Some effective Diophantine results
over $\overline{\mathbb{Q}}$

Lenny Fukshansky
Texas A&M University, USA

July 2005
Introduction

Let \(F(X_1, \ldots, X_N) \in K[X_1, \ldots, X_N] \) be a homogeneous polynomial of degree \(M \geq 1 \) in \(N \geq 2 \) variables with coefficients in a number field \(K \) with \([K : \mathbb{Q}] = d \).

Question 1: Does \(F \) have a non-trivial zero over \(K \)?

Question 2: Assuming it does, how do we find such a zero?

Both questions are very difficult. The famous result of Matijasevich implies that (at least in case \(K = \mathbb{Q} \)) Question 1 is undecidable.

One can consider both questions simultaneously. Following D. W. Masser, we introduce search bounds. We start by defining height functions.
Height functions

Let $M(K)$ be the set of places of K. For each place $v \in M(K)$ let K_v be the completion of K at v and $d_v = [K_v : \mathbb{Q}_v]$ be the local degree. For each place $v \in M(K)$ we define the absolute value $|| \cdot ||_v$ to be the unique absolute value on K_v that extends either the usual absolute value on \mathbb{R} or \mathbb{C} if $v|\infty$, or the usual p-adic absolute value on \mathbb{Q}_p if $v|p$, where p is a prime. We also define the second absolute value $\mid \mid \cdot \mid \mid_v$ for each place v by

$$\mid \mid a \mid \mid_v = ||a||_v^{d_v/d}$$

for all $a \in K$. Then for each non-zero $a \in K$ the *product formula* reads

$$\prod_{v \in M(K)} \mid a \mid_v = 1. \quad (1)$$

We extend absolute values to vectors by defining the local heights. For each $v \in M(K)$ define a local height H_v for each $\mathbf{x} \in K_v^N$ by

$$H_v(\mathbf{x}) = \begin{cases}
\max_{1 \leq i \leq N} |x_i|_v & \text{if } v \nmid \infty \\
\left(\sum_{i=1}^N \|x_i\|_v^2 \right)^{d_v/2d} & \text{if } v|\infty
\end{cases}$$
We define the following global height function on K^N:

$$H(x) = \prod_{v \in M(K)} H_v(x),$$

(2)

for each $x \in K^N$.

Heights can be extended to polynomials: if

$$F(X_1, ..., X_N) \in K[X_1, ..., X_N]$$

we write $H(F)$ to mean the height of its coefficient vector. We can also define height on elements of $GL_N(K)$ by viewing them as vectors in K^{N^2}.

Notice that because of the normalizing exponent $1/d$ our height is absolute (i.e. defined over \mathbb{Q}) in the sense that it does not depend on the field of definition; hence K can be any number field which contains coordinates of a vector whose height we want to compute.
Search bounds

For each vector \(\mathbf{x} = (x_1, \ldots, x_N) \in \overline{\mathbb{Q}}^N \), let

\[
\deg_K(\mathbf{x}) = [K(x_1, \ldots, x_N) : K].
\]

A fundamental property of height is the following.

Northcott’s theorem: Let \(C, D \in \mathbb{R}_+ \). The set

\[
S(C, D) = \{ \mathbf{x} \in \overline{\mathbb{Q}}^N : H(\mathbf{x}) \leq C, \ \deg_{\mathbb{Q}}(\mathbf{x}) \leq D \}
\]

is finite for all \(C, D \).

Now suppose that our polynomial \(F \) has a non-trivial zero over \(K \). If we can prove that \(F \) has such a zero of bounded height over \(K \) with an explicit bound, call it \(C_K(F) \), we reduce the search for a non-trivial zero to a finite set. Hence we answer both questions 1 and 2 simultaneously. We will call \(C_K(F) \) a **search bound** for \(F \) over \(K \).

Problem 1. Given a polynomial \(F \) as above, find a search bound for it over \(K \).
For a general N, search bounds have only been found in the following cases:

1. F is a linear form (Siegel’s Lemma: Bombieri-Vaaler 1983)
2. F is an inhomogeneous linear polynomial (Vaaler-O’Leary 1993, etc.)
3. F is a quadratic form (Cassels 1955, Raghavan 1975, etc.)

In general, search bounds over a fixed number field probably do not exist. However, we can relax the requirement that zero of F has to lie over K.

Problem 2. *Given a polynomial F as above, find a pair $(C, D) = (C(F), D(F))$ independent of K such that there exists a non-trivial zero $x \in \overline{Q}^N$ of F with $\deg_K(x) \leq D$ and $H(x) \leq C$.*

By Northcott’s theorem, this would still be an effective search bound for F.
Basic bounds

The following is an easy observation.

Proposition 1. Let $N \geq 2$, and let

$$ F(X_1, \ldots, X_N) \in K[X_1, \ldots, X_N] $$

be a homogeneous polynomial of degree $M \geq 1$. There exists $0 \neq x \in \overline{\mathbb{Q}}^N$ such that $F(x) = 0$, $\deg_K(x) \leq M$, and

$$ H(x) \leq \sqrt{2} \ H(F)^{1/M}. $$

Proof. Let

$$ G(X_1, X_2) = F(X_1, X_2, 0, \ldots, 0). $$

If G is identically 0, take $x = (1, 0, \ldots, 0)$. If not, then either $G(1, 0) = 0$, $G(0, 1) = 0$, or $g(X_1) = G(X_1, 1)$ is a polynomial of degree M, all of whose roots are not equal to 0. Then

$$ H(F) \geq H(g) \geq \mu(g) \geq \prod_{i=1}^{M} \left(\frac{H(1, \alpha_i)}{\sqrt{2}} \right), $$

where $\mu(g)$ is the global absolute Mahler’s measure of g, and $\alpha_1, \ldots, \alpha_M$ are roots of g. □
Notice that Proposition 1 produces a small-height zero of F which is *degenerate* in the sense that it really is a zero of a binary form to which F is trivially reduced. Do there necessarily exist *non-degenerate* zeros of F? Here is another simple observation.

Proposition 2. Let F be as above. If F is not a monomial, then there exists $\mathbf{x} \in \left(\mathbb{Q}^\times\right)^N$ such that $F(\mathbf{x}) = 0$ with $\deg_K(\mathbf{x}) \leq M$, and

$$H(\mathbf{x}) \leq M^M \sqrt{N - 1} \ H(F).$$

Under slightly stronger assumptions we can produce a considerably better search bound for non-degenerate zeros of F.
Main results

Our first result looks as follows.

Theorem 3. Let $F(X_1, ..., X_N)$ be a homogeneous polynomial in $N \geq 2$ variables of degree $M \geq 1$ over a number field K. Suppose that F does not vanish at any of the standard basis vectors $e_1, ..., e_N$. Then there exists $x \in \left(\overline{\mathbb{Q}} \right)^N$ with $\deg_K(x) \leq M$ such that $F(x) = 0$, and

$$H(x) \leq C_1(N, M) \; H(F)^{1/M},$$

with an explicit constant $C_1(N, M)$.

As a corollary of Theorem 3, we also produce the following search bound for zeros of inhomogeneous polynomials.
Corollary 4. Let $F(X_1, \ldots, X_N) \in K[X_1, \ldots, X_N]$ be an inhomogeneous polynomial of degree $M \geq 1$, $N \geq 2$. Suppose that F does not vanish at any of the standard basis vectors e_1, \ldots, e_N. Then there exists $x \in \left(\overline{\mathbb{Q}}^\times \right)^N$ with $\deg_K(x) \leq M$ such that $F(x) = 0$, and

$$H(x) \leq C_1(N + 1, M) \ H(F)^{1/M},$$

where the constant $C_1(N + 1, M)$ is that of Theorem 3.

We can also prove the following generalization of Theorem 3.
Theorem 5. Let $F(X_1,\ldots,X_N)$ be a homogeneous polynomial in $N \geq 2$ variables of degree $M \geq 1$ over a number field K, and let $A \in GL_N(K)$. Then either there exists $0 \neq x \in K^N$ such that $F(x) = 0$ and

$$H(x) \leq H(A),$$

(3)

or there exists $x \in A\left(\overline{\mathbb{Q}}^\times\right)^N$ with $\deg_K(x) \leq M$ such that $F(x) = 0$, and

$$H(x) \leq C_2(N, M)H(A)^2H(F)^{1/M},$$

with an explicit constant $C_2(N, M)$.

In other words, Theorem 5 asserts that for each element A of $GL_N(K)$ either there exists a zero of F over K whose height is bounded by $H(A)$, or there exists a small-height zero of F over $\overline{\mathbb{Q}}$ which lies outside of the union of nullspaces of row vectors of A^{-1}.
Conjecture

If F is a homogeneous polynomial in $N > 2$ variables of degree $M \geq 1$ with coefficients in K, then we conjecture that there exists $0 \neq \mathbf{x} \in \mathbb{Q}^N$ such that $F(\mathbf{x}) = 0$ and

$$H(\mathbf{x}) \leq C_3(N, M)H(F)^{\frac{1}{M\beta(N)}},$$

for an explicit constant $C_3(N, M)$ and an appropriate function $\beta(N)$.

A bound as above may come at the expense of $\deg_K(\mathbf{x})$ not being bounded any longer, so it may not be an explicit search bound in the above sense. In fact, if

$$F = f_1X_1^M + \cdots + f_NX_N^M$$

is a diagonal form, then such a bound with

$$\beta(N) = N - 1, \quad C_3(N, M) = 3^{\frac{N-2}{2M}}$$

follows as an easy corollary of the absolute Siegel’s lemma of Roy and Thunder.