation:

T=x(0) —xz(1)i—x2(2)j — x(3)k.



Trace and norm on D are defined by
Tr(x) =z + 7 = 2x2(0),

N(z) = 2z = 2(0)°—az(1)?—B2(2)°+aBz(3)?

The algebra D is positive definite meaning
that the norm N(x) is given by a positive
definite quadratic form. In fact, since the
norm form N(x) is positive definite,

va =D ®K K’U
IS isomorphic to the real quaternion
H=R+4 R:+4+ Ry 4+ Rk

for each v € M(K) such that v|oco; there are
d such places, corresponding to the embed-
dings of K, call them vq,...,v5. Then each
embedding o, : K — R, 1 < n < d, induces
an embedding on : D — Dy, given by

on(z) = 2(0) M 4z(1)Mitz(2)(Mj42(3) Wk
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Write z(") for on(z), then the local norm
N (2) = oMz

at each archimedean place is also a positive
definite quadratic form over the respective
real completion Ky,, 1 < n < d. We now
have archimedean absolute values on D, cor-
responding to the infinite places vq,...,v Of
K. for each = € D, define

2o, = VN ().

We can now define heights over D, following
the work of C. Liebendorfer, 2004. First,
we define the infinite height on DY by

d
Hine(x) = max
Il’lf( ) nl;[]_ 1§1§N |:Cl|Un

for every x € DN,
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Let us next fix an order O in D; our definition
of finite height will be with respect to O.
For each & € OV let

HE () = [0 : Oz + -+ Oxy] Y4

This is well defined, since Ox1 4+ -4+ Oxy is
a left submodule of ©®. Now we can define
the global homogeneous height on OV by

HO (@) = (Hinr(@) Hp(2)) ",

and the global inhomogeneous height by
h(z) := Hine(1,z) > HO (x),

since O+4+0zx1+4---+0xny = O. To extend this
definition to DYV, notice that for each x € DV
there exists a € O such that axz € O, and
define HO(x) to be H®(ax) for any such a.
This is well defined by the product formula,
and HO(xt) = HO(x) for all t € DX.
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We can now define height on the set of proper
right D-subspaces of D!V,

D splits over E = K(y/a), meaning that there
exists a K-algebra homomorphism

p:D— MatQQ(E),

given by

() = ( z(0) + z(1)ya  x(2) +x<3>¢&>

B(x(2) —z(3)Va) z(0) —z(1l)Vva)’
so that p(D) spans Mat>>(FE) as an E-vector
space. This map extends naturally to matri-
ces over D.

Let Z C DY be an L-dimensional right vector
subspace of DV, 1 < I < N. Then there
exists an (N — L) x N matrix C over D with
left row rank N — L such that

Z ={x e DV : Cx = 0}.
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Define

p 1/2
Hine(C) = ( 1T > Idet (P(Co))|5n) :

n=1 Cy
where the sum is over all (N — L) x (N — L)
minors Cp of C.

Also define
HE,(C) = [0V~ E c(oM) 14,

where C : ON — ©ON—L is viewed as a linear
map.

Then we can define
1/d
HO(Z) = (Hint(C)Hfn(C)) ™.

This definition does not depend on the spe-
cific choice of such matrix C.

For a polynomial F' over D, heights of F' are
heights of its coefficient vector.
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W. K. Chan, L.F. (Acta Arith., 2010)

Let D = (O‘I’(B) be a positive definite quater-
nion algebra over a totally real number field
K, where «, [ are totally negative algebraic
integers in K. Let O be an order in D. Let
N > 2 be an integer, and let Z C DV be
an L-dimensional right D-subspace, 1 < L <
N. Let F(X,Y) € D[X,Y] be a hermitian
form in 2N variables, and assume that F' is
isotropic on Z. Then there exists a basis
Yi,-..,Yyy for Z over D such that

F(y,) ‘= F(Yn,y,) =0
for all 1 <n <L and

41 —1
(4) h(y1) <K,0,N,La,5 Hinf(F) 2

and

(5)

h(y1)h(Yn) <K.oN.Lag Hnf(F)H1HO(2)8,
where the constants in the upper bounds of
(4) and (5) are explicitly determined.

HO(2)*4,
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Idea of the proof

Define a K-vector space isomorphism
[1: D — K*,
given by

[z] = ((0),z(1),z(2),2(3)),
foreach x = z(0)+z(1)i+x2(2)j+x2(3)k € D,
which extends naturally to [ ] : DV — K4V,
given by [x] = ([z1],...,[xn]) for each x =
(z1,...,zyn) € DV,

Define the trace form

QUX]) = Tr(F(X, X)),

which is a quadratic form in 4N variables over
K. Then F(z) = 0 for some = € DV if and

only if Q([x]) = 0.

Then apply Vaaler's theorem to Q([X]) on
the 4L-dimensional subspace [Z] C K4V, For
this method to produce our result, we de-
velop collection of height comparison lemmas
between heights over K and heights over D.
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Height comparison lemmas

First we compare the height of a vector x &
ON over D with its image in K*V under the

map [ ].
Lemma 1. For each x € OV,
t(a, B)H([x]) < Hips(x)
< h(z) < 2s(a, B)R([x]),
where

d
s, 8) = [ max{L, |alun, [Blon: [Blun}2.

n=1

and

d
t(o, 8) = [ mMin{L,|alon, |Bloms [0Blu,}2.

n=1

Next we have the comparison for heights of
the hermitian form F over D and its trace
form @ over K.
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Lemma 2. Let F be a hermitian form over
D and let () be its associated trace form over
K, as above. Then

t(a, B)

28(0{ B)QH(Q) S Hinf(F)a

and
O d+1 1
HY(F) <27d s(a, B)N(aB)dN(O)H(Q),
where N stands for the norm on K, and
NO) = min{|N(7)|%:

v € O is such that ~i,vj, vk € (”)}.

In the next lemma we compare the heights
of a D-subspace of DV with respect to two
different orders, ©O1 and Os in D.
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Lemma 3. Let O1 and O, be two orders in
D, and let Z C DN be an L-dimensional right
vector D-subspace of DV, 1 < L < N. Then

MW=L gO1(7) < HO2(2) < MN~LHO1(2),
where M = M(O1,05) is defined as

M = max {N (AolA(};)% N <A(92A51)%} .

Here Ay is the discriminant of the order O,
which is the ideal in O generated by all the
elements of the form

det (Tr(whwn))ogh,ngzg c OK7
where wq,...,w3 are in O.

Finally, Lemma 3 can be used, along with
the following identity, to relate height of a
D-subspace of D¥ to its image under [ ].

Lemma 4. Let Z be as in Lemma 3, then
V, = [Z] € K*N s a 4L-dimensional K-
subspace of K*V and

H(Vy) = HOP(2)*,
where
Op = Ok + Opi+ Oxj+ Oxk.
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Remarks

The height Hi s(F) in our inequalities cannot
be replaced by the height HO(F): there are
specific examples where the bounds would no
longer hold.

While it is not clear whether our bounds are
optimal, it is worth a note that starting from
our bounds and applying our height com-
parison lemmas, one retrieves a Cassels-type
bound with correct exponents for the corre-
sponding quadratic trace form over K in 4N
variables.

Moreover, our exponent on Hine(F') in (4) is
completely analogous to the bound obtained
by Raghavan for hermitian forms over CM
fields.
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