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Cassels’ Theorem

Let

F (X,Y ) =
N∑
i=1

N∑
j=1

fijXiYj

be a symmetric bilinear form in N ≥ 2 vari-
ables with coefficients in Z. Write

F (X) = F (X,X)

for the associated quadratic form.

In 1955, J. W. S. Cassels proved that if F
is isotropic, then there exists x ∈ Z\{0} such
that F (x) = 0, and

(1) max
1≤i≤N

|xi| ≤

3
N∑
i=1

N∑
j=1

|fij|

N−1
2

.

The expressions on the left and right hand
sides of (1) are examples of heights of a
vector and of a quadratic form, respectively,
and so (1) provides an explicit search bound
for non-trivial zeros of F . The exponent N−1

2
in the upper bound is sharp, as shown by an
example due to M. Knesser.
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Over number fields

A generalization of Cassels’ theorem over num-

ber fields has been obtained in 1975 by S.

Raghavan, who proved that if a quadratic

form F with coefficients in a number field

K is isotropic over K, then it has a non-

trivial zero x over K of small height, where

the bound is in terms of height of F for ap-

propriately defined heights of x and F which

generalize heights in (1). The exponent on

height of F in the upper bound is again N−1
2 .

Raghavan also produced an analogous result

for zeros of hermitian forms over CM fields,

where the exponent in the upper bound is
2N−1

2 . Although it is not clear whether this

is sharp, it seems to be a correct analogue of

the result for quadratic forms.

A more general result for quadratic forms was

produced by J. D. Vaaler. To state it we need

to develop some notation.
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Notation and heights: number fields

Let K be a number field of degree d over Q
with the set of places M(K), and let OK be

its ring of integers.

For each v ∈M(K), let dv = [Kv : Qv] and let

| |v be the unique absolute value on Kv that

extends either the usual absolute value on R
or C if v|∞, or the usual p-adic absolute value

on Qp if v|p, where p is a rational prime.

Then the product formula reads:∏
v∈M(K)

|a|dvv = 1,

for each 0 6= a ∈ K.
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Let N ≥ 2, and define the following infinite

and finite heights for each x ∈ KN :

Hinf(x) =
∏
v|∞

max
1≤i≤N

|xi|v,

Hinf(x) =
∏
v|∞

√√√√√ N∑
i=1

|xi|2v ,

Hfin(x) = [OK : OKx1 + · · ·+OKxN ]−1.

The global heights on KN are defined by:

H(x) = (Hinf(x)Hfin(x))
1
d ,

H(x) = (Hinf(x)Hfin(x))
1
d ,

and the inhomogeneous height is given by

h(x) := H(1,x) ≥ H(x) ≥ 1.
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Due to the normalizing exponent 1/d, our

global height functions are absolute, i.e. for

points over Q their values do not depend on

the field of definition, i.e. if x ∈ QN
then

height can be evaluated over any number

field containing the coordinates of x.

For a polynomial F with coefficients in K,

H(F ) is the height of its coefficient vector.

For an L-dimensional subspace

V =
{
x ∈ KN : Cx = 0

}
⊆ KN ,

where C is an (N − L) × N matrix of rank

N − L < N over K, let Gr(C) be the vector

of Grassmann coordinates of C (i.e. deter-

minants of (N − L)× (N − L) minors).
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Then define

Hinf(V ) = Hinf(Gr(C)).

Also define

Hfin(V ) = [ON−LK : C(ONK)]−1,

where C is viewed as a linear map

C : ONK → ON−LK .

Then define

H(V ) = (Hinf(V )Hfin(V ))
1
d .

This definition is independent of the choice

of the basis by the product formula.
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Vaaler’s Theorem

In 1989, J. D. Vaaler proved the follow-
ing result. Let V ⊆ KN be an L-dimensional
subspace, and let F be a quadratic form in
N variables with coefficients in K which is
isotropic over V . Then there exists a basis
x1, . . . ,xL ∈ ONK for V such that F (xi) = 0
for all 1 ≤ i ≤ L with

h(x1) ≤ h(x2) ≤ · · · ≤ h(xL),

and

(2) h(x1)h(xi)�K,N,L H(F )L−1H(V )2,

for 1 ≤ i ≤ L, where the constant in the upper
bound is explicitly determined. In particular,

(3) h(x1)�K,N,L H(F )
L−1

2 H(V ),

which is the analogue of Cassels’ bound, and
is sharp at least with respect to the exponent
on H(F ).

Our main result is an analogue of Vaaler’s
theorem over a certain class of quaternion
algebras.
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Notation and heights: quaternion

algebras

Here we explain the notation and height ma-

chinery used in the statement of our result.

Let K as above be a totally real number

field of degree d, and let α, β ∈ OK be totally

negative. Let D =
(
α,β
K

)
be a positive defi-

nite quaternion algebra over K, generated by

the elements i, j, k which satisfy the following

relations:

i2 = α, j2 = β, ij = −ji = k, k2 = −αβ.

As a vector space, D has dimension four over

K, and 1, i, j, k is a basis. We fix this basis,

and will always write each element x ∈ D as

x = x(0) + x(1)i+ x(2)j + x(3)k,

where x(0), x(1), x(2), x(3) ∈ K are respec-

tive components of x, and the standard in-

volution on D is conjugation:

x = x(0)− x(1)i− x(2)j − x(3)k.
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Trace and norm on D are defined by

Tr(x) = x+ x = 2x(0),

N(x) = xx = x(0)2−αx(1)2−βx(2)2+αβx(3)2

The algebra D is positive definite meaning

that the norm N(x) is given by a positive

definite quadratic form. In fact, since the

norm form N(x) is positive definite,

Dv := D ⊗K Kv

is isomorphic to the real quaternion

H = R + Ri+ Rj + Rk

for each v ∈ M(K) such that v|∞; there are

d such places, corresponding to the embed-

dings of K, call them v1, . . . , vd. Then each

embedding σn : K → R, 1 ≤ n ≤ d, induces

an embedding σn : D → Dvn, given by

σn(x) = x(0)(n)+x(1)(n)i+x(2)(n)j+x(3)(n)k
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Write x(n) for σn(x), then the local norm

N(n)(x) = x(n)x(n)

at each archimedean place is also a positive

definite quadratic form over the respective

real completion Kvn, 1 ≤ n ≤ d. We now

have archimedean absolute values on D, cor-

responding to the infinite places v1, . . . , vd of

K: for each x ∈ D, define

|x|vn =
√

N(n)(x).

We can now define heights over D, following

the work of C. Liebendorfer, 2004. First,

we define the infinite height on DN by

Hinf(x) =
d∏

n=1

max
1≤l≤N

|xl|vn

for every x ∈ DN .
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Let us next fix an order O in D; our definition

of finite height will be with respect to O.

For each x ∈ ON , let

HOfin(x) = [O : Ox1 + · · ·+OxN ]−1/4.

This is well defined, since Ox1 + · · ·+OxN is

a left submodule of O. Now we can define

the global homogeneous height on ON by

HO(x) =
(
Hinf(x)HOfin(x)

)1/d
,

and the global inhomogeneous height by

h(x) := Hinf(1,x) ≥ HO(x),

since O+Ox1+· · ·+OxN = O. To extend this

definition to DN , notice that for each x ∈ DN

there exists a ∈ OK such that ax ∈ ON , and

define HO(x) to be HO(ax) for any such a.

This is well defined by the product formula,

and HO(xt) = HO(x) for all t ∈ D×.
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We can now define height on the set of proper

right D-subspaces of DN .

D splits over E = K(
√
α), meaning that there

exists a K-algebra homomorphism

ρ : D →Mat22(E),

given by

ρ(x) =

(
x(0) + x(1)

√
α x(2) + x(3)

√
α

β(x(2)− x(3)
√
α) x(0)− x(1)

√
α

)
,

so that ρ(D) spans Mat22(E) as an E-vector

space. This map extends naturally to matri-

ces over D.

Let Z ⊆ DN be an L-dimensional right vector

subspace of DN , 1 ≤ L < N . Then there

exists an (N − L) ×N matrix C over D with

left row rank N − L such that

Z = {x ∈ DN : Cx = 0}.
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Define

Hinf(C) =

 d∏
n=1

∑
C0

|det (ρ(C0))|2vn

1/2

,

where the sum is over all (N − L) × (N − L)

minors C0 of C.

Also define

HOfin(C) = [ON−L : C(ON)]−1/4,

where C : ON → ON−L is viewed as a linear

map.

Then we can define

HO(Z) =
(
Hinf(C)HOfin(C)

)1/d
.

This definition does not depend on the spe-

cific choice of such matrix C.

For a polynomial F over D, heights of F are

heights of its coefficient vector.
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W. K. Chan, L.F. (Acta Arith., 2010)

Let D =
(
α,β
K

)
be a positive definite quater-

nion algebra over a totally real number field

K, where α, β are totally negative algebraic

integers in K. Let O be an order in D. Let

N ≥ 2 be an integer, and let Z ⊆ DN be

an L-dimensional right D-subspace, 1 ≤ L ≤
N . Let F (X,Y ) ∈ D[X,Y ] be a hermitian

form in 2N variables, and assume that F is

isotropic on Z. Then there exists a basis

y1, . . . ,yL for Z over D such that

F (yn) := F (yn,yn) = 0

for all 1 ≤ n ≤ L and

(4) h(y1)�K,O,N,L,α,β Hinf(F )
4L−1

2 HO(Z)4,

and

(5)

h(y1)h(yn)�K,O,N,L,α,β Hinf(F )4L−1HO(Z)8,

where the constants in the upper bounds of

(4) and (5) are explicitly determined.
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Idea of the proof

Define a K-vector space isomorphism

[ ] : D → K4,

given by

[x] = (x(0), x(1), x(2), x(3)),

for each x = x(0)+x(1)i+x(2)j+x(3)k ∈ D,
which extends naturally to [ ] : DN → K4N ,
given by [x] = ([x1], . . . , [xN ]) for each x =
(x1, . . . , xN) ∈ DN .

Define the trace form

Q([X]) := Tr(F (X,X)),

which is a quadratic form in 4N variables over
K. Then F (x) = 0 for some x ∈ DN if and
only if Q([x]) = 0.

Then apply Vaaler’s theorem to Q([X]) on
the 4L-dimensional subspace [Z] ⊆ K4N . For
this method to produce our result, we de-
velop collection of height comparison lemmas
between heights over K and heights over D.
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Height comparison lemmas

First we compare the height of a vector x ∈
ON over D with its image in K4N under the

map [ ].

Lemma 1. For each x ∈ ON ,

t(α, β)H([x]) ≤ Hinf(x)

≤ h(x) ≤ 2s(α, β)h([x]),

where

s(α, β) =
d∏

n=1

max{1, |α|vn, |β|vn, |αβ|vn}
1
2,

and

t(α, β) =
d∏

n=1

min{1, |α|vn, |β|vn, |αβ|vn}
1
2.

Next we have the comparison for heights of

the hermitian form F over D and its trace

form Q over K.
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Lemma 2. Let F be a hermitian form over

D and let Q be its associated trace form over

K, as above. Then

t(α, β)

2s(α, β)2
H(Q) ≤ Hinf(F ),

and

HO(F ) ≤ 2
d+1
d s(α, β)N(αβ)

1
dN(O)H(Q),

where N stands for the norm on K, and

N(O) = min
{
|N(γ)|

1
d :

γ ∈ OK is such that γi, γj, γk ∈ O
}
.

In the next lemma we compare the heights

of a D-subspace of DN with respect to two

different orders, O1 and O2 in D.
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Lemma 3. Let O1 and O2 be two orders in
D, and let Z ⊆ DN be an L-dimensional right
vector D-subspace of DN , 1 ≤ L ≤ N . Then

M−(N−L)HO1(Z) ≤ HO2(Z) ≤MN−LHO1(Z),

where M =M(O1,O2) is defined as

M = max

{
N
(
∆O1

∆−1
O2

)1
2 ,N

(
∆O2

∆−1
O1

)1
2

}
.

Here ∆O is the discriminant of the order O,
which is the ideal in OK generated by all the
elements of the form

det (Tr(ωhωn))0≤h,n≤3 ∈ OK,
where ω0, . . . , ω3 are in O.

Finally, Lemma 3 can be used, along with
the following identity, to relate height of a
D-subspace of DN to its image under [ ].

Lemma 4. Let Z be as in Lemma 3, then
VZ := [Z] ⊆ K4N is a 4L-dimensional K-
subspace of K4N , and

H(VZ) = HOD(Z)4,

where

OD = OK +OKi+OKj +OKk.
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Remarks

The height Hinf(F ) in our inequalities cannot

be replaced by the height HO(F ): there are

specific examples where the bounds would no

longer hold.

While it is not clear whether our bounds are

optimal, it is worth a note that starting from

our bounds and applying our height com-

parison lemmas, one retrieves a Cassels-type

bound with correct exponents for the corre-

sponding quadratic trace form over K in 4N

variables.

Moreover, our exponent on Hinf(F ) in (4) is

completely analogous to the bound obtained

by Raghavan for hermitian forms over CM

fields.
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