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Thue and Siegel

Let

Ax = 0 (1)

be an M × N linear system of rank M < N

with integer entries. Define the height of a

vector x ∈ ZN to be

|x| = max
1≤i≤N

|xi|,

and similarly let the height of the matrix

A = (aij)1≤i≤M,1≤j≤N

be

|A| = max{|aij| : 1 ≤ i ≤M,1 ≤ j ≤ N}.

Question 1. What is the smallest height of

a non-trivial integral solution to (1)?

Indeed, it is natural to expect that there must

exist a solution vector x with |x| not too large

compared with |A|.
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In 1929 Carl Ludwig Siegel proved that there

exists a non-trivial integral solution x to (1)

with

|x| ≤ (1 +N |A|)
M

N−M . (2)

The proof uses Dirichlet box principle. In

fact, a similar result was at least informally

observed by Axel Thue as early as 1909. This

result is best possible in the sense that the

exponent M
N−M in (2) cannot be improved.

Results of this sort are known under the gen-

eral name of Siegel’s lemma, and are very

important in transcendence. In the recent

years Siegel’s lemma was studied by many

authors in Diophantine approximations for its

own sake as well: it can be thought of as the

simplest case of an effective existence result

for rational points on varieties.

Indeed, since there are only finitely many in-

tegral vectors x satisfying (2), one can easily

test all of them to find a solution to (1).
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Bombieri-Vaaler

A bound like (2) however depends on the
choice of a specific matrix A in (1), which is
a weakness: if (1) is multiplied on the left by
a matrix U ∈ GLM(Z), the solution space is
unchanged, but |UA| can be quite different
from |A|.

In 1983 Enrico Bombieri and Jeffrey Vaaler
proved that there exists a non-zero vector
x ∈ ZN satisfying (1) such that

|x| ≤
(
D−1

√
|det(AAt)|

) 1
N−M

, (3)

where D is greatest common divisor of the
determinants of all M ×M minors of A. No-
tice that the quantity D−1

√
|det(AAt)|, un-

like |A|, is invariant under left-multiplication
of A by elements of GLM(Z).

In fact, the full power of Bombieri-Vaaler re-
sult gives a full small-height basis for the null-
space of A, and extends to much more gen-
eral situations. For this we need additional
notation.
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Absolute values

Throughout this talk, K will be either a num-

ber field (finite extension of Q), a function

field, or algebraic closure of one or the other;

in any case, we write K for the algebraic clo-

sure of K, so it may be that K = K. In fact,

until further notice assume that K 6= K.

By a function field we will always mean a fi-

nite algebraic extension of the field K = K0(t)

of rational functions in one variable over a

field K0, where K0 can be any perfect field.

When K is a number field, clearly K ⊂ K =

Q; when K is a function field, K ⊂ K = K,

the algebraic closure of K. In the number

field case, we write d = [K : Q] for the global

degree of K over Q; in the function field case,

the global degree is d = [K : K].
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There are infinitely many absolute values on

K: those that satisfy the triangle inequality

|a+ b| ≤ |a|+ |b|,

but not the ultrametric inequality

|a+ b| ≤ max{|a|, |b|},

are called archimedean, and those that sat-

isfy the ultrametric inequality are called non-

archimedean. We can define an equivalence

relation on absolute values: | |1 and | |2 are

said to be equivalent if there exists a real

number θ such that

|a|1 = |a|θ2
for all a ∈ K. Equivalence classes of absolute

values are called places, and we write M(K)

for the set of all places of K. For each place

v ∈M(K) we pick representatives | |v and we

write v|∞ if v is archimedean, and v -∞ oth-

erwise. We also write Kv for the completion

of K at v and let dv be the local degree of K

at v, which is [Kv : Qv] in the number field

case, and [Kv : Kv] in the function field case.
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In any case, for each place u of the ground

field, be it Q or K, we have∑
v∈M(K),v|u

dv = d. (4)

If K is a number field, then for each place

v ∈ M(K) we define the absolute value | |v
to be the unique absolute value on Kv that

extends either the usual absolute value on R
or C if v|∞, or the usual p-adic absolute value

on Qp if v|p, where p is a prime.

If K is a function field, then all absolute val-

ues on K are non-archimedean. For each

v ∈ M(K), let Ov be the valuation ring of

v in Kv and Mv the unique maximal ideal in

Ov. We choose the unique corresponding ab-

solute value | |v such that:

(i) if 1/t ∈Mv, then |t|v = e,

(ii) if an irreducible polynomial p(t) ∈ Mv,

then |p(t)|v = e−deg(p).
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In both cases, for each non-zero a ∈ K the

Artin-Whaples product formula reads∏
v∈M(K)

|a|dvv = 1. (5)

Example: Let K = Q(t), and let

f(t) =
t− 1

t− 2
.

Let | |1 be the absolute value, corresponding

to the ideal (t − 1) and | |2 be the absolute

value corresponding to the ideal (t−2). Then

|f(t)|1 = e−1, |f(t)|2 = e1,

and |f(t)| = e0 for every absolute value | |
different from | |1 and | |2. Thus:∏

v∈M(K)

|f(t)|dvv =
1

e
× e = 1.
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Height functions

We can define local norms on each KN
v by

|x|v = max
1≤i≤N

|xi|v,

and for all archimedean places v also define

‖x‖v =

 N∑
i=1

|xi|2v

1/2

,

for each x = (x1, ..., xN) ∈ KN
v . Then define

a projective height function on KN by

H(x) =
∏

v∈M(K)

|x|dv/dv

for each x ∈ KN . This product is convergent
because only finitely many of the local norms
for each vector x ∈ KN are different from 1.
Moreover, because of the normalizing power
1/d in the definition, H is absolute, i.e. does
not depend on the field of definition. H is
called projective because it is well defined on
the projective space PN−1(K), i.e.

H(ax) = H(x), ∀ 0 6= a ∈ K, x ∈ KN ,

which is true by the product formula.

9



We also define the inhomogeneous height
on KN by

h(x) = H(1,x),

for all x ∈ KN . It is easy to see that

h(x) ≥ H(x) ≥ 1,

for all non-zero x ∈ KN .

While the advantage of H is its projective
nature, h is more sensitive and refined when
measuring the ”size” and ”arithmetic com-
plexity” of a specific vector, not just the cor-
responding projective point.

A very important property that both of these
heights satisfy over number fields is

Northcott’s theorem: If K is a number
field, then for every B ∈ R>0 the sets

{x ∈ PN−1(K) : H(x) ≤ B}
and

{x ∈ KN : h(x) ≤ B}

are finite.
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Northcott’s theorem is also true for function

fields whose field of constants K0 is finite.

We can also talk about height of subspaces

of KN . Let V ⊆ KN be an L-dimensional

subspace, and let x1, ...,xL be a basis for V .

Then

y := x1 ∧ ... ∧ xL ∈ K(NL)

under the standard embedding. Define

H(V ) :=
∏
v-∞
|y|dv/dv ×

∏
v|∞
‖y‖dv/dv .

This definition is legitimate, i.e. does not

depend on the choice of the basis. Hence we

have defined a height on points of a Grass-

manian over K.
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Northcott’s theorem, when it works, has the

following most important consequence.

Suppose we want to find a point satisfying

some arithmetic condition, and assume that

we can prove the existence of a point of

height ≤ B satisfying this condition. But

there are only finitely many such points. This

suggests a search algorithm, and so B is a

search bound.

Moreover, height measures arithmetic com-

plexity, and so a point of relatively small height

is “arithmetically simple”, which makes it even

more interesting.

We are now ready to apply this machinery.

12



Generalized Siegel’s lemma

Theorem 1. Let K be a number field, a func-
tion field, or the algebraic closure of one or
the other. Let V ⊆ KN be an L-dimensional
subspace, 1 ≤ L ≤ N . Then there exists a
basis v1, . . . ,vL for V over K such that

L∏
i=1

H(vi) ≤ CK(L)H(V ), (6)

where CK(L) is an explicit field constant. In
fact, if K is a number field or Q, then the ba-
sis v1, . . . , vL as above satisfies the stronger
inequality

L∏
i=1

h(vi) ≤ CK(L)H(V ). (7)

If, on the other hand, K is a function field of
genus g (i.e. K is the field of rational func-
tions on a smooth projective curve of genus
g over a perfect coefficient field K0), then
there exists a basis u1, . . . ,uL for V over K
such that

L∏
i=1

h(ui) ≤ egLCK(L)H(V ). (8)
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Inequality (6) of this general version of Siegel’s

lemma was obtained by Bombieri and Vaaler

(1983) if K is a number field, by Jeffrey

Thunder (1995) if K is a function field, and

by Damien Roy and Jeffrey Thunder (1996)

if K is the algebraic closure of one or the

other; (7) is a fairly direct corollary of (6).

On the other hand, (8) (F., 2010) required

more work.

An immediate consequence of Theorem 1 is

the existence of a nonzero point v1 ∈ V such

that

H(v1) ≤ (CK(L)H(V ))1/L . (9)

The bounds of (6) - (9) are sharp in the

sense that the exponents on H(V ) are small-

est possible.
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Faltings’ version

In 1992 Gerd Faltings proved a refinement

of Siegel’s lemma, which guaranteed the ex-

istence of a small-height point in a vector

space outside of a proper subspace, all over Q.

Here is our first generalization of Faltings’ re-

sult.

Theorem 2 (F., 2006). Let K be a number

field of degree d, let N ≥ 2 be an integer, and

let V ⊆ KN be an L-dimensional subspace,

1 ≤ L ≤ N . Let U1, . . . , UM be nonzero sub-

spaces of KN such that V * ⋃M
i=1Ui. Let

J = max1≤i≤M{dimK(Ui)}.Then there exists

a point x ∈ V \
⋃M
i=1Ui with coordinate in

algebraic integers such that

H(x) ≤ BK(N,L, J)H(V )d ×

×


 M∑
i=1

1

H(Ui)d

 1
(L−J)d

+M
1

(L−J)d+1

 ,
where BK(N,L, J) is an explicit field con-

stant.
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More generally...

A sharper version of the bound of Theorem 2,

again depending of H(V ), H(Ui), and M was

recently obtained by Éric Gaudron (2009).

On the other hand, here is a more general

result of similar nature.

Theorem 3 (F., 2010). Let K be a number

field, function field, or Q. Let N ≥ 2 be

an integer, and let V be an L-dimensional

subspace of KN , 1 ≤ L ≤ N . Let ZK be

a union of algebraic varieties defined over K

such that V * ZK, and let M be sum of

degrees of these varieties. Then there exists

a basis x1, . . . ,xL ∈ V \ZK for V over K such

that for each 1 ≤ n ≤ L,

H(xn) ≤ h(xn) ≤ AK(L,M)H(V ), (10)

where AK(L,M) is an explicit field constant.

The exponent 1 on H(V ) in the bound of

(10) is sharp in general.
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Sketch of the proof of Theorem 3

• Reduction to the case of one polynomial

• Combinatorial Nullstellensatz on a subspace

• Siegel’s lemma (Theorem 1) with inhomo-
geneous heights

• Inhomogeneous height inequality:

h

 L∑
i=1

ξivi

 ≤ Lδh(ξ)
L∏
i=1

h(xi), (11)

where ξ ∈ KL, v1, . . . ,vL ∈ KN , and

δ =

{
1 if K is a number field or Q
0 otherwise.

It should be remarked that the inequality (11)
no longer holds if the inhomogeneous height
h in the upper bound is replaced with the
projective height H, which is why we need
Siegel’s lemma with inhomogeneous heights.

• Assuming we have a bound on h(ξ), we can
combine (11) with Siegel’s lemma to finish
the proof.
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We want to construct a set S ⊆ K with |S| >
M so that h(ξ) is small for every ξ ∈ SL.

If K is a number field with the number of
roots of unity ωK > M , Q, or function field
with either an infinite field of constants or
a finite field of constants Fq so that q > M ,
then there exists such a set S with h(ξ) = 1
for every ξ ∈ SL.

The main difficulty arises if K is a number
field with ωK ≤ M or if K is a function field
over a finite field Fq with q ≤M .

In both cases the construction of S comes
from a certain lattice in Euclidean space. In
the number field case, this lattice is the im-
age of the ring of algebraic integers OK under
the standard embedding of K into Rd.

In the function field case, this lattice is the
image of the ring of rational functions with
all zeros and poles on the curve, over which
K is defined, under the principal divisor map.

Lattice point counting estimates are then used
to construct S.
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Algebraic integers of small height

As a corollary of the proof of Theorem 3, we

produce a uniform lower bound on the num-

ber of algebraic integers of bounded height

in a number field K. The subject of count-

ing algebraic numbers of bounded height has

been started by the famous asymptotic for-

mula of Schanuel. Some explicit upper and

lower bounds have also been produced later,

for instance by Schmidt. Recently a new

sharp upper bound has been given by Loher

and Masser. We produce the following es-

timate for the number of algebraic integers.

Corollary 4 (F., 2010). Let K be a number

field of degree d over Q with discriminant DK
and r1 real embeddings. Let OK be its ring

of integers. For all R ≥ (2r1|DK|)1/2,

(2r1|DK|)−1/2Rd < |{x ∈ OK : h(x) ≤ R}| .
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