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Abstract. Let K be a number field, and let F be a symmetric bilinear form in
2N variables over K. Let Z be a subspace of KN . A classical theorem of Witt
states that the bilinear space (Z,F ) can be decomposed into an orthogonal
sum of hyperbolic planes, singular, and anisotropic components. We prove the
existence of such a decomposition of small height, where all bounds on height
are explicit in terms of heights of F and Z. We also prove a special version of
Siegel’s Lemma for a bilinear space, which provides a small-height orthogonal
decomposition into one-dimensional subspaces. Finally, we prove an effective
version of Cartan-Dieudonné theorem. Namely, we show that every isometry σ

of a regular bilinear space (Z, F ) can be represented as a product of reflections
of bounded heights with an explicit bound on heights in terms of heights of F ,
Z, and σ.

1. Introduction and notation

Let K be a number field, N > 1 an integer. Let

F (X, Y ) =
N
∑

i=1

N
∑

j=1

fijXiYj ,

be a symmetric bilinear form in 2N variables with coefficients fij = fji in K. We
will write F (X) = F (X , X) for the associated quadratic form in N variables, and
will also use F to denote the symmetric N×N matrix (fij)1≤i,j≤N . Let Z ⊆ KN be
an L-dimensional subspace, 2 ≤ L ≤ N , then F is also defined on Z, and we write
(Z, F ) for the bilinear space. Let M be the Witt index of (Z, F ). With this basic
notation we can recall the classical Witt decomposition theorem. We give a brief
overview of required definitions and basic results on bilinear spaces in section 3.

Theorem 1.1. Suppose that (Z, F ) is a bilinear space as above. Then there exists
an orthogonal decomposition of (Z, F ) of the form

(1) Z = Z⊥ ⊥ H1 ⊥ ... ⊥ HM ⊥ V,

where Z⊥ = {x ∈ Z : F (x, z) = 0 ∀ z ∈ Z} is the singular component, Hi are
hyperbolic planes, and V is anisotropic component, which is uniquely determined
up to isometry.

Theorem 1.1 can easily be obtained by combining Theorem 3.8 on p. 9 with
Corollary 5.11 on p.17 of [10]. The first objective of this paper is to make this
theorem effective, namely to prove that there exists a decomposition like (1) with
hyperbolic planes, singular, and anisotropic components having relatively small

1991 Mathematics Subject Classification. Primary 11E12, 15A63; Secondary 11G50.
Key words and phrases. quadratic forms, heights.

1



2 LENNY FUKSHANSKY

height for an appropriately defined notion of height. By Northcott’s theorem, there
are only finitely many subspaces of fixed dimension over K whose height is bounded
above by a given constant. Hence our result produces a “search bound” on compo-
nents of Witt decomposition for a bilinear space (see [7] for a discussion of search
bounds). This result is also related to the vast collection of results on small-height
zeros of quadratic forms. The subject originates in a classical paper of Cassels, [2],
where he proved that an isotropic rational quadratic form has a zero of relatively
small height, producing an explicit bound on height in terms of the height of the
quadratic form. Cassels’ theorem has been extended and generalized in a num-
ber of different ways (see [13], [7] and [3] for more information on this). Our first
main result can also be viewed in the context of those results; we will discuss this
approach in more details in section 3.

Another direction we pursue here is investigation of the effective structure of the
isometry group of a regular symmetric bilinear space (Z, F ) over K. In [7] Masser
proposes a version of the following question. Let F and G be two symmetric bilinear
forms on KN such that there exists A ∈ GLN (K) with F (AX , AY ) = G(X , Y ).
Can we prove that there exists such an A of bounded height, where the bound
would be in terms of heights of F and G? In our context F = G, and so we can
ask for an element of bounded height in the isometry group of the space (Z, F ).
This question is quite easy to answer (see Corollary 5.3 below), however one can
consider the following generalization. Let O(Z, F ) be the group of isometries of
(Z, F ). We recall a classical theorem of Cartan and Dieudonné (see Theorem 5.4
on p. 15 of [10] or Theorem 43:3 on p.102 of [8]). We review the required definitions
in section 5.

Theorem 1.2. Let (Z, F ) be a regular symmetric bilinear space over K with Z ⊆
KN of dimension L, 1 ≤ L ≤ N . Let σ ∈ O(Z, F ). Then σ can be represented as
a product of at most L reflections.

The identity element of O(Z, F ) is thought of here as the product of zero reflec-
tions. We will be interested in proving a slightly weaker effective version of this
theorem, namely given a σ ∈ O(Z, F ) we will prove that it can be represented as a
product of at most 2L−1 reflections of bounded height, where the bound on height
is in terms of heights of F , Z, and σ.

We start with some notation. We write d for degree of K over Q, OK for its ring
of integers, DK for its discriminant, and M(K) for its set of places. For each place
v ∈ M(K) we write Kv for the completion of K at v and let dv = [Kv : Qv] be the
local degree of K at v, so that for each u ∈ M(Q)

(2)
∑

v∈M(K),v|u

dv = d.

For each place v ∈ M(K) we define the absolute value ‖ ‖v to be the unique absolute
value on Kv that extends either the usual absolute value on R or C if v|∞, or the
usual p-adic absolute value on Qp if v|p, where p is a prime. We also define the

second absolute value | |v for each place v by |a|v = ‖a‖dv/d
v for all a ∈ K. Then

for each non-zero a ∈ K the product formula reads

(3)
∏

v∈M(K)

|a|v = 1.
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For each finite place v ∈ M(K), v - ∞, we define the local ring of v-adic integers
Ov = {x ∈ K : |x|v ≤ 1}, whose unique maximal ideal is Pv = {x ∈ K : |x|v < 1}.
Then OK =

⋂

v-∞ Ov . For each v|∞ and each positive integer j, define as in [13]

rv(j) =

{

π−1/2Γ(j/2 + 1)1/j if v|∞ is real
(2π)−1/2Γ(j + 1)1/2j if v|∞ is complex

It will be useful to define a field constant

(4) CK(j) = 2|DK |1/2d
∏

v|∞

rv(j)dv/d,

We extend absolute values to vectors by defining the local heights. For each v ∈
M(K) define a local height Hv on KN

v by

Hv(x) =

{

max1≤i≤N |xi|v if v - ∞
(

∑N
i=1 ‖xi‖2

v

)dv/2d

if v|∞

for each x ∈ KN
v . We define the following global height function on KN :

(5) H(x) =
∏

v∈M(K)

Hv(x),

for each x ∈ KN . We also define an inhomogeneous height function on vectors by

(6) h(x) = H(1, x).

A basic property of heights that we will use states that for m1, ..., mL ∈ Z and
x1, ..., xL ∈ KN ,

(7) h

(

L
∑

i=1

mixi

)

≤
(

L
∑

i=1

m2
i

)1/2 L
∏

i=1

h(xi).

We extend height to polynomials by viewing it as height function of the coefficient
vector of a given polynomial. Hence for our quadratic form F , H(F ) is the height

of the matrix (fij)1≤i,j≤N viewed as a vector in KN2

. In general, for an M × N
matrix A we define H(A) by viewing A as a vector in KMN , same way as we defined
height of F . This way we also have height defined on elements of the isometry group
O(KN , F ), since they can be represented by N ×N matrices, and each such matrix

can be viewed as a vector in KN2

. For each element σ of the isometry group
O(Z, F ) of a regular bilinear space we will select an extension σ̂ ∈ O(KN , F ) of
minimal possible height, and will define H(σ) to be H(σ̂). We will explain how this
is done in more details in section 5.

We also define another height on matrices, which is the same as height function
on subspaces of KN . Let V ⊆ KN be a subspace of dimension J , 1 ≤ J ≤ N .
Choose a basis x1, ..., xJ for V , and write X = (x1 ... xJ) for the corresponding
N × J basis matrix. Then

V = {Xt : t ∈ KJ}.
On the other hand, there exists an (N − J) × N matrix A with entries in K such
that

V = {x ∈ KN : Ax = 0}.
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Let I be the collection of all subsets I of {1, ..., N} of cardinality J . For each I ∈ I
let I ′ be its complement, i.e. I ′ = {1, ..., N} \ I , and let I ′ = {I ′ : I ∈ I}. Then

|I| =

(

N

J

)

=

(

N

N − J

)

= |I ′|.

For each I ∈ I, write XI for the J × J submatrix of X consisting of all those rows
of X which are indexed by I , and I′A for the (N − J) × (N − J) submatrix of
A consisting of all those columns of A which are indexed by I ′. By the duality
principle of Brill-Gordan [4] (also see Theorem 1 on p. 294 of [5]), there exists a
non-zero constant γ ∈ K such that

(8) det(XI) = (−1)ε(I)γ det(I′A),

where ε(I) =
∑

i∈I i. Define the vectors of Grassmann coordinates of X and A
respectively to be

Gr(X) = (det(XI))I∈I ∈ K |I|, Gr(A) = (det(I′A))I′∈I′ ∈ K |I′|.

Define

H(X) = H(Gr(X)), H(A) = H(Gr(A)),

and so by (8) and (3)

H(X) = H(A).

Define height of V denoted by H(V ) to be this common value. Hence the height
of a matrix is the height of its row (or column) space, which is equal to the height
of its nullspace. Also notice that Gr(X) can be identified with x1 ∧ ... ∧ xJ ,
where ∧ stands for the wedge product, viewed under the cannonical lexicographic

embedding into K(N

J ). Therefore we can also write

H(V ) = H(x1 ∧ ... ∧ xJ).

This definition is legitimate, since it does not depend on the choice of the basis for
V : let y1, ..., yJ be another basis for V over K, then there exists C ∈ GLN(K)
such that yi = Cxi for each 1 ≤ i ≤ J , and so

H(y1 ∧ ... ∧ yJ) = H(Cx1 ∧ ... ∧ CxJ)

=





∏

v∈M(K)

| det(C)|v



H(x1 ∧ ... ∧ xJ)

= H(x1 ∧ ... ∧ xJ),

by the product formula. We are now ready to state our main results. First is an
effective version of Witt’s decomposition Theorem 1.1.

Theorem 1.3. Let F be a symmetric bilinear form on KN . Let Z ⊆ KN be a
subspace of dimension L, 2 ≤ L ≤ N , and Witt index M ≥ 1. Let F have rank r
on Z, 1 ≤ r ≤ L. There exists an orthogonal decomposition of the bilinear space
(Z, F ) of the form (1) with

(9) H(Z⊥) ≤ CK(r)rH(F )r/2H(Z),

and

(10) max{H(Hi), H(V )} ≤ AK(N, L, M)
{

H(F )
L+2M

4 H(Z)
}

(M+1)(M+2)
2

,
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for each 1 ≤ i ≤ M , where

(11) AK(N, L, M) =

{

(

22M+1CK(L)2
)L
(

N |DK |1/d
)M+5L

}

M(M+3)
8

.

Next is an effective version of Cartan-Dieudonné Theorem 1.2.

Theorem 1.4. Let (Z, F ) be a regular symmetric bilinear space over K with Z ⊆
KN of dimension L, 1 ≤ L ≤ N , N ≥ 2. Let σ ∈ O(Z, F ). Then either σ is the
identity, or there exist an integer 1 ≤ l ≤ 2L− 1 and reflections τ1, ..., τl ∈ O(Z, F )
such that

(12) σ = τ1 ◦ · · · ◦ τl,

and for each 1 ≤ i ≤ l,

(13) H(τi) ≤
{

(

2N2|DK | 1
2d

)
L2

2

H(F )
L
3 H(Z)

L
2 H(σ)

}5L−1

.

This paper is structured as follows. In section 2 we discuss a related problem
of producing an orthogonal basis of small height for a bilinear space. This can
actually be viewed as a version of Siegel’s Lemma for a bilinear space, and provides
a decomposition of a bilinear space into an orthogonal sum of one-dimensional
subspaces of small height - a result of independent interest. In section 3 we recall
some basic lemmas on the properties of bilinear spaces, review a result of Vaaler on
a maximal totally isotropic subspace of a bilinear space of small height, and prove
an effective decomposition lemma for a bilinear space into a singular and regular
components of small height. In section 4 we prove Theorem 1.3. In section 5
we develop some notation and preliminary lemmas on the effective structure of the
isometry group. In particular, we prove two simple lemmas of independent interest:
one on the existence of a small-height isometry of a bilinear space, and the other
on the bound for the height of the invariant subspace of an isometry. We use these
lemmas in section 6 to prove Theorem 1.4.

2. Siegel’s Lemma for a bilinear space

In this section we prove a certain analogue of Siegel’s Lemma for a bilinear space.
First we recall the Bombieri-Vaaler formulation of a general Siegel’s Lemma.

Theorem 2.1 ([1]). Let U be a J-dimensional subspace of KN , J < N . Then
there exists a basis x1, ..., xJ ∈ KN for U such that

(14)
J
∏

i=1

H(xi) ≤
J
∏

i=1

h(xi) ≤
{

N |DK |1/d
}J/2

H(U).

We will also need the following simple technical lemmas.

Lemma 2.2. Let U1 and U2 be subspaces of KN . Then

H(U1 ∩ U2) ≤ H(U1)H(U2).

This well known fact is an immediate corollary of Theorem 1 of [12].
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Lemma 2.3. Let X be a J ×N matrix over K with row vectors x1, ..., xJ , and let
F be a symmetric bilinear form in N variables over K, as above (we also write F
for its N × N coefficient matrix). Then

H(XF ) ≤ H(F )J
J
∏

i=1

H(xi).

Proof. By Lemma 4.7 of [9]

(15) H(XF ) = H(xt
1F ∧ ... ∧ xt

JF ) ≤
J
∏

i=1

H(xt
iF ).

For each 1 ≤ i ≤ J ,

xt
iF =





N
∑

j=1

fj1xij , ...,
N
∑

j=1

fjNxij



 ,

and so for v - ∞,

(16) Hv(x
t
iF ) ≤ Hv(F )Hv(xi),

and for v|∞, by Cauchy-Schwarz inequality

Hv(x
t
iF ) =











N
∑

k=1

∥

∥

∥

∥

∥

∥

N
∑

j=1

fjkxij

∥

∥

∥

∥

∥

∥

2










dv/2d

≤







N
∑

k=1





N
∑

j=1

‖fjk‖2
v









N
∑

j=1

‖xij‖2
v











dv/2d

= Hv(F )Hv(xi).(17)

Therefore for each 1 ≤ i ≤ J ,

(18) H(xt
iF ) ≤ H(xi)H(F ).

The lemma follows by combining (15) with (18). �

Next we will use Theorem 2.1 to produce a small-height orthogonal basis for a
subspace of a bilinear space. Specifically, we prove the following theorem.

Theorem 2.4. Let U be a J-dimensional subspace of (KN , F ), J < N . Then there
exists a basis x1, ..., xJ ∈ KN for U such that F (xi, xj) = 0 for all i 6= j, and

(19)

J
∏

i=1

H(xi) ≤ (N |DK |)
J2+J−2

4 H(F )
J(J+1)

2 H(U)J .

Proof. We argue by induction on J . First suppose that J = 1, then pick any
0 6= x1 ∈ U , and observe that H(x1) = H(U). Now assume that J > 1 and the
theorem is true for all 1 ≤ j < J . Let 0 6= x1 ∈ U be a vector guaranteed by
Theorem 2.1 so that

(20) H(x1) ≤
{

N |DK |1/d
}1/2

H(U)1/J .

First assume that x1 is a non-singular point in U . Then

U1 = {y ∈ U : xt
1Fy = 0} = {x1}⊥ ∩ U,
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has dimension J − 1; here {x1}⊥ = {y ∈ KN : xt
1Fy = 0}. Then by Lemma 2.2,

Lemma 2.3, and (20) we obtain
(21)

H(U1) ≤ H(xt
1F )H(U) ≤ H(F )H(x1)H(U) ≤

(

N |DK |1/d
)1/2

H(F )H(U)
J+1

J .

Since dimK(U1) = J − 1, the induction hypothesis implies that there exists a basis
x2, ..., xJ for U1 such that F (xi, xj) = 0 for all 2 ≤ i 6= j ≤ J , and

J
∏

i=2

H(xi) ≤
(

N |DK |1/d
)

J2
−J−2
4

H(F )
J(J−1)

2 H(U1)
J−1

≤
(

N |DK |1/d
)

J2+J−4
4

H(F )
J2+J−2

2 H(U)
J2

−1
J ,(22)

where the last inequality follows by (21). Combining (20) and (22) we see that
x1, ..., xJ is a basis for U satisfying (19) such that F (xi, xj) = 0 for all 1 ≤ i 6= j ≤
J .

Now assume that x1 is a singular point in U . Since x1 6= 0, it must be true that
x1j 6= 0 for some 1 ≤ j ≤ N . Let

U1 = U ∩ {x ∈ KN : xj = 0},
then x1 /∈ U1, U = Kx1 ⊥ U1, and

(23) H(U1) ≤ H(U),

by Lemma 2.2. Since dimK(U1) = J − 1, we can apply induction hypothesis to
U1, and proceed the same way as in the non-singular case above. Since the upper
bound of (23) is smaller than that of (21), the result follows. �

Notice that Theorem 2.4 can be reformulated by saying that there exists a de-
composition of the bilinear space (U, F ) into an orthogonal sum of one-dimensional
subspaces, the product of heights of which is bounded above by (19). Therefore
Theorem 2.4 can also be viewed as a result on effective orthogonal decomposition
of a bilinear space, which is the subject of this paper.

3. Small zeros of quadratic forms

Let F be a symmetric bilinear form in 2N variables over K, as above. Let
Z ⊆ KN be a subspace of dimension 2 ≤ L ≤ N . We write (Z, F ) for the bilinear
space on Z with the bilinear form F restricted to Z. In this section we review some
basic results on bilinear spaces and setup the notation that will later be used in the
proof of Theorem 1.3.

We start by giving a brief overview of required notation (see Chapter 1 of [10]
for a detailed introduction into the subject). A totally isotropic subspace W of
(Z, F ) is a subspace such that for all x, y ∈ W , F (x, y) = 0. All maximal totally
isotropic subspaces of (Z, F ) have the same dimension. It is called the Witt index
of (Z, F ) and we denote it by M . A subspace U of (Z, F ) is anisotropic if F (x) 6= 0
for all 0 6= x ∈ U . A subspace U of (Z, F ) is called regular if for each 0 6= x ∈ U
there exists y ∈ U so that F (x, y) 6= 0. For each subspace U of (Z, F ) we define
U⊥ = {x ∈ Z : F (x, y) = 0 ∀ y ∈ U}. If two subspaces U1 and U2 of (Z, F ) are
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orthogonal, we write U1 ⊥ U2 for their orthogonal sum. If U is a regular subspace
of (Z, F ), then Z = U ⊥ U⊥ and U ∩ U⊥ = {0}.

Two vectors x, y ∈ Z are called a hyperbolic pair if F (x) = F (y) = 0, F (x, y) =
1; the subspace H(x, y) = spanK{x, y} is regular and is called a hyperbolic plane.
An orthogonal sum of hyperbolic planes is called a hyperbolic space. Every hyper-
bolic space is regular.

We now state a result of Vaaler [13] (see also [11]) on the existence of a maximal
totally isotropic subspace of (Z, F ) of small height, which we later use in the proof
of Theorem 1.3.

Theorem 3.1 ([13]). Let M ≥ 1 be the Witt index of (Z, F ) over K. Then there
exists a subspace W of (Z, F ) of dimension M such that F (x) = 0 for all x ∈ W
and

(24) H(W ) ≤ {22M+1CK(L − M)2H(F )}(L−M)/2H(Z).

Notice that subspace W of Theorem 3.1 is indeed maximal totally isotropic.
Maximality is by construction. Also, for each x, y ∈ W , x + y ∈ W , hence

0 = F (x + y) = F (x) + F (y) + 2F (x, y) = 2F (x, y).

A consequence of a related theorem of Vaaler is the following simple decomposi-
tion lemma in case when (Z, F ) is not a regular space.

Lemma 3.2. Let F have rank r on Z, and assume that 1 ≤ r < L. Then the
bilinear space (Z, F ) can be represented as

(25) Z = Z⊥ ⊥ W,

where W is a regular subspace of Z, with

(26) H(Z⊥) ≤ CK(r)rH(F )r/2H(Z),

and

(27) H(W ) ≤
{

N |DK |1/d
}L/2

H(Z).

Proof. The fact that Z⊥ satisfies (26) is guaranteed by Theorem 2 of [14]. Now let
z1, ..., zL be the basis for Z guranteed by Theorem 2.1, then

(28)

L
∏

i=1

H(zi) ≤
{

N |DK |1/d
}L/2

H(Z).

Notice that dimK(Z⊥) = L − r. We can now pick r vectors zi1 , ..., zir
from our

basis for Z such that

spanK{Z⊥, zi1 , ..., zir
} = Z.

Let W = spanK{zi1 , ..., zir
}, then Z = Z⊥ ⊕ W . This implies, by Theorem 3.8 on

p. 9 of [10], that Z = Z⊥ ⊥ W , W is regular and unique up to isometry. Also,
combining Lemma 4.7 of [9] with (28), we obtain

H(W ) = H(zi1 ∧ ... ∧ zir
) ≤

r
∏

j=1

H(zij
) ≤

{

N |DK |1/d
}L/2

H(Z).

This finishes the proof. �
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Notice that we can immediately deduce a version of Cassels’ theorem on small
zeros of quadratic form F over K from Theorem 3.1. Namely, if F is isotropic over
K, then there exists 0 6= x ∈ VK(F ) = {t ∈ KN : F (t) = 0} such that

(29) H(x) �K,N H(F )
N−1

2 .

The exponent N−1
2 on H(F ) is proved to be best possible. In fact, if VK(F ) contains

a nonsingular point, then by Corollary 1.2 of [3] there exists such a point satisfying
(29). A similar statement about singular points of small height in VK(F ) can be
deduced from Lemma 3.2.

Corollary 3.3. Suppose that VK(F ) = {t ∈ KN : F (t) = 0} contains a singular
point x 6= 0, so 1 ≤ r = rk(F ) < N . Then there exists such a point x with

(30) H(x) ≤
√

N |DK |1/2dCK(r)
r

N−r H(F )
r

2(N−r) .

Proof. Let Z of Lemma 3.2 be KN , then H(Z) = 1, L = N , and dimK(Z⊥) = N−r.
Clearly Z⊥ ⊆ VK(F ), and all points of Z⊥ are singular in VK(F ). By Theorem
2.1, there must exist 0 6= x ∈ Z⊥ such that

H(x) ≤
√

N |DK |1/2dH(Z⊥)1/(N−r) ≤
√

N |DK |1/2dCK(r)
r

N−r H(F )
r

2(N−r) ,

where the last inequality follows by (26). �

Notice that Corollary 3.3 suggests that in this context the singular case can
be simpler than the nonsingular one. This unusual phenomenon has already been
observed in [6] and [3]. We are now ready to prove Theorem 1.3.

4. Proof of Theorem 1.3

We first prove a version of our theorem for a regular bilinear space. We remark
that everywhere in our arguments, if m < n, then

∑m
i=n is taken to mean 0 and

∏m
i=n is taken to mean 1.

Theorem 4.1. Let F be a symmetric bilinear form on KN . Let Z ⊆ KN be a
subspace of dimension L, 2 ≤ L ≤ N , such that the bilinear space (Z, F ) is regular,
i.e. Z⊥ = {0}. Let M ≥ 1 be the Witt index of (Z, F ). There exists an orthogonal
decomposition of (Z, F ) of the form

(31) Z = H1 ⊥ ... ⊥ HM ⊥ V,

where Hi are hyperbolic planes, V is anisotropic component, and

(32) max{H(Hi), H(V )} ≤ AK(N, L, M)
{

H(F )
L+2M

4 H(Z)
}

(M+1)(M+2)
2

,

for each 1 ≤ i ≤ M , where

(33) AK(N, L, M) =

{

(

22M+1CK(L)2
)L
(

N |DK |1/d
)M+L

}

M(M+3)
8

.

Proof. Let W be a maximal totally isotropic subspace of (Z, F ) satisfying (24)
and let x1, ..., xM be the basis for W guaranteed by Theorem 2.1. Notice that
F (xi, xj) = 0 for all 1 ≤ i, j ≤ M , since W is a totally isotropic subspace. Let
y1, ..., yL be the basis for Z guaranteed by Theorem 2.1, ordered so that

H(y1) ≤ H(y2) ≤ ... ≤ H(yL).
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For each 1 ≤ i ≤ M let ji be the smallest index such that F (xi, yji
) 6= 0. Such

ji exists for each i since otherwise xi would be a singular point, contradicting
regularity of (Z, F ). By reordering x1, ..., xM if necessary, we can assume without
loss of generality that

1 ≤ jM ≤ jM−1 ≤ ... ≤ j1 ≤ L.

Moreover, for each 1 ≤ i ≤ M , ji ≤ L − i + 1, since

spanK{y1, ..., yL−i+1} * spanK{x1, ..., xi}⊥,

and so H(yji
) ≤ H(yL−i+1) by our ordering of y1, ..., yL. Therefore, by (14)

M
∏

i=1

H(xi)H(yji
) ≤

M
∏

i=1

H(xi)H(yL−i+1)

=

(

M
∏

i=1

H(xi)

)(

M
∏

i=1

H(yL−i+1)

)

≤
{

N |DK |1/d
}

M+L
2

H(W )H(Z).(34)

In particular, for some 1 ≤ i ≤ M , we must have

(35) H(xi)H(yji
) ≤

{

N |DK |1/d
}

M+L
2M

(H(W )H(Z))
1

M .

Define H1 = spanK{xi, yji
} for this choice of i. Since F (xi) = 0 and F (xi, yji

) 6= 0,
H1 is a regular subspace of Z with Witt index equal to one, hence it is a hyperbolic
plane. Notice that by combining (35) and (24), we have

(36) H(H1) ≤ H(xi)H(yji
) ≤ BK(N, L, M)H(F )

L−M
2M H(Z)

2
M ,

where

(37) BK(N, L, M) =

{

(

22M+1CK(L − M)2
)L−M

(

N |DK |1/d
)M+L

}
1

2M

.

Define

Z1 = H⊥
1 = {z ∈ KN : F (z, x) = 0 ∀ x ∈ H1} ∩ Z,

so dimK(Z1) = L − 2, and Z = H1 ⊥ Z1. Notice that by combining Lemma 2.2,
Lemma 2.3, and (36), we have

(38) H(Z1) ≤ H(H1)H(Z)H(F )2 ≤ BK(N, L, M)H(F )
L+3M

2M H(Z)
M+2

M .

We continue by induction on M . If M = 1, we are done. If M ≥ 2, assume that
the theorem holds for a bilinear space of Witt index smaller than M , in particular
it holds for (Z1, F ), a bilinear space of dimension L − 2 and Witt index M − 1.
Then there exists a decomposition

(39) Z1 = H2 ⊥ ... ⊥ HM ⊥ V,
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where V , the anisotropic component of Z1 is the same as that of Z, and combining
the induction hypothesis with (38) and (37), for each 2 ≤ i ≤ M we obtain

max{H(Hi), H(V )} ≤ AK(N, L − 2, M − 1)
{

H(F )
L+2M−4

4 H(Z1)
}

M(M+1)
2

≤ AK(N, L − 2, M − 1)BK(N, L, M)
M(M+1)

2 ×

×
{

H(F )
L+2M−4

4 + L+3M
2M H(Z)

M+2
M

}

M(M+1)
2

≤ AK(N, L, M)
{

H(F )
L+2M

4 H(Z)
}

(M+1)(M+2)
2

.(40)

This finishes the proof. �

Proof of Theorem 1.3. If (Z, F ) is regular, then Z⊥ = {0}, and we are done by
Theorem 4.1. Let r be rank of F on Z, and assume that 1 ≤ r < L. By Lemma
3.2, there exists a decomposition of Z of the form (25) with H(Z⊥) and H(W )
bounded as in (26) and (27) respectively. Now W is a regular subspace of Z, so we
can apply Theorem 4.1 to the bilinear space (W, F ). The result follows.

5. Isometries of a bilinear space

In this section we develop the preliminaries needed for the proof of Theorem 1.4.
We start with some definitions and then prove a few technical lemmas. Let F be
a symmetric bilinear form as above, and let Z be an L-dimensional subspace of
KN , 1 ≤ L ≤ N , N ≥ 2, such that the bilinear space (Z, F ) is regular, and thus
KN = Z ⊥ Z⊥

KN , where Z⊥
KN = {x ∈ KN : F (x, z) = 0 ∀ z ∈ Z}. Let O(Z, F )

be the group of isometries of (Z, F ), and write idZ for its identity element. Also
let −idZ be the element of O(Z, F ) that takes x to −x for each x ∈ Z. Each
element σ of the isometry group O(KN , F ) is uniquely represented by an N × N
matrix A ∈ GLN (K), and so we can define H(σ) = H(A), where H(A) is defined

by viewing A as a vector in KN2

as we did in section 1.
Notice that each σ ∈ O(Z, F ) can be extended to an isometry of σ̂ ∈ O(KN , F )

by selecting an isometry σ′ ∈ O(Z⊥
KN , F ). For each σ ∈ O(Z, F ) choose such an

extension σ̂ : KN → KN so that H(σ̂) is minimal, and define H(σ) = H(σ̂) for this
choice of σ̂. This definition of height in particular insures that for each σ ∈ O(Z, F )

(41) H(σ) = H(−σ),

where −σ = −idZ ◦ σ. Moreover, if A is the matrix of σ̂, then

(42) det(A) = det(σ̂) = det (σ̂ |Z) det
(

σ̂ |
Z

⊥
KN

)

= det(σ) det(σ′) = ±1.

We will also refer to this matrix A as the matrix of σ.
For each x ∈ Z such that F (x) 6= 0 we can define an element of O(Z, F ),

τx : Z −→ Z, given by

(43) τx(y) = y − 2F (x, y)

F (x)
x,

which is a reflection in the hyperplane {x}⊥ = {z ∈ Z : F (x, z) = 0}. It is not
difficult to see that the matrix of such a reflection is of the form (τij(x))1≤i,j≤N ,
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where

τij(x) =

{

1− 2
F (x)

∑N
k=1 fikxixk if i = j

− 2
F (x)

∑N
k=1 fjkxixk if i 6= j

For each reflection τx, det(τx) = −1. We say that σ is a rotation if det(σ) = +1.

Lemma 5.1. Let x ∈ Z be anisotropic and τx ∈ O(Z, F ) be the corresponding
reflection. Then

(44) H(τx) ≤ N3(N + 2)H(F )H(x)2.

Proof. By the product formula, H(τx) = H(F (x)τx). If v ∈ M(K) is such that
v - ∞, then for each 1 ≤ i = j ≤ N

|F (x)τij(x)|v =

∣

∣

∣

∣

∣

F (x) − 2

N
∑

k=1

fjkxixk

∣

∣

∣

∣

∣

v

=

∣

∣

∣

∣

∣

N
∑

l=1

N
∑

m=1

flmxlxm − 2

N
∑

k=1

fjkxixk

∣

∣

∣

∣

∣

v

≤ Hv(F )Hv(x)2,(45)

since |2|v ≤ 1, and similarly when i 6= j, so Hv(F (x)τx) ≤ Hv(F )Hv(x)2.

If v|∞, then for each 1 ≤ i = j ≤ N

‖F (x)τij(x)‖v ≤
N
∑

l=1

N
∑

m=1

‖flmxlxm‖v + 2

N
∑

k=1

‖fjkxixk‖v

≤ N(N + 2) max
1≤l,m≤N

‖flmxlxm‖v

≤ N(N + 2)
{

Hv(F )Hv(x)2
}d/dv

,(46)

and similarly when i 6= j, therefore Hv(F (x)τx) ≤
{

N3(N + 2)
}dv/d

Hv(F )Hv(x)2.
The result follows by taking a product over all places of K. �

Lemma 5.2. Let σ ∈ O(Z, F ). There exists an anisotropic vector y in Z such that
σ(y) ± y is also anisotropic for some choice of ±, and

(47) H(y) ≤ h(y) ≤ 2
√

L
{

N |DK | 1d
}

L+2
4

H(Z)
L+2
2L .

Proof. If L = 1, then Z = Ky for some 0 6= y ∈ KN , and since (Z, F ) is regular,
F (y) 6= 0, H(y) = H(Z), O(Z, F ) = {idZ}, and clearly idZ(y) + y = 2y is also
anisotropic. Hence assume L ≥ 2. Let x1, ..., xL be a basis for Z which satisfies
(14), ordered so that

h(x1) ≤ h(x2) ≤ · · · ≤ h(xL),

Let m be the the smallest index such that the restriction of F to

U = spanK{x1, ..., xm}
is not identically zero. Since (Z, F ) is regular, we must have 1 ≤ m ≤

[

L
2

]

+ 1, and
therefore, by (14)

(48)

m
∏

i=1

h(xi) ≤
{

N |DK | 1d
}

m
2

H(Z)
m
L ≤

{

N |DK | 1d
}

L+2
4

H(Z)
L+2
2L .

Notice that for every vector x ∈ Z,

F (σ(x) − x) + F (σ(x) + x) = 4F (x).
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Since F is not identically zero on U , it must therefore be true that at least one of
F ◦ (σ ± idZ) is not identically zero on U . Assume for instance that F ◦ (σ − idZ)
is not identically zero on U . Then the homogeneous polynomial of degree four in
m variables

P (a1, ..., am) = F

(

m
∑

i=1

aixi

)

F

(

σ

(

m
∑

i=1

aixi

)

−
m
∑

i=1

aixi

)

∈ K[a1, ..., am]

is not identically zero on U . Therefore there exist β1, ..., βm ∈ {−2,−1, 0, 1, 2} such
that P (β1, ..., βm) 6= 0. Let y =

∑m
i=1 βixi for this choice of β1, ..., βm, then y ∈ U

is precisely the vector we are looking for. Combining (7) and (48) we obtain

H(y) ≤ h(y) ≤
√

4(L + 2)

2

m
∏

i=1

h(xi) ≤ 2
√

L
{

N |DK | 1d
}

L+2
4

H(Z)
L+2
2L ,

since L ≥ 2. This completes the proof. �

An immediate consequence of Lemma 5.1 and Lemma 5.2 is the following state-
ment on the existence of isometries of (Z, F ) of small height. This is related to a
question of Masser in [7] (see the discussion on this in the introduction - section 1).

Corollary 5.3. There exists a reflection τ ∈ O(Z, F ) with

(49) H(τ) ≤ 4LN
L+8

2 (N + 2)|DK |L+2
2d H(F )H(Z)

L+2
L .

Proof. Let x be an anisotropic point in Z guaranteed by Lemma 5.2. Let τ = τx.
The result follows by combining (44) with (47). �

Lemma 5.4. Let A ∈ GLN (K) be such that det(A) = ±1, and write IN for the
N × N identity matrix. Then

(50) H(A ± IN ) ≤ 2H(A).

Proof. Let a1, ..., aN be row vectors of A. Then for each v ∈ M(K)

N
∏

i=1

Hv(ai) ≥
{

| det(A)|v = 1 if v - ∞
‖ det(A)‖v = 1 if v|∞

by Hadamard’s inequality. Therefore, if v - ∞, we have

Hv(A) = max
1≤i≤N

{Hv(ai)} ≥ 1,

and so

(51) Hv(A ± IN ) ≤ max{1, Hv(A)} = Hv(A).

If v|∞,

1 ≤
(

N
∏

i=1

Hv(ai)
d

dv

)

1
N

≤ 1

N

N
∑

i=1

Hv(ai)
d

dv

≤ 1√
N

(

N
∑

i=1

Hv(ai)
2d
dv

)

1
2

=
1√
N

Hv(A)
d

dv ,
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where the last inequality follows by Cauchy-Schwarz. Hence Hv(A)
d

dv ≥
√

N , and
so, by the triangle inequality,

(52) Hv(A ± IN )
d

dv ≤ Hv(A)
d

dv + Hv(IN )
d

dv ≤ Hv(A)
d

dv +
√

N ≤ 2Hv(A)
d

dv .

The result follows by combining (51) with (52) and taking a product over all places
of K. �

The following simple corollary of Lemma 5.4 provides a bound on the height of
the invariant subspace of an isometry, which is an object of interest in the algebraic
theory of quadratic forms.

Corollary 5.5. Let σ ∈ O(Z, F ). Let U be the invariant subspace of σ, i.e. U =
{z ∈ Z : σ(z) = z}. Let J = dimK(U) ≤ L. Then

(53) H(U) ≤ {2H(σ)}N−J
H(Z),

Proof. Write A for the N ×N matrix of σ, and IN for the N ×N identity matrix.
Notice that U = {z ∈ Z : (A − IN )z = 0}. Let B be a submatrix of A − IN which
consists of N − J linearly independent rows of A − IN . Hence rows of B are of
the form ai1 − ei1 , ..., aiN−J

− eiN−J
for some i1, ..., iN−J ∈ {1, ..., N}. Then, by

Lemma 4.7 of [9]

H(B) = H
(

(ai1 − ei1) ∧ ... ∧ (aiN−J
− eiN−J

)
)

≤
N−J
∏

j=1

H(aij
− eij

) ≤ H(A − IN )N−J ≤ (2H(A))N−J ,(54)

where the last inequality follows by Lemma 5.4. Combining (54) with Lemma 2.2,
we obtain

H(U) ≤ H(B)H(Z) ≤ {2H(A)}N−JH(Z).

The finishes the proof, since H(σ) = H(A) by definition. �

The following lemma bounds the height of a product of two matrices.

Lemma 5.6. Let A and B be two N × N matrices with entries in K. Then

(55) H(AB) ≤ H(A)H(B).

Proof. Write A = (a1 . . .aN )t, i. e. at
1, . . . , a

t
N are row vectors of A. Then we can

think of

AB = (at
1B, . . . , at

NB)t

as a vector in KN2

. Hence for each v ∈ M(K) such that v - ∞
Hv(AB) = max

1≤i≤N
{Hv(a

t
iB)} ≤ Hv(B) max

1≤i≤N
{Hv(ai)} = Hv(A)Hv(B),

by (16). For each v|∞, we have

Hv(AB) =

{

N
∑

i=1

Hv(at
iB)

2d
dv

}

dv
2d

≤ Hv(B)

{

N
∑

i=1

Hv(ai)
2d
dv

}

dv
2d

= Hv(A)Hv(B),

by (17). The conclusion follows by taking a product. �
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6. Effective version of Cartan-Dieudonné theorem

In this section we will prove Theorem 1.4. Let all the notation be as in section 5.
We argue by induction on L. When L = 1, Z = Kx for some anisotropic vector
x ∈ KN , since (Z, F ) is regular. Then σ = ±idZ , where −idZ = τx, and H(σ) =√

N by (41).

Then assume L > 1. Write A for the N ×N matrix of σ, and IN for the N ×N
identity matrix, so in particular H(σ) = H(A). Notice that for each x ∈ Z,

(56) F (σ(x) − x, σ(x) + x) = 0.

Let x ∈ Z be the anisotropic vector guaranteed by Lemma 5.2 with σ(x) ± x also
anisotropic. For this choice of ±, τσ(x)±x

fixes σ(x) ∓ x and maps σ(x) ± x to
−(σ(x) ± x). Then 2σ(x) = (σ(x)) + (σ(x) − x) will be mapped to (σ(x) ∓ x) −
(σ(x) ± x) = ∓2x. We can therefore observe that if σ(x) − x is anisotropic, then

(57) σ′ = τσ(x)−x
◦ σ

fixes x. If, on the other hand, σ(x) + x is anisotropic, then

(58) σ′ = τσ(x)+x
◦ τσ(x) ◦ σ

fixes x. In any case, σ′ defined either by (57) or (58) is an isometry of the (L− 1)-
dimensional regular bilinear space ({x}⊥, F ), where {x}⊥ = {z ∈ Z : F (x, z) = 0}.
Then, by the induction hypothesis,

σ′ = τ1 ◦ · · · ◦ τl,

for some reflections τ1, ..., τl with 1 ≤ l ≤ 2L− 3 and

(59) H(τi) ≤
{

(

2N2|DK | 1
2d

)

(L−1)2

2

H(F )
L−1

3 H
(

{x}⊥
)

L−1
2 H(σ′)

}5L−2

,

for each 1 ≤ i ≤ l, and so

(60) σ = σ′′ ◦ τ1 ◦ · · · ◦ τl,

for the same τ1, ..., τl and σ′′ = τσ(x)−x
or σ′′ = τσ(x)+x

◦τσ(x), depending on which
of σ(x) ± x is anisotropic, so σ is a product of at most 2L − 1 reflections. Next
we are going to produce bounds on their heights. Combining Lemma 5.1 with an
argument identical to the proof of Lemma 2.3 and Lemma 5.2, we obtain

(61) H(τσ(x)) ≤ 4LN
L+8

2 (N + 2)|DK |L+2
2d H(F )H(Z)

L+2
L H(σ)2.

Therefore τσ(x) satisfies (13). Also by Lemma 5.1,

(62) H(τσ(x)±x
) ≤ N3(N + 2)H(F )H(σ(x) ± x)2.

Notice that σ(x)±x = (A± IN )x. Then, once again, by an argument identical to
the proof of Lemma 2.3

(63) H(σ(x)±x) ≤ H(x)H(A± IN ) ≤ 2
√

L
{

N |DK | 1d
}

L+2
4

H(Z)
L+2
2L H(A± IN ),

where the last inequality follows by (47). Combining (63) with Lemma 5.4, we
obtain

(64) H(σ(x) ± x) ≤ 4
√

L
{

N |DK | 1d
}

L+2
4

H(Z)
L+2
2L H(A).
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Combining (62) and (64), we obtain

(65) H(τσ(x)±x
) ≤ 16LN

L+8
2 (N + 2)|DK |L+2

2d H(F )H(Z)
L+2

L H(σ)2,

hence τσ(x)±x
satisfies (13). By combining (57), (58), (41), Lemma 5.6, (61), and

(65), we have

(66) H(σ′) ≤ 64L2NL+8(N + 2)2|DK |L+2
d H(F )2H(Z)

2L+4
L H(σ)5.

By Lemma 2.2, Lemma 2.3, and (47)

(67) H
(

{x}⊥
)

≤ H(F )H(x)H(Z) ≤ 2
√

L
{

N |DK | 1d
}

L+2
4

H(F )H(Z)
3L+2
2L .

Then bound (13) follows upon combining (59) with (66) and (67) while keeping in
mind that 2 ≤ L ≤ N and N + 2 ≤ 2N . This completes the proof.
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