On Siegel’s lemma outside of a union of varieties

Lenny Fukshansky
Claremont McKenna College & IHES

Universität Magdeburg
November 9, 2010
Let
\[Ax = 0 \] (1)
be an \(M \times N \) linear system of rank \(M < N \) with integer entries. Define the **height** of a vector \(x \in \mathbb{Z}^N \) to be
\[|x| = \max_{1 \leq i \leq N} |x_i|, \]
and similarly let the height of the matrix
\[A = (a_{ij})_{1 \leq i \leq M, 1 \leq j \leq N} \]
be
\[|A| = \max\{|a_{ij}| : 1 \leq i \leq M, 1 \leq j \leq N\}. \]

Question 1. *What is the smallest height of a non-trivial integral solution to (1)?*

Indeed, it is natural to expect that there must exist a solution vector \(x \) with \(|x| \) not too large compared with \(|A|\).
In 1929 Carl Ludwig Siegel proved that there exists a non-trivial integral solution x to (1) with

$$|x| \leq (1 + N|A|)^{\frac{M}{N-M}}.$$ \hspace{1cm} (2)

The proof uses Dirichlet box principle. In fact, a similar result was at least informally observed by Axel Thue as early as 1909. This result is best possible in the sense that the exponent $\frac{M}{N-M}$ in (2) cannot be improved.

Results of this sort are known under the general name of **Siegel’s lemma**, and are very important in transcendence. In the recent years Siegel’s lemma was studied by many authors in Diophantine approximations for its own sake as well: it can be thought of as the simplest case of an **effective** existence result for rational points on varieties.

Indeed, since there are only finitely many integral vectors x satisfying (2), one can easily test all of them to find a solution to (1).
Bombieri-Vaaler

A bound like (2) however depends on the choice of a specific matrix A in (1), which is a weakness: if (1) is multiplied on the left by a matrix $U \in \text{GL}_M(\mathbb{Z})$, the solution space is unchanged, but $|UA|$ can be quite different from $|A|$.

In 1983 Enrico Bombieri and Jeffrey Vaaler proved that there exists a non-zero vector $x \in \mathbb{Z}^N$ satisfying (1) such that

$$|x| \leq \left(\frac{1}{D-1} \sqrt{|\det(AA^t)|} \right)^{\frac{1}{N-M}}, \quad (3)$$

where D is greatest common divisor of the determinants of all $M \times M$ minors of A. Notice that the quantity $D^{-1} \sqrt{|\det(AA^t)|}$, unlike $|A|$, is invariant under left-multiplication of A by elements of $\text{GL}_M(\mathbb{Z})$.

In fact, the full power of Bombieri-Vaaler result gives a full small-height basis for the null-space of A, and extends to much more general situations. For this we need additional notation.
Absolute values

Throughout this talk, K will be either a number field (finite extension of \mathbb{Q}), a function field, or algebraic closure of one or the other; in any case, we write \overline{K} for the algebraic closure of K, so it may be that $K = \overline{K}$. In fact, until further notice assume that $K \neq \overline{K}$.

By a function field we will always mean a finite algebraic extension of the field $\mathcal{K} = \mathcal{K}_0(t)$ of rational functions in one variable over a field \mathcal{K}_0, where \mathcal{K}_0 can be any perfect field.

When K is a number field, clearly $K \subset \overline{K} = \overline{\mathbb{Q}}$; when K is a function field, $K \subset \overline{K} = \overline{\mathcal{K}}$, the algebraic closure of \mathcal{K}. In the number field case, we write $d = [K : \mathbb{Q}]$ for the global degree of K over \mathbb{Q}; in the function field case, the global degree is $d = [K : \mathcal{K}].$
There are infinitely many **absolute values** on K: those that satisfy the triangle inequality

$$|a + b| \leq |a| + |b|,$$

but not the ultrametric inequality

$$|a + b| \leq \max\{|a|, |b|\},$$

are called **archimedean**, and those that satisfy the ultrametric inequality are called **non-archimedean**. We can define an equivalence relation on absolute values: $| |_1$ and $| |_2$ are said to be equivalent if there exists a real number θ such that

$$|a|_1 = |a|^\theta_2$$

for all $a \in K$. Equivalence classes of absolute values are called **places**, and we write $M(K)$ for the set of all places of K. For each place $v \in M(K)$ we pick representatives $| |_v$ and we write $v|\infty$ if v is archimedean, and $v \nmid \infty$ otherwise. We also write K_v for the completion of K at v and let d_v be the local degree of K at v, which is $[K_v : \mathbb{Q}_v]$ in the number field case, and $[K_v : \mathbb{K}_v]$ in the function field case.
In any case, for each place u of the ground field, be it \mathbb{Q} or \mathbb{K}, we have

$$\sum_{v \in M(K), v | u} d_v = d. \quad (4)$$

If K is a number field, then for each place $v \in M(K)$ we define the absolute value $| |_v$ to be the unique absolute value on K_v that extends either the usual absolute value on \mathbb{R} or \mathbb{C} if $v | \infty$, or the usual p-adic absolute value on \mathbb{Q}_p if $v | p$, where p is a prime.

If K is a function field, then all absolute values on K are non-archimedean. For each $v \in M(K)$, let \mathfrak{O}_v be the valuation ring of v in K_v and \mathfrak{M}_v the unique maximal ideal in \mathfrak{O}_v. We choose the unique corresponding absolute value $| |_v$ such that:

(i) if $1/t \in \mathfrak{M}_v$, then $|t|_v = e$,

(ii) if an irreducible polynomial $p(t) \in \mathfrak{M}_v$, then $|p(t)|_v = e^{-\deg(p)}$.

7
In both cases, for each non-zero \(a \in K \) the Artin-Whaples product formula reads

\[
\prod_{v \in M(K)} |a|^d_v = 1. \tag{5}
\]

Example: Let \(K = \mathbb{Q}(t) \), and let

\[
f(t) = \frac{t - 1}{t - 2}.
\]

Let \(|_1 \) be the absolute value, corresponding to the ideal \((t - 1) \) and \(|_2 \) be the absolute value corresponding to the ideal \((t - 2) \). Then

\[
|f(t)|_1 = e^{-1}, \quad |f(t)|_2 = e^1,
\]

and \(|f(t)| = e^0 \) for every absolute value \(| \) different from \(|_1 \) and \(|_2 \). Thus:

\[
\prod_{v \in M(K)} |f(t)|_v^d_v = \frac{1}{e} \times e = 1.
\]
Height functions

We can define local norms on each K_v^N by

$$|x|_v = \max_{1 \leq i \leq N} |x_i|_v,$$

and for all archimedean places v also define

$$\|x\|_v = \left(\sum_{i=1}^{N} |x_i|^2_v \right)^{1/2},$$

for each $x = (x_1, ..., x_N) \in K_v^N$. Then define a **projective height function** on K^N by

$$H(x) = \prod_{v \in M(K)} |x|_v^{d_v/d},$$

for each $x \in K^N$. This product is convergent because only finitely many of the local norms for each vector $x \in K^N$ are different from 1. Moreover, because of the normalizing power $1/d$ in the definition, H is **absolute**, i.e. does not depend on the field of definition. H is called projective because it is well defined on the projective space $\mathbb{P}^{N-1}(K)$, i.e.

$$H(ax) = H(x), \; \forall \; 0 \neq a \in K, \; x \in K^N,$$

which is true by the product formula.
We also define the **inhomogeneous height** on K^N by

$$h(x) = H(1, x),$$

for all $x \in K^N$. It is easy to see that

$$h(x) \geq H(x) \geq 1,$$

for all non-zero $x \in K^N$.

While the advantage of H is its projective nature, h is more sensitive and refined when measuring the "size" and "arithmetic complexity" of a specific vector, not just the corresponding projective point.

A very important property that both of these heights satisfy over number fields is

Northcott’s theorem: *If K is a number field, then for every $B \in \mathbb{R}_{>0}$ the sets*

$$\{ x \in \mathbb{P}^{N-1}(K) : H(x) \leq B \}$$

and

$$\{ x \in K^N : h(x) \leq B \}$$

are finite.
Northcott's theorem is also true for function fields whose field of constants \mathbb{K}_0 is finite.

We can also talk about height of subspaces of \mathbb{K}^N. Let $V \subseteq \mathbb{K}^N$ be an L-dimensional subspace, and let $x_1, ..., x_L$ be a basis for V. Then

$$y := x_1 \wedge ... \wedge x_L \in \mathbb{K}^{N_L}$$

under the standard embedding. Define

$$\mathcal{H}(V) := \prod_{v|\infty} |y|_{v}^{d_v/d} \times \prod_{v|\infty} \|y\|_{v}^{d_v/d}.$$

This definition is legitimate, i.e. does not depend on the choice of the basis. Hence we have defined a height on points of a Grassmanian over \mathbb{K}.

11
Northcott’s theorem, when it works, has the following most important consequence.

Suppose we want to find a point satisfying some arithmetic condition, and assume that we can prove the existence of a point of height $\leq B$ satisfying this condition. But there are only finitely many such points. This suggests a search algorithm, and so B is a search bound.

Moreover, height measures arithmetic complexity, and so a point of relatively small height is “arithmetically simple”, which makes it even more interesting.

We are now ready to apply this machinery.
Generalized Siegel's lemma

Theorem 1. Let K be a number field, a function field, or the algebraic closure of one or the other. Let $V \subseteq K^N$ be an L-dimensional subspace, $1 \leq L \leq N$. Then there exists a basis v_1, \ldots, v_L for V over K such that

$$\prod_{i=1}^{L} H(v_i) \leq C_K(L)\mathcal{H}(V),$$

(6)

where $C_K(L)$ is an explicit field constant. In fact, if K is a number field or \mathbb{Q}, then the basis v_1, \ldots, v_L as above satisfies the stronger inequality

$$\prod_{i=1}^{L} h(v_i) \leq C_K(L)\mathcal{H}(V).$$

(7)

If, on the other hand, K is a function field of genus g (i.e. K is the field of rational functions on a smooth projective curve of genus g over a perfect coefficient field \mathbb{K}_0), then there exists a basis u_1, \ldots, u_L for V over K such that

$$\prod_{i=1}^{L} h(u_i) \leq e^{gL}C_K(L)\mathcal{H}(V).$$

(8)
Inequality (6) of this general version of Siegel’s lemma was obtained by Bombieri and Vaaler (1983) if K is a number field, by Jeffrey Thunder (1995) if K is a function field, and by Damien Roy and Jeffrey Thunder (1996) if K is the algebraic closure of one or the other; (7) is a fairly direct corollary of (6). On the other hand, (8) (F., 2010) required more work.

An immediate consequence of Theorem 1 is the existence of a nonzero point $v_1 \in V$ such that

$$H(v_1) \leq (C_K(L)\mathcal{H}(V))^{1/L}. \quad (9)$$

The bounds of (6) - (9) are sharp in the sense that the exponents on $\mathcal{H}(V)$ are smallest possible.
Faltings’ version

In 1992 Gerd Faltings proved a refinement of Siegel’s lemma, which guaranteed the existence of a small-height point in a vector space outside of a proper subspace, all over \(\mathbb{Q} \). Here is our first generalization of Faltings’ result.

Theorem 2 (F., 2006). Let \(K \) be a number field of degree \(d \), let \(N \geq 2 \) be an integer, and let \(V \subseteq K^N \) be an \(L \)-dimensional subspace, \(1 \leq L \leq N \). Let \(U_1, \ldots, U_M \) be nonzero subspaces of \(K^N \) such that \(V \not\subseteq \bigcup_{i=1}^{M} U_i \). Let \(J = \max_{1 \leq i \leq M} \{ \dim_K(U_i) \} \). Then there exists a point \(x \in V \setminus \bigcup_{i=1}^{M} U_i \) with coordinate in algebraic integers such that

\[
H(x) \leq B_K(N, L, J) \mathcal{H}(V)^d \times \left\{ \left(\sum_{i=1}^{M} \frac{1}{\mathcal{H}(U_i)^d} \right)^{\frac{1}{(L-J)d}} + M^{\frac{1}{(L-J)d+1}} \right\},
\]

where \(B_K(N, L, J) \) is an explicit field constant.
More generally...

A sharper version of the bound of Theorem 2, again depending of $\mathcal{H}(V)$, $\mathcal{H}(U_i)$, and M was recently obtained by Éric Gaudron (2009). On the other hand, here is a more general result of similar nature.

Theorem 3 (F., 2010). Let K be a number field, function field, or \mathbb{Q}. Let $N \geq 2$ be an integer, and let V be an L-dimensional subspace of K^N, $1 \leq L \leq N$. Let \mathcal{Z}_K be a union of algebraic varieties defined over K such that $V \not\subseteq \mathcal{Z}_K$, and let M be sum of degrees of these varieties. Then there exists a basis $x_1, \ldots, x_L \in V \setminus \mathcal{Z}_K$ for V over K such that for each $1 \leq n \leq L$,

$$H(x_n) \leq h(x_n) \leq A_K(L, M)\mathcal{H}(V), \quad (10)$$

where $A_K(L, M)$ is an explicit field constant.

The exponent 1 on $\mathcal{H}(V)$ in the bound of (10) is sharp in general.
Sketch of the proof of Theorem 3

• Reduction to the case of one polynomial

• Combinatorial Nullstellensatz on a subspace

• Siegel’s lemma (Theorem 1) with inhomogeneous heights

• Inhomogeneous height inequality:

\[h \left(\sum_{i=1}^{L} \xi_i v_i \right) \leq L^\delta h(\xi) \prod_{i=1}^{L} h(x_i), \quad (11) \]

where \(\xi \in K^L, v_1, \ldots, v_L \in K^N \), and

\[\delta = \begin{cases}
1 & \text{if } K \text{ is a number field or } \mathbb{Q} \\
0 & \text{otherwise.}
\end{cases} \]

It should be remarked that the inequality (11) no longer holds if the inhomogeneous height \(h \) in the upper bound is replaced with the projective height \(H \), which is why we need Siegel’s lemma with inhomogeneous heights.

• Assuming we have a bound on \(h(\xi) \), we can combine (11) with Siegel’s lemma to finish the proof.
We want to construct a set $S \subseteq K$ with $|S| > M$ so that $h(\xi)$ is small for every $\xi \in S^L$.

If K is a number field with the number of roots of unity $\omega_K > M$, $\overline{\mathbb{Q}}$, or function field with either an infinite field of constants or a finite field of constants \mathbb{F}_q so that $q > M$, then there exists such a set S with $h(\xi) = 1$ for every $\xi \in S^L$.

The main difficulty arises if K is a number field with $\omega_K \leq M$ or if K is a function field over a finite field \mathbb{F}_q with $q \leq M$.

In both cases the construction of S comes from a certain lattice in Euclidean space. In the number field case, this lattice is the image of the ring of algebraic integers O_K under the standard embedding of K into \mathbb{R}^d.

In the function field case, this lattice is the image of the ring of rational functions with all zeros and poles on the curve, over which K is defined, under the principal divisor map.

Lattice point counting estimates are then used to construct S.

18
Algebraic integers of small height

As a corollary of the proof of Theorem 3, we produce a uniform lower bound on the number of algebraic integers of bounded height in a number field K. The subject of counting algebraic numbers of bounded height has been started by the famous asymptotic formula of Schanuel. Some explicit upper and lower bounds have also been produced later, for instance by Schmidt. Recently a new sharp upper bound has been given by Loher and Masser. We produce the following estimate for the number of algebraic integers.

Corollary 4 (F., 2010). Let K be a number field of degree d over \mathbb{Q} with discriminant D_K and r_1 real embeddings. Let O_K be its ring of integers. For all $R \geq (2^{r_1}|D_K|)^{1/2}$,

\[
(2^{r_1}|D_K|)^{-1/2} R^d < |\{x \in O_K : h(x) \leq R\}|.
\]