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Hilbert’s Tenth Problem

Consider a system of M Diophantine equations in N variables, i.e.

P1(X1, . . . ,XN) = 0
...
PM(X1, . . . ,XN) = 0

 (1)

where P1, . . . ,PM are polynomials with integer coefficients.

Question 1

Does this system have a nontrivial integral solution?

Question 2

Assuming it does, how do we find such a solution?

The famous result of Y. Matijasevich (1970; building on the
previous work by M. Davis, H. Putnam and J. Robinson - 1961)
implies that Question 1 in general is undecidable.
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But what if . . .

Suppose that we could prove a theorem of the following kind:

If the system (1) has a nontrivial solution vector x ∈ ZN , then
there exists such a solution vector with

|x| := max
1≤i≤N

|xi | ≤ B (2)

for some explicit constant B = B(P1, . . . ,PM).

Then to answer Question 1, it would be enough to check whether
any of the vectors in the finite set{

x ∈ ZN : max
1≤i≤N

|xi | ≤ B

}
is a solution to (1), reducing it to a finite search algorithm.
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Search bounds

Moreover, if Question 1 is answered affirmatively, then this finite
search algorithm simultaneously provides an answer to Question 2.

We will refer to a constant B satisfying (2) as an explicit search
bound (with respect to | |) for the polynomial system P1, . . . ,PM .
Hence Questions 1 and 2 can be replaced by -

Question 3

Assuming the polynomial system P1, . . . ,PM has a nontrivial
integral solution, can we find an explicit search bound?



Hilbert’s 10th and search bounds Linear case Quadratic case Fields and heights Linear again Quadratic again Distribution

Search bounds

Moreover, if Question 1 is answered affirmatively, then this finite
search algorithm simultaneously provides an answer to Question 2.

We will refer to a constant B satisfying (2) as an explicit search
bound (with respect to | |) for the polynomial system P1, . . . ,PM .
Hence Questions 1 and 2 can be replaced by -

Question 3

Assuming the polynomial system P1, . . . ,PM has a nontrivial
integral solution, can we find an explicit search bound?



Hilbert’s 10th and search bounds Linear case Quadratic case Fields and heights Linear again Quadratic again Distribution

Search bounds

Moreover, if Question 1 is answered affirmatively, then this finite
search algorithm simultaneously provides an answer to Question 2.

We will refer to a constant B satisfying (2) as an explicit search
bound (with respect to | |) for the polynomial system P1, . . . ,PM .
Hence Questions 1 and 2 can be replaced by -

Question 3

Assuming the polynomial system P1, . . . ,PM has a nontrivial
integral solution, can we find an explicit search bound?



Hilbert’s 10th and search bounds Linear case Quadratic case Fields and heights Linear again Quadratic again Distribution

Well, can we?

Existence of search bounds for general polynomial systems like (1)
would contradict Matijasevich’s theorem, and hence search bounds
in general cannot exist.

Moreover, it was proved by J. P. Jones (1980) that the question
whether a single Diophantine equation of degree four or larger has
a solution in positive integers is already undecidable.

This suggests that search bounds for equations of degree ≥ 4 may
be out of reach, and relatively little is known even for degree 3
(although some work has been done, especially in the recent
years). There is however a wealth of results for degree 1 and 2,
which will be the main focus of this talk.
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The homogeneous linear case
Let

Ax = 0 (3)

be an M ×N linear system of rank M < N with integer entries.

As
above, we will write

|x| = max
1≤i≤N

|xi |,

for the height of a vector x ∈ ZN . Similarly, we define the height
of the coefficient matrix A = (aij)1≤i≤M,1≤j≤N by

|A| := max{|aij | : 1 ≤ i ≤ M, 1 ≤ j ≤ N}.

Question 4

What is the smallest height of a nontrivial integral solution to (3)?

It is natural to expect that there must exist a solution vector x
with |x| not too large, compared to |A|.
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Siegel’s lemma

In 1929 Carl Ludwig Siegel proved that there exists a non-trivial
integral solution x to (3) with

|x| ≤ (1 + N|A|)
M

N−M . (4)

The proof uses Dirichlet box principle. In fact, a similar result was
at least informally observed by Axel Thue as early as 1909. This
result is best possible in the sense that the exponent M

N−M in (4)
cannot be improved.
Results of this sort are known under the general name of Siegel’s
lemma, and are very important in transcendental number theory.
In the recent years Siegel’s lemma was studied by many authors in
Diophantine approximations for its own sake as well: as the
simplest case of an effective existence result for rational points on
varieties.
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The inhomogeneous linear case

Instead of (3), consider now an inhomogeneous M × N linear
system

Ax = b, (5)

where b ∈ ZM .

Define

D(A) := gcd{det C : C is an M ×M minor of A}.

Then a classical result of I. Heger (1856) states that (5) has a
solution in ZN if and only if

D(A) = D((A b)).

When this is the case, a result of Borosh, Flahive, Rubin, and
Treybig (1989) states that there exists such a solution x ∈ ZN with

|x| ≤ max{| det C | : C = M ×M minor of (A b)}.
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One quadratic form

Let

F (X,Y) =
N∑
i=1

N∑
j=1

fijXiYj

be a symmetric bilinear form in 2N variables, N ≥ 2, with integer
coefficients, and let

F (X) = F (X,X)

be the associated quadratic form.

A famous result of J. W. S.
Cassels (1955) states that if F has a nontrivial rational zero, then
there exists 0 6= x ∈ ZN such that F (x) = 0 and

|x| �N |F |
N−1
2 , (6)

where |F | := max1≤i ,j≤N |fij |, and the constant in the upper bound
is explicit. The exponent N−1

2 in the upper bound is best possible.
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The inhomogeneous quadratic case

Now assume that an inhomogeneous quadratic equation in N ≥ 3
variables with integer coefficients

N∑
i=1

N∑
j=1

fijXiXj +
N∑
i=1

fi0Xi + f00 = 0

has an integral solution.

R. Dietmann (2003), building on previous work by Siegel (1972)
and Kornhauser (1990), showed that in this case there exists a
solution x ∈ ZN with

|x| �N |F |p(N), (7)

where p(N) is a linear polynomial (≈ 5N + C ).
In case N = 2, Kornhauser (1990) showed that only exponential
bounds are possible.
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Generalizing to global fields

From now on we will work with homogeneous polynomials only,
and so we can work over fields instead of rings, which is more
convenient.

Let K be a global field, that is a number field or global function
field (i.e., a finite algebraic extension of Fq(t), where Fq is any
finite coefficient field), or the algebraic closure of a global field.
Let XK be a projective variety over K .

Problem 1

Find a search bound B = B(XK ) such that if XK is not empty,
then it contains a point x with

H(x)� B,

where H is an appropriately defined height function.
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Height functions

Let N ≥ 2, then a height function H : KN → R≥0 is a measure of
arithmetic complexity of points, which naturally generalizes the
sup-norm height | | defined over Z.

For instance, every point in 0 6= x ∈ QN can be written as

x =

(
x1
x0
, . . . ,

xN
x0

)
.

Define d = gcd(x1, . . . , xN), then

H(x) :=
1

d
max {|x1|, . . . , |xN |} ,

and so H(ax) = H(x) for every 0 6= a ∈ Q. Hence H is projectively
defined. We define H(0) = 0.
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Schmidt’s height on subspaces
We can also talk about height of subspaces of KN , as first
introduced by W. M. Schmidt (1967). Let V ⊆ KN be an
L-dimensional subspace, and let x1, . . . , xL be a basis for V .

Let
y := x1 ∧ · · · ∧ xL ∈ K (NL)

under the standard embedding. Define

H(V ) := H(y).

This definition does not depend on the choice of the basis. Hence
we have defined a height on points of a Grassmanian over K .
Duality: If A = (a1 . . . aL)t is an L× N matrix over K such that

V = {x ∈ KN : Ax = 0},

then
H(V ) = H(a1 ∧ · · · ∧ aL).
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L-dimensional subspace, and let x1, . . . , xL be a basis for V .
Let

y := x1 ∧ · · · ∧ xL ∈ K (NL)

under the standard embedding. Define

H(V ) := H(y).

This definition does not depend on the choice of the basis. Hence
we have defined a height on points of a Grassmanian over K .

Duality: If A = (a1 . . . aL)t is an L× N matrix over K such that

V = {x ∈ KN : Ax = 0},

then
H(V ) = H(a1 ∧ · · · ∧ aL).
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Finiteness property

A crucial property that height functions satisfy, by analogy with | |
over Z is finiteness.

Northcott’s theorem: If K is a number field or a function field
over a finite coefficient field, then for every B ∈ R>0 the set{

[x] ∈ P(KN) : H(x) ≤ B
}

is finite.

More generally, height measures arithmetic complexity (by analogy
with degree in algebraic geometry measuring geometric
complexity), and so a point of relatively small height is
arithmetically simple. This makes search bounds on height
interesting even when Northcott’s theorem fails.
We are now ready to apply this machinery.
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Generalized Siegel’s lemma

The following result has been obtained by E. Bombieri and J.
Vaaler (1983) if K is a number field, by J. Thunder (1995) if K
is a function field, and by D. Roy and J. Thunder (1996) if K is
the algebraic closure of one or the other.

Theorem 1

Let K be a number field, a function field, or the algebraic closure
of one or the other. Let V ⊆ KN be an L-dimensional subspace,
1 ≤ L ≤ N. Then there exists a basis v1, . . . , vL for V over K such
that

L∏
i=1

H(vi )�K ,L H(V ). (8)

The exponent 1 on H(V ) in this bound is smallest possible.
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Corollaries
An immediate consequence of Theorem 1 is the existence of a
nonzero point v1 ∈ V such that

H(v1)�K ,L H(V )1/L. (9)

Moreover, a standard property of heights is that for any basis
x1, . . . , xL for V ,

H(V )�L

L∏
i=1

H(xi ). (10)

Hence Theorem 1 implies that for each M ≤ L, there exists an
M-dimensional subspace UM ⊆ V such that

H(UM)�K ,L,M H(V )M/L.

This proves existence of search bounds on Grassmanians of a
vector space over a global field.
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Back to quadratic forms: isotropic subspaces

Let F be a quadratic form in N variables over a field K and
V ⊆ KN be an L-dimensional subspace such that F is isotropic on
V (i.e. has a nontrivial zero on V ).

A subspace U ⊆ V is called
totally isotropic if F (U) = 0. All maximal totally isotropic
subspaces of V over K have the same dimension, we denote it by
ω = ω(V ). The following theorem was proved by Schlickewei &
Schmidt (1987) when K = Q and by Vaaler (1989) when K is a
number field.

Theorem 2

There exists a collection of L− ω + 1 maximal totally isotropic
subspaces U0, . . . ,UL−ω ⊆ V such that
V = spanK {U0, . . . ,UL−ω}, and for each 0 ≤ i ≤ L− ω,

H(U0)H(Ui )�K ,L,ω H(F )L−ωH(V )2,

where H(F ) is height of the coefficient vector of F .
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Infinite family

Here is an extension of the Schlickewei-Schmidt-Vaaler theorem,
although with weaker bounds, which holds over any global field.

Theorem 3 (Chan, F., Henshaw (2010/2014))

There exists an infinite family of collections of maximal totally
isotropic subspaces {Un1, . . . ,UnJ}∞n=1 ⊆ V , for an appropriately
defined J, such that for each n ≥ 1, spanK {Un1, . . . ,UnJ} = V ,
and for each 1 ≤ j ≤ J,

H(Unj)� H(F )ϕ(L,ω)H(V )ψ(ω),

where the constant in the upper bound depends on K ,N, L, ω, λ, n,
and ϕ(L, ω), ψ(ω) are polynomials: ϕ(L, ω) is linear in L, quartic
in ω, and ψ(ω) is cubic in ω.
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Fano varieties

As a set, the Fano variety of m-planes on a projective variety XK

defined over a field K , which we denote by Fm(XK ), is the set of
(m + 1)-dimensional vector spaces over K which are contained in
XK ; this is a subvariety of the Grassmannian.

We will also write Fm(ZK ) for the set of (m + 1)-dimensional
vector spaces contained in any union of algebraic varieties ZK ,
defined over K .

Let
XK (V ,F ) = {[x] ∈ P(V ) : F (x) = 0} , (11)

then Theorems 2 and 3 can be interpreted as statements about the
existence of points of bounded height on Fω−1(XK (V ,F )).

Moreover, Siegel’s lemma combined with Theorems 2 and 3
immediately produces the analogous results for points on
Fm(XK (V ,F )) for any 0 ≤ m ≤ ω − 1.
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Questions of distribution

How are points of small height distributed on hypersurfaces?

Are
they evenly spread out or bunched together? For instance, can
they be easily cut out by polynomial maps?
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Missing varieties: Siegel’s lemma

Theorem 4 (F. (2010))

Let K be a number field, function field, or Q. Let N ≥ 2,
1 ≤ L ≤ N, and V ⊆ KN be an L-dimensional subspace. Let ZK

be a union of algebraic varieties over K such that V * ZK , and let
M be sum of degrees of these varieties. There exists a basis
x1, . . . , xL ∈ V \ ZK for V over K such that for each 1 ≤ n ≤ L,

H(xn)�K ,L,M H(V ), (12)

where the exponent 1 on H(V ) in the bound of (12) is sharp in
general.

This result generalizes a result of G. Faltings (1992) on the
existence of a small-height point in a vector space over Q outside
of a proper subspace.
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Missing varieties: quadratic forms

Theorem 5 (Chan, F., Henshaw (2013))

Let (V ,F ) be an isotropic quadratic space of dimension L in N
variables over a global field K , as above, and let XK (F ,V ) the set
of projective zeros of F on V , as in (11). Let ZK be a union of
algebraic varieties defined over K such that XK (F ,V ) * ZK , and
let M be sum of degrees of these varieties. Then for each
0 ≤ m ≤ ω − 1, there exists

Wm ∈ Fm(XK (V ,F )) \ Fm(ZK ),

such that

H(Wm)�K ,L,M,m H(F )15(L+1)−mH(V )27L+37.

We also have analogues of Theorems 3 and 5 over Q with slightly
different bounds.
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Thank you!
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