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Quadratic forms

Let K be a number field of degree d over Q,

N ≥ 2 be an integer, and let

F (X, Y ) =

N
∑

i=1

N
∑

j=1

fijXiYj

be a symmetric bilinear form with coefficients in

K. We write

F (X) = F (X, X)

for the associated quadratic form in N variables.

We say that F is isotropic over K if there exists

a non-zero x ∈ KN such that F (x) = 0.

Question 1: How do we decide whether F is

isotropic over K?

Question 2: Assuming it is, how do we find a

non-trivial zero of F over K?

We will introduce an approach that allows to

answer both question simultaneously. For this we

first need some notation.
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Height functions

Let M(K) be the set of places of K. For each

place v ∈ M(K) let Kv be the completion of K at

v and dv = [Kv : Qv] be the local degree. For each

place v ∈ M(K) we define the absolute value ‖ ‖v

to be the unique absolute value on Kv that

extends either the usual absolute value on R or C

if v|∞, or the usual p-adic absolute value on Qp if

v|p, where p is a prime. We also define the second

absolute value | |v for each place v by

|a|v = ‖a‖
dv/d
v for all a ∈ K. Then for each

non-zero a ∈ K the product formula reads
∏

v∈M(K)

|a|v = 1. (1)

We extend absolute values to vectors by defining

the local heights. For each v ∈ M(K) define a

local height Hv for each x ∈ KN
v by

Hv(x) =







max1≤i≤N |xi|v if v - ∞
(

∑N
i=1 ‖xi‖

2
v

)dv/2d

if v|∞
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We define the following global height function on

KN :

H(x) =
∏

v∈M(K)

Hv(x), (2)

for each x ∈ KN .

Heights can be extended to polynomials: if

F (X1, ..., XN) ∈ K[X1, ..., XN ]

we write H(F ) to mean the height of its

coefficient vector. We can also define height on

elements of GLN (K) by viewing them as vectors

in KN2

. Finally, we define height on subspaces of

KN . Let V ⊆ KN be a J-dimensional subspace,

and let x1, ..., xJ be a basis for V . Then

x1 ∧ ... ∧ xJ ∈ K(N

J )

under the standard embedding. Define

H(V ) = H(x1 ∧ ... ∧ xJ ).

This definition is legitimate, i.e. does not depend

on the choice of the basis.
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A fundamental property of height is the following.

Northcott’s theorem: The set

{x ∈ KN : H(x) ≤ B}

is finite for every positive real number B.

Now suppose that our quadratic form F is

isotropic over K. If we can prove that F has a

non-trivial zero of bounded height over K with an

explicit bound, we reduce the search for a

non-trivial zero to a finite set. Hence we answer

both questions 1 and 2 simultaneously.

Theorem 1. Suppose that F is isotropic over K.

Then there exists a non-zero point x ∈ KN such

that F (x) = 0, and

H(x) ≤ C1H(F )
N−1

2

where C1 is an explicit constant that depends on

K and N .

This theorem has first been proved over Q by

Cassels in 1955, and generalized to number fields

by S. Raghavan in 1975.
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Effective structure theorems

We start with some notation. Let F be a

symmetric bilinear form with associated quadratic

form on KN , as above. Let Z ⊆ KN be a

subspace of dimension L, 2 ≤ L ≤ N . Then Z

equipped with F is a symmetric bilinear space

over K, we write (Z, F ) to denote it. A subspace

W of Z is said to be totally isotropic if

F (W ) = {0}. All maximal totally isotropic

subspaces of (Z, F ) have the same dimension,

called Witt index of (Z, F ).

Theorem 2 (Vaaler, 1987). Let M ≥ 1 be the

Witt index of (Z, F ) over K. Then there exists a

maximal totally isotropic subspace W of (Z, F )

such that

H(W ) ≤ C2H(F )
L−M

2 H(Z)

where C2 is an explicit constant that depends on

K, L, and M .
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More generally, I have recently shown that (Z, F )

has a whole orthogonal decomposition into special

subspaces of bounded height, where

orthogonality denoted by ⊥ is always meant

with respect to the symmetric bilinear form F .

First we continue with some more notation.

A subspace U of (Z, F ) is anisotropic if

F (x) 6= 0 for all 0 6= x ∈ U . A subspace V of

(Z, F ) is called regular if for each 0 6= x ∈ U

there exists y ∈ U so that F (x, y) 6= 0. For each

subspace U of (Z, F ) we define

U⊥ = {x ∈ Z : F (x, y) = 0 ∀ y ∈ U}.

If two subspaces U1 and U2 of (Z, F ) are

orthogonal, we write U1 ⊥ U2 for their orthogonal

sum. If U is a regular subspace of (Z, F ), then

Z = U ⊥ U⊥ and U ∩ U⊥ = {0}.

Two vectors x, y ∈ Z are called a hyperbolic

pair if F (x) = F (y) = 0, F (x, y) = 1.
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The subspace

H(x, y) = spanK{x, y}

is regular and is called a hyperbolic plane. An

orthogonal sum of hyperbolic planes is called a

hyperbolic space. Every hyperbolic space is

regular.

A classical theorem of Witt states that there

exists an orthogonal decomposition of (Z, F ) of

the form

Z = Z⊥ ⊥ H1 ⊥ ... ⊥ HM ⊥ V

where Z⊥ = {x ∈ Z : F (x, z) = 0 ∀ z ∈ Z} is the

singular component, Hi are hyperbolic planes,

and V is anisotropic component.
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Theorem 3 (F., 2005). Let (Z, F ) be as above,

and let r be rank of F on Z, 1 ≤ r ≤ L. There

exists a Witt decomposition of (Z, F ) with

H(Z⊥) ≤ C3H(F )
r

2 H(Z)

and

max{H(Hi), H(V )}

≤ C4

{

H(F )
L+2M

4 H(Z)
}

(M+1)(M+2)
2

,

for each 1 ≤ i ≤ M , where the constants are

explicit and depend on K, r, N , L, and M .
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Using a similar method, I am also proving a

related result on the small-height orthogonal

decompsoition of (Z, F ) into one-dimensional

subspaces, i.e. an “orthogonal” version of

Siegel’s lemma for Z with respect to F .

Theorem 4 (F., 2005). Let (Z, F ) be as above.

Then there exists a basis x1, ..., xL ∈ KN for Z

such that F (xi, xj) = 0 for all i 6= j, and

L
∏

i=1

H(xi) ≤ (N |DK |)
L

2+L−2
4 H(F )

L(L+1)
2 H(Z)L,

where DK is the discriminant of the number

field K.
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Isometry group

The classical version of Witt decomposition

theorem can be deduced from the theorem of

Cartan and Dieudonné on the representation of

isometries of a bilinear space. From here on

assume that (Z, F ) is regular. Let O(Z, F ) be the

group of all isometries of (Z, F ), i.e. O(Z, F )

consists of all σ ∈ GLN (K) such that

F (σx, σy) = F (x, y)

for all x, y ∈ Z. Let σ ∈ O(Z, F ). There exist

reflections τ1, ..., τl ∈ O(Z, F ) such that

σ = τ1...τl

where 0 ≤ l ≤ L.

The following is a slightly weaker effective version

of Cartan-Dieudonné theorem.
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Theorem 5 (F., 2004). Let (Z, F ) be a regular

symmetric bilinear space over K with Z ⊆ KN of

dimension L, 1 ≤ L ≤ N , N ≥ 2. Let

σ ∈ O(Z, F ). Then either σ is the identity, or

there exist an integer 1 ≤ l ≤ 2L − 1 and

reflections τ1, ..., τl ∈ O(Z, F ) such that

σ = τ1 ◦ · · · ◦ τl,

and for each 1 ≤ i ≤ l,

H(τi) ≤ C5

{

H(F )
L

3 H(Z)
L

2 H(σ)
}5L−1

,

where C5 is an explicit constant depending on K,

N , and L.

There are two interesting corollaries of the

method. One is a bound on the height of the

invariant subspace of an isometry. The second

is a statement about the existence of a reflection

of relatively small height.
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