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1. Introduction

This paper was prompted by a problem from lattices associated with finite Abelian
groups. This problem, which will be described in Section 2, led to the computation of
the determinant of the n x n analogue A,, of the matrix

6 —4 1 0 0
4 6 —4 1 0
—4 6 —4 1
1 -4 6 —4
0 1 -4 6 —4
0 0 1 -4 6

As

_ o O =

It turns out that det A, = (n + 1)3. What makes the matter captivating is that the
determinant of the n x n version T}, of

6 —4 1 0 0
4 6 -4 1 0 0

L I @
0 1 —4 6 —4
0 0 0 1 —4 6

is a so-called pure Fisher-Hartwig determinant. The latter determinant is known to be

(n+1)(n+2)%(n+3)
B : (3)

This formula was established in [3]. See also [5, Theorem 10.59] or [6]. We were intrigued
by the question why the perturbations in the corners lower the growth from n?* to n?.

The general context is as follows. Every complex-valued function a € L' on the unit
circle T has well-defined Fourier coefficients

™

1 W0\ ,—ik0
= — do, keZ
ag o a(e )e R € 4,
—T
and generates the infinite Toeplitz matrix T'(a) = (aj—x)3%—;- The principal n x n

truncation of this matrix is denoted by T),(a). Thus, Ty, (a) = (a;j—x)} -, The function
a is usually referred to as the symbol of the infinite matrix T'(a) and of the sequence
{T(a)}$2 . For example, matrix (2) is just Ts(a) with

2
1
alt)=t2 -4t +6 -4t +t* = (1 - ¥> (1—1)? =1 —t* (4)
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where here and in the following ¢ = €?’. The function a(t) = |1 —¢|* has a zero on the unit
circle and therefore the classical Szegé limit theorem cannot be used to compute det T), (a)
asymptotically. Fortunately, a(t) = |1 —t|* is a special pure Fisher-Hartwig symbol, and
for such symbols the determinants are known both exactly and asymptotically.

In Section 3 we consider the determinants of perturbations of T),(a) under the as-
sumption that the norms of the inverses of T}, (a) remain bounded as n — oo. In that
case, under mild additional conditions, the determinants of the unperturbed matrices
are asymptotically given by Szegd’s strong limit theorem.

The (standard) techniques of Section 3 do not work for so-called Fisher-Hartwig
symbols. This class of symbols was introduced by Fisher and Hartwig in [10] in connection
with several problems of statistical physics. Paper [7] contains a very readable exposition
of the entire story up to the recent developments. See also the books [4] and [5]. A pure
Fisher-Hartwig symbol is of the form a(t) = (1 —¢)7(1 —1/t)°. In particular, symbol (4)
is of this form with v = § = 2. Determinants of perturbed Toeplitz matrices with pure
Fisher—Hartwig symbols are studied in Section 4. Among other things, we there give an
explanation of the growth drop from n* to n® when replacing (2) by (1).

In Section 5 we consider the very general case of symbols a € L' which are nonnegative
a.e. on the unit circle and whose logarithm loga is also in L'. We there show that the
quotient of the perturbed and unperturbed determinants approaches a limit as n — oo
and we determine this limit. The class of symbols treated in Section 5 includes the
general positive Fisher-Hartwig symbols a(t) = [t; — t|?*1 - - |t, — t|2>*"b(t) where the t;
are distinct points on T, the o are real numbers in (—1/2,1/2), and b is a sufficiently
smooth and strictly positive function on T.

2. The lattice of a cyclic group

The idea behind paper [11] is to associate a lattice with an elliptic curve and then to
connect arithmetic properties of the curve with geometric properties of the lattice. The
lattices obtained in this way are generated by finite Abelian (additively written) groups
G ={0,Py,...,P,} and are of the form

{(ml,...,xn,—xl—---—xn) ez P+ +12,P, :O}. (5)

One may think of these lattices as full rank sublattices of the well-known family of root
lattices

A, = {(xl,...,xn,—xl—---—xn)EZ”+1:xl,...,anZ}.

A fundamental quantity of every lattice is its determinant (i.e., the volume of a funda-
mental domain). Papers [1] and [20] contain a simple, purely group-theoretic argument
which shows that the determinant of the lattice (5) equals (n + 1)3/2. In particular, the
determinant depends only on the order of the group. As shown in [1], this result can also
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be derived in a completely elementary fashion via the computation of (usual) determi-
nants. Here is this computation in the simple case where G is the cyclic group of order
n + 1. The corresponding lattice is

L, = {(xl,...,mn,—x1~-~—xn)6Z”+1 :xl+2x2—|—~-—|—n:£n:()modulon—l—l}.

The rank of the lattice £, C A, is n, and in [1] it is proved that the columns of the
(n+ 1) X n matrix

-2 1 0 0 0
1 -2 1 0 0
0 1 =2 0 0

B, =
0 0 0 -2 1
0 0 1 -2
1 0 0 1

form a basis of the lattice £,,. The determinant of £,, is known to be /det(B, B,,), and
B, B,, is just the matrix A,, we encountered in the introduction. Thus, the calculation
of the determinant of the lattice £,, is equivalent to the computation of the determinant
of the matrix A,,.

Applying the Cauchy—Binet formula, we may write

det A, = det(B,) B,) = (det C1)? + (det C2)? + - - - + (det Cpp11)?,

where C; results from B,, by deleting the jth row. Expanding det C'; along the last row
and using the fact that the determinant of the k x k tridiagonal Toeplitz matrix with —2
on the main diagonal and 1 on the two neighboring diagonals is (—1)*(k + 1), it follows
that each det C; equals £(n + 1). Consequently,

det A, =(n+1)-(n+1)*=(n+1)>,
as desired.
3. The tame case

We now turn to Toeplitz determinants and their perturbations. Suppose the symbol
a is a piecewise continuous function, that is, the one-sided limits a(¢ £ 0) exist for
each t € T. Let a* be the continuous and naturally oriented curve in the plane that
results from the range of a by filling in the line segments [a(t — 0), a(t + 0)] for each ¢
where a makes a jump. A famous theorem of Gohberg [12] (see also [4, Corollary 2.19]
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or [13, Theorem 1V.4.1]) says that if the curve af does not pass through the origin
and has winding number zero about the origin, then the infinite matrix 7'(a) generates
a bounded and invertible operator on ¢2, the truncations T, (a) are invertible for all
sufficiently large n, and the inverses T}, 1 (a) := [T},(a)]~! converge strongly to the inverse
T~Y(a) := [T(a)]~*. To be more precise,

T, (a)P,x  converges in £2 to T~ (a)x for every x € (2, (6)
where P, is the projection P, : {x1,z2,23,...} — {x1,...,2,,0,...}.

Let E11, Fho, E21, Eos be four mg X mg matrices. For n > 2myg, we denote by E,, the
n X n matrix with the matrices F;; in the corners and zeros elsewhere,

Ey;p 0 Epo
E, = 0 0 O . (7)
Ey 0 Eo

If T'(a) is invertible, then the operator T~!(a) is given by an infinite matrix in the natural
fashion. We denote the entries of T!(a) by ¢;j; and let Sy = (¢jk)} %=, stand for the
upper-left mg x mg block of T~(a),

C11 C1,mgo
511 *
T '(a) = = .
Cmg,1 «ev Cmg,mg N * *

Let W, be the m x m counter-identity matrix, that is, W,, has ones on the counter-
diagonal and zeros elsewhere. Given an m X m matrix B, we denote by B the matrix
W, BW,,. Recall that BT stands for the transposed matrix. Toeplitz matrices enjoy
the property that [T),(a)]” = [Tn(a)]T = T,(a), where @ is the function defined by
a(t) = a(1/t), t € T. Finally, I,, and 0,, are the m x m identity and zero matrices.

Theorem 3.1. Let a be piecewise continuous and suppose a' does not contain the origin
and has winding number zero about the origin. Then

. det(Typ(a) + E,) In, O S 0 E1 Enp
lim ST En) e 0 -
noo  det T, (a) “MNo 5..)" Vo 5 )\ By Ew

Proof. We know that T},(a) is invertible for sufficiently large n, in which case

- (®)

det (T (a) + Ey) = det Ty, (a) det (I, + T;, ' (a) Ey). (9)

We write T), 1 (a) as
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(n) (n)
S+ Sip
T a)=| =+« (10)
(n) (n)
Sy’ ok Shy

with mg X mg matrices S](.Z). From (6) we infer that

sy Iyn,
P X = — 71 -1 Imo _ S .
Xy 1= * =T, (a)| On—am, | =T (a) 0 = .\ = X.
Sy Ormg

It follows immediately that Sﬂl) = P, P, X, = Ppn,X = Si1. On the other hand, letting
Q,, = I — P, we have Sé’f) = Qn—moPnX,, and thus ng) — 0 because

1Qn—mo PrXnll < [|Q@n—mo [ PaXn = X[ + [[Qnmo X[| = [[Pn X = X || + [|@nmo X ||

and Qp—m, — 0 strongly as n — oo. (Here we tacitly and in the obvious fashion extended
the action of P, and @Q,, from scalar-valued sequences in 2 to vector-valued sequences.)
We further have

ST
T7N@) =Wl (a)Wa = |+« x|,
Sy« &Y

and

_— [SET w [SSPIT
T (a)] = * * *
ST+ [SS)T

Since T,71(a) = [T, (a)] T, we see that §§Z) = [Sﬁt)]—r and hence, by what was already
proved, Ség) = [Sﬁb)]—r — Sf;. The curves a* and a* coincide up to the orientation. We
may therefore repeat the above argument with a replaced by a to deduce that Sg) —0

and thus also that Sg) — 0. The matrix I,, + T,, *(a)E, equals

Imo + S EL + 8By 0 S B, + ST By,
0 ]n72m0 0
SSVE + S By 0 Iy + S B + S8 oy

and hence det(I,, + T, *(a)E,) is equal to

det (Imo + St Bu + S5 B SO By + S5 En ) _ (11)

Sérf)Eu + Ség)Em Iy + ng)Eu + Ség)Em
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This goes to the limit

d Iy + S11E11 S11E12
et =T =T
SllE21 Imo + S11E22

I, 0 Sn 0 Eyn Er
= det 0 ~
’ K 0 Imo>+< 0 55) <E21 E??)

The assertion is now straightforward from (9). O

As already said, the curve af has a natural orientation. Under the assumption of
Theorem 3.1, we may associate an argument to each point of af such that this argument
changes continuously as the point moves along the curve. The restriction of this argument
to the points in the range of a defines an argument and thus a logarithm loga of a. Note
that if a itself is continuous, then loga is also a continuous function on the unit circle.
Let (loga), denote the kth Fourier coefficient of log a. The geometric mean of a is defined
by

s
G(a) = exp(loga)y = exp(% /loga(eie) d¢9>. (12)

It is well known that the (1,1) entry of T~!(a) is just 1/G(a); see, e.g., [5, Prop. 10.6(b)].

Example 3.2. Suppose mg = 1, that is, suppose T}, (a) has at most perturbations by four

scalars Ejj in its four corners. Then Si; = 8]} = c11 = 1/G(a) and the right-hand side

1 0 1 Ey Eipp
det —
¢ l(o 1) + G(a) <E21 E22>
Eyw Eipy (10 0 1 11
Eyi Exn ] \0 1) 1 0/’ 1 1)’

@ﬁ)i .

respectively. The limit (8) is zero if and only if G(a) is an eigenvalue of the 2 x 2 matrix

(i ma)-

of (8) becomes

. (13)

For

this is
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If the symbol a is continuous, then the curve a is simply the range a(T). Now suppose
that a is sufficiently smooth, say

3 K] < oo, (14)
k=—oc0

for some A > 0. The set of all a satisfying (14) is a weighted Wiener algebra and will be
denoted by W*. If A > 1/2 and if a has no zeros on the unit circle and winding number
zero about the origin, then the asymptotic behavior of the determinants det T, (a) is
described by Szeg@’s strong limit theorem. This theorem says that

det T,,(a) = G(a)"E(a)(1 + o(1)) (15)
where G(a) is given by (12) and E(a) is defined by
E(a) = exp Z k(loga)_x(loga)g.
k=1

Formula (15) may also be written in the form

Tim_det T, (ﬁ) = E(a).

In other words, after appropriate normalization the determinants approach a finite and
nonzero limit as their order increases to infinity. In [5, Corollary 10.38] it is shown that
the o(1) in (15) is o(1/n?*~1).

The following result is a refinement of Theorem 3.1 for smooth symbols.

Theorem 3.3. Let a € W with A > 1/2 and suppose a has no zeros on the unit circle
and winding number zero about the origin. Then

det(T,(a) + Ey,) In, O S 0 En Enp 1
—— - =det 0 ~ ol — ).
det T, (a) “NWo 5.,)" Vo 5)\ B B )| TR
Proof. We adopt the notations of the proof of Theorem 3.1. From Theorem 2.15 of

[4] we see that Sﬂl) = S11 + O(1/n*) (entry-wise). It follows that S’ég) = [§§7)]T =
ST+ O(1/n*). Let €3 be the weighted ¢2 space of all sequences z satisfying

- 1/2
- (z ) o
n=1

Theorem 7.25 of [5] implies that if x € £3, then T~!(a)x € (3 and
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T, (@) Poz — T (a)z||, , — 0. (16)
Let T, (a) = (c\))74—y. The kth column of S5 is (" ....,c"))T, while the
last mgy components of the kth column of P, T~ (a) are ¢p—mq+1.k» -+ Cn k-

Let ex be the sequence which has 1 in position k£ and zeros elsewhere. The convergence
result (16) with « = ey, shows that

mo

. 2
Z(n —me —|—])2)“C£Ln_)mo+j,k — cn7m0+j,k} — 0.
j=1
.. . 2N (n) 2
This implies that (n — mgo + j) |cn_m0+jvk — Cn—mo+j,k|° — 0 and hence

Cgbn—)mo-‘rj,k = Cn—mo+jk T 0(1/79)'

Since T~1(a)ey € €3, we also have Y > | n*}|c, x|* < oo, which yields

Cn—motjk = o(l/n)‘).
Consequently, cflnjmoﬂ’k = o(1/n*) and thus 5% = O(1/n*). Applying the above argu-
ments to T),(a) instead of T, (a) we obtain that also ng) = O(1/n*). In summary, the

determinant (11) is
1
O — )

I, 0 S 0 E.n Er
det 0 -
’ [( 0 Imo>+<0 531)(@1 E22>

which completes the proof. O

Example 3.4. Let a(t) = (1 — ut)(1 — v/t) with |u| < 1, |v| < 1. The n x n versions of
the matrices

1+  —v 0 0 14 pv —v 0 1
—u 1+ pv -V 0 —u 14+ pv -V
0 - 14w —v ’ 0 - 14w  —v ’
0 0 — 1+ pv 1 0 — 14 pv

are Ty, (a) and T),(a) + E,,. We have G(a) = 1 and E(a) = 1/(1 — pv), and hence Szegd’s
strong limit theorem tells us that det T, (a) has the limit 1/(1 — pv). Theorem 3.3 may
be applied with arbitrarily large A. Since G(a) = 1 is an eigenvalue of

(B Bz [0 4
Ey Ex ) \ -1 0)’
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Example 3.2 and Theorem 3.3 predict that det(T),(a)+ F,)/ det T,,(a) goes to zero faster
than an arbitrary power of 1/n. In fact it is easy to compute the determinants exactly.
We have

1— n+1
det Ty (a) = 1(/“‘7’/)
— v

det(Tn(a) + E,) = (1+ ) (uo)*

This shows that the quotient det(T,,(a) + E,,)/ det T, (a) actually decays exponentially
fast to zero.

4. The pure Fisher—-Hartwig singularity

The symbol a(t) = (1 —t)7(1 — 1/t)% is referred to as the pure Fisher-Hartwig singu-
larity. Here § and ~ are complex numbers. We define

&)= (1 -1/t =) (-1 <2> t*,

k=0

y(t) = (1—t)7 = i(_l)k (Z)tk

k=0

and may then write a = &;7,. Throughout what follows we assume that the real parts
of 6, 7y, and &§ + v are greater than —1. This guarantees that &5, n,, and s, are in L.
Note that the symbol (4), which belongs to the n x n versions of matrix (2), is the pure
Fisher—-Hartwig singularity a = &amo.

As shown in [5, Lemma 6.18], the kth Fourier coefficient of &57., is

I(1+6+7)
d+n+1)I'(y—n+1)

(_1)k1—v(

in case neither § + n + 1 nor v — n + 1 is a nonpositive integer and is equal to zero if
d+n+1ory—n+1isanonpositive integer. The determinants of T,,(£57+) are known
both exactly and asymptotically. Section 10.58 and Theorem 10.59 of [5] tell us that

G1+0)G1+79)Gn+1)Gn+14+d+7)
Gl+d+7) Gn+1+4+6)Gn+1+7)

G +0)G(1+7)

G +d54+7)

det T, (€smy) =

(17)

n’7 (14 o(1)), (18)

where G(z) is the Barnes function. We see in particular that T,,(&sm,) is invertible for
every n > 1. We write T, (¢m) = (e3¢ (65719))} 41
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Theorem 4.1. For each fized j,

n I'(y —y—1 J Y 1
tem) = ey (14 25 1o ) (19)
with
pj(€ony) =0 =)0 —j—1)+6(6-1)—(+n0+v-1)—j(i—1)
=—y(y—-1)+d66—-1)—2v6 +2j(1 —9)
and
(n) _ TG +9) q;(€sm) 1
o jn(&omy) = TOrG+10 (1 + Ton + O(ﬁ)) (20)
with

4i(&smy) = (v =Ny =i =D+ -1 =0+ +y=-1) -G+ 1)j
= —2v(d + j).

Furthermore, again for each fized j,

D Esmy) = Ems), e (Emy) = L (Ems). (21)

Proof. The key is the Duduchava—Roch formula, which can be found as Theorem 6.20
in [5]; see also equalities (7.87) and (7.88) of [5]." This formula says that

T (1) = Loy My T (€)M 5T () M, (22)
where I5, =T'(14+0)['(14+~)/I'(14+ 0+ ), M, stands for the diagonal matrix
el

My = diag(pa(a), ..., pn(a)),  px(a) = F({(fi;r)?)(’@

T,.(€_s) is the upper-triangular Toeplitz matrix whose first row is

r(k+90)

((€=5)0s- -+ (§=5)n—1) With (£_s)k = T+ 1)’

and T}, (n—~) is the lower-triangular Toeplitz matrix with the first column

! The formula was obtained by Duduchava in the case v + § = 0 in his 1974 paper [9]. In 1984, Steffen
Roch established the formula in the general case. With Roch’s permission, it was published in [3] for the
first time. See [5, pp. 320-321] for more on the story.
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I'k++)

T .
(12000 s )ut) it (1) = e

Let e, = (0,...,0,1)T. Using (22) it is easily seen that the jth component of the column
T;l(fgnw)en is

cg'z) (&smry) = I54(§—6)n—j (7]7)0%.

Inserting the above expressions for the pieces on the right we obtain

'G+vy) I'(n—j+0)I(n+4)
rOrG rin—jij+0r(n+6+~)

M (Esmy) =

Stirling’s formula gives

%:WOJFO‘(O;—;UJFO(%)) (24)

for every complex number «. Fixing j in (23), dividing numerator and denominator of
(23) by I'(n)?, and using (24) we arrive at (19). Replacing j by n — j in (23) we get

I'(j+94) I'(n—j+y)I(n+9)
rOrG+1)rn—)rn+é+~)

cEzn—)j,n(&Sn’Y) =

Making again use of (24), we obtain (20) for each fixed j.

The numbers (19) and (20) are the upper and lower components of the last column
of T,(&m,), that is, of the column z given by T,({n,)x = e,. The entries in the
first column of T,,(&sm,) are the entries of the column y defined by T,,(&m,)y = e1 ==
(1,0,...,0)". With the counter-identity W, we therefore have W,, T, (£smy )Wy Wy =
Wye1 = ey, and since W, T, (&5m4) Wy = Th(&4ns), it follows that T),(&yns)Why = e,.
This proves (21). O

Example 4.2. The proof of Theorem 3.1 shows that if the symbol a is as in this theorem,
then the lower-left and upper-right entries of T);!(a) always approach zero as n — oo.
In Section 5 we will see that this also happens if a € L, a > 0 almost everywhere on the
unit circle, and loga € L'. However, Theorem 4.1 reveals that in general the lower-left
and upper-right entries of T);!(a) need not to converge to zero. Indeed, from (19) we
infer that the upper-right entries of 7);!(&sm,) decay to zero only if Red — Rey < 1,
and combining (19) and (21) we see that the lower-left entries of T, *(£sm,) go to zero
only if Rey — Red < 1. Thus, both the lower-left and upper-right entries converge to
zero only if |Rey — Red| < 1. Pure Fisher—Hartwig symbol are a nice tool to get a
first feeling for several phenomena concerning Toeplitz matrices and in particular for
disproving conjectures on such matrices!
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Theorem 4.1 is all we need to tackle the case my = 1, that is, the case where T, (55177)
has at most four scalar perturbations in the corners. From (9) and (11) we infer that if
the Ejj, are scalars, then

det(Tn (gén’y) + En)
det T,, (&5m)

— det (1 0) N <c§?> (&) ) (55%)) (Eu E12> (25)
01 Cgﬁ) (&smy) C1(17’1;7,) (&) Ey Ep
Example 4.3. Suppose
En Ep)_ (01
Ly Ey 1 0/°
Then
det (T, () + En) _ [(1 0) . (cg’f)(&sm) c§2>(§5n7)> (0 1)]
det T, (&1,) 0 1 M (esny) H&my) ) \ 10
_ det (1 + (&) AP (Esny) )
Ay 1+ (&ny)
and by virtue of (21), this equals
et (1 + (&) R Ems) ) o)
() 1+ (Ems)

We take only the main term of (19) for j = 1, and we take (20) for j = 0, in which case
40(Es1) = @o(€4m5) = —257. Then (26) becomes

1+ F}l(g;y)né—v—l + O(nRCJ—Rc'y—Q) 1— oy + O(%)
det " "
1— %7 4 O(#) 1+ Fl(ﬂl(;r)(s)n'yféfl + O(nRe'yfRE(SfQ)
(27)
This is
Mnaqu +O0(nR0"Re772) for Red > Rey + 1
I'(4)
and
I'(1 1
Mm‘s—"’_l—kO — ] for Revy+1>Red > Rer.
r) n
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We know that detT,(£sm,) is asymptotically a constant times n®. Tt follows that
det(T,,(&smy) + Ey) is asymptotically a constant times

nTpd—r=1 — p6-D(r+1)

provided Re § > Rey. In the case where Re d < Re~y, we may pass to transposed matrices,
which does not change determinants but changes the roles of v and ¢ and therefore shows
that then det(7), (&) + En) is asymptotically a constant times

nrpy—0-1 — (=16 +1)

In summary, if §, v are positive real numbers, in which case det T,,(£57,) grows with n,
then

o det(T,,(&my) + Ey) grows faster than det T, (&sm5) if |y — ] > 1,
o det(T,(&smy) + Er) grows slower than det T, (sny) if |y — 6] < 1,
o det(T5,(&smy) + Ey) decays to zero if v < 1 and § < 1.

The case 6 = + is especially nice and therefore deserves a separate treatment by the
following corollary. We have &, (t)n,(t) = |1 — t|?®. Recall that we require Reaw > —1/2
and that for « = 2 we get the symbol (4). For a square matrix A, we abbreviate det A
to |A.

Corollary 4.4. If the Ej;, are scalars, then det(T,(Eana) + En)/ det T, (§ana) is

>+0<n—12>.
E E 0 1
(Fm)-(00) e

det(Ty (Eae) + En) _ 20(a+1) | O( ! ) (29)

1+ Ep Eys
Esy 14 Fao

Ey Epp
Ey  Eap

+ % <E12 + E91 — a(E1 + Eg) — 2a

If in particular

then

n2

det T, (€aMa) n

Proof. From Theorem 4.1 we deduce that

CEZ)(faﬁa) = Cgﬁ)(é‘afla) = % + O( ! ) (30)

n2

and



A. Bdéttcher et al. / Journal of Functional Analysis 268 (2015) 171-193 185

n2

A7 (Eana) = ) (atta) =1 — a— + O( ! ) (31)

Thus, (25) equals

10 1-2 1 0(L) a
‘(o 1>+< 21 0(%) 1—

which can be simplified to the asserted expression. 0O

When restricted to the present context, Theorem 5 of [19] says that

2

) (Gama) = = (14 0(1)), c@@ww—(rﬂi)u+mm.

The second formula is probably misstated in [19] and should correctly read

2
o} (atla) = 1= == (1+0(1).

Clearly, these formulas are close to but nevertheless weaker than (30) and (31).

Example 4.5. We write a,, ~ b, if a,,/b, — 1. Combining (18) and the corollary we see
that the two corner perturbations given by (28) lead to

G(1+a)?

G 2wy 2@+ D™

det (Tn(gana) + En) ~

Thus, the exponent o? is indeed lowered by 1. If k is a positive integer then G(k) =
(k—2)!...211! with G(2) = G(1) = 1. We so obtain in particular

det T, (§1m1) ~ n, det(T,(&1m) + Ey) ~ 4,
n* 3
13’ det(Tn(@ng) + En) ~n°,

ng 718
2 det(T, E,) ~ e
o det(TulGoms) + Bn) ~ o5

det Tn (527]2) ~
det Tn (53773) ~

We can of course also compute the determinants exactly. Formula (23) provides us with
an exact expression for cg-:;) (&51my)- It implies that

F(n—1+a)F(n+a)
I'(n)I'(n+ 2a)

I'ln+a)l'(n+a)
I'(n)I'(n+2a)

Cln (gana) = ) 01(17;2 ((aa) =

For o = 1, this gives
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(n) _ 1 (n) __n
Cin (61771) n+1’ Cnn (51771) n+1’
and inserting this in (26) we obtain
1 n_
1+ - | 4
P 1+ = n+1

Since det T,,(&1m1) = n + 1 due to (17), it follows that det(T,,(£1m) + En) = 4 for all
n > 2. Analogously, for « = 2 we have

2n n(n+1)

(TL) _ n —
Ciy (§2m2) = D) 1) () = m+2)n+3)

and hence the determinant (26) equals

2 n(n+1)
e R G ol
n(n+1) - p) .
et tomery | (t2)?(n+3)

The determinant det T}, (£272) is (3) by virtue of (17). Consequently,

(n+1)(n+2)*n+3)  12(n+1)?
12 (n+2)%2(n+3)

det (T}, (E2m2) + En) = =(n+1)°

for n > 2. Similarly,

(n+1)(n+2)%(n+3)3(n+4)%(n+5)
8640

det T),(&3m3) =
for n > 1 and

(n+1)(n+2)%2(n+3)[(n+2)2+1][(n +2)? + 2]

det (Tn(fgﬂs) + En) = 360

for n > 2.

To treat the case mo > 2, we need the matrices S](.Z) in (10). Theorem 4.1 provides
us with the first and last entries of the first and last columns of T, !(a). The entries
in the four corners S(k) of T;71(a) can therefore be computed with the help of the
Gohberg—Sementsul-Trench formula [14,22]. This formula says that if

(n) (n)

Z1 Ciq 1 Cin
: = : ) : = (32)
Tn 61(17;) Yn C'S:rLz)

are the first and last columns of T, *(a) and x; # 0, then
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X1 Yn oo Y1

Tp ... I1 Yn

Yo Tn+1 .- )

-— , (33)

Yn—1 .-+ Yo Tp+1

where x,11 := 0 and yo := 0. A full proof is also in [16, p. 21]. Note that actually
Z1 = Yn. Moreover, Cramer’s rule shows that x1 # 0 if and only if detT,,—1(a) # 0. If
SJ(Z) has a limit S, then (11) implies that

. det(Ty(a) + E,) Iy 0O S11 Sz Eyi Eng
lim ——————= =det © 34
nl—>ngo det Tn (a) ¢ 0 [m,o * Sgl SQQ E21 E22 ( )
Example 4.6. Theorem 4.1 applied to a = £,7, shows that, for fixed j,
n « +.7 -2
CS?) (fana) = Cfl_)j-i-l,n('gozna) — ¢ = < j—1 )7 (35)
¢ (€ana) = 1111 (€atta) = 0. (36)

It follows that S\3) and S{7” converge to zero, and formula (33) implies that S\ goes

to

1 C1 C1 ... Cmyg
Si1=—
&1

Cmyg A C1

Since Ty, (€a7) is symmetric, we see that S’ég) — §11. Thus, formula (34) becomes

. det(T5(6ana) + En) I, 0 St 0 LBy Eig
| = det 0 ~
noeo  det T (Eana) ¢ 0 In, * 0 Su Ey  Eao

If mg = 1, then S1; = (1), and for the matrix (28) we get

- det(Tu(Eania) + En) 10 1 o\{o 1\|_
A det Ty (a7l detl(o 1>+<0 1)(1 0)]0'

This is correct but weaker than (29). Notice that here we used only limits, whereas in

. (37)

order to establish (29) we worked with finer asymptotics. In the case my = 2 we have

1 o ~ 14?2 «
Sn—(@ 1+a2>’ Sn—( o 1)-
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Theorem 4.1 provides us with error terms in (35) and (36) and thus with finer results in
the case where the right-hand side of (37) is zero. However, we will not embark on this
issue here.

5. General Hermitian Fisher-Hartwig determinants

We first embark on the general case where a € L', a > 0 almost everywhere on T,
and loga € L'. Fisher-Hartwig symbols are a special case and will be considered in the
examples at the end of this section. The constant G(a) defined by (12) is a finite and
strictly positive real number. Let

loga(t) = Z (loga)itt, teT.

k=—o0

For |z| < 1, we define

a4 (z) =exp Z(log a)p2®
k=1

and

oo oo
al'(z) = exp (— Z(log a)kzk> = Z(a;l)kzk.
k=1 k=0
Simon [21, p. 144] defines the Szeg8 function associated with a as

1 7 6 ) 1 oo
D(z) = eXp<E / Z“’ i_ i loga(ew) d9) = eXp(@ + Z(loga)kzk)

k=1

—T

Note that this is just the outer function whose modulus on T is |a|'/2. Clearly, a(z) =
G(a)~'2D(z). The sole assumption that a € L' is not identically zero but nonnegative
almost everywhere on T implies that T, (a) is a positive definite (Hermitian) matrix for
every n > 1. This is well known, see, e.g., [15, Section 5.2], and can be shown as follows:
if 2 = (21,...,2,) € C" and f(e) := 1 + x0€" + -+ + 2,e("" 1 then

27

(T (a)z,z) = % /a(eie)}f(eie){QdH

is strictly positive, so that all eigenvalues of T},(a) are strictly positive. Thus, the ma-

trices Tj,(a) are in particular invertible for all n > 1. We put 7, '(a) = (c;.z)

abbreviate c§7f) to c;n). Thus, (c§"), ce cSJ”)T is the first column of T, !(a).

)j k=1 and
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Theorem 5.1. For each fized j > 1,

Loy L (O B
e = g ) el =0 3
Proof. The polynomial
_ 1

Pua(2) = Gy (@) + -+ & g
€1

is known as the predictor polynomial of a. By virtue of [21, Theorem 1.5.12], it is the
n — 1st monic orthogonal polynomial on the unit circle z = e’ associated with the

measure du () = loga(e?)df/(2n). Let ||®,_1| be its norm in L?(T,du) and put

1

=—&, 1(2) = Kn—12""1 + lower order powers.
[@n—1l

‘Pn—l(z)

Thus, ¢,—1(2) = kpn—1Pn-1(2). By [21, Theorem 1.5.11(b)], we have

-2
K2 = h 1 _ det T),—1(a) _ C(n)
T LT P T ()

where ag, a1, . .. are the Verblunsky coefficients, and Szeg6’s theorem [21, Theorem 2.3.1]

says that

—

(1—|a;?) = G(a).

7=0

It follows that s, 1 — G(a)™*/? and cgn) — 1/G(a). By [21, Theorem 2.4.1(iv)], the
polynomials

Rn—1

on 1(2) =2""tpn1(1/2) = W(C(ln) R
1

converge uniformly on compact subsets of the unit disk |z| < 1 to the function D(z)~! =
G(a)~Y2a;'(2). This implies that the coefficient of 271 in ¢}_,(2) converges to the
coefficient of 27~! in D(2)~! = G(a)"*/2a]'(z), that is,

Kn_lc;n) - (a3")
7 g

Taking into account that r,_1 — G(a)~2/2 and ¢{™ — 1/G(a), we finally conclude that
" = (a7");-1/G(a).
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To prove the second equality of (38), we employ the Szegd recursion
P (2) = 2Pp—1(2) — On—1P,_1(2);

see [21, Theorem 1.5.2]. Written out this reads

L (1) _(n+1) _n
5(n+1)(0n11 o)
1
2 n _(n) _n—1 Qn—1/ (n) n) n—1
_E(C;)+"'+Cl ) - c(n>(1 +od P
1 1

Comparing the coefficients of z° we obtain

_(n+1)
Cn+1 = —a, 1
~ 1 n—1,
e

and since an+1) — 1/G(a) and a,—1 — 0, we see that cngll) — 0. Comparison of the

coefficients of z gives
gt g (n)

= oy~ Gn-1—
R R O )

and as cgn) — 1/G(a), cgn) — (a7")1/G(a), ap—1 — 0, and, by what was just proved,

™ -5 0, we arrive at the conclusion that ¢\ — 0. Proceeding in this way we
successively see that cﬁj‘_ﬁ” — 0, c;”j;) — 0, etc. This proves the second assertion

in (38). O

Corollary 5.2. Let a € L', suppose a > 0 almost everywhere on T, and assume loga is
also in L'. Let E,, be as in (7) and define G(a) and a}' as above. Put

) C1 €1 ... Cmyg
S = — : .. .. : with ¢; =
: . . : J
C1

o
@(%%4

Cmyg ... C1 (5]

Then

lim det(Tn(a) +En) — det Imo 0 n S11 qu Fi11 Fhs

n—00 det Tn (a) 0 ]mo 0 Sll E21 E22
Proof. We know that T),(a) is invertible for all n > 1. Consequently, the requirement
21 # 0 in the Gohberg—Sementsul-Trench formula is met. Since T},(a) is Hermitian, the

columns (32) are
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1 o Y )
Tn e Yn &m
Combining Theorem 5.1 and formula (33) we see that
n n n n a(n)1 T ra
S =S, sy o, si =0, SE =[5 - Sy (39)

The assertion is therefore immediate from (34). O

In [8, p. 690] and [17, Lemma 3.2] it is shown that if a is a (real-valued and nonnega-
tive) trigonometric polynomial, then the norms of S\, §{% (" g{") remain bounded
as n — oo. From (39) we see that, under the sole assumption that a € L', a > 0 almost
everywhere on T, and loga € L', these matrices even converge to limits.

The following two examples concern perturbations of Hermitian Fisher—Hartwig ma-
trices.

Example 5.3. Let a(t) = &,(t)n.(t)b(t) = |1 — |?*b(t) where a > —1/2 is a real number
and b is a twice continuously differentiable and strictly positive function on the unit
circle. Then

det T, (a) ~ G(b)"n® E,(a)

with some nonzero constant E,(a); see [2, Lemma 6.47] and [4, Theorem 5.44]. In this
case Corollary 5.2 is applicable. We have ¢; = (_4b");—1/G(b) and hence

C1 = 1,
2= (b-T-l)1 +a,
cg = (b;l)2 + (bjrl)la +ala+1)/2,

and so forth.
For the pure singularity, i.e., when b(¢) is identically 1, we get
c1 =1, co = s =ala+1)/2,
and Sp; takes the same form as in Example 4.6.
Example 5.4. Now suppose
alt) = [t — 2 - |ty — e b()

where ¢; are distinct points on T, «; are real numbers in (—1/2,1/2), and b is a twice
continuously differentiable and strictly positive function on T. This time
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det T, (a) = G(b)"n® t "+ B, (a)

with some nonzero constant F..(a); see [4, Theorem 5.47]. Corollary 5.2 is again appli-
cable. If, for example, a(t) = [t; — t|*¥1 |ty — t]|?>?2, then

C1 = 1,
aq Q2
C = — o
tq to
o ar(ar +1)  ajas  ag(az+1)
-

2t2 t1ts 2t3

The values for ¢; given in Example 5.3 can also be derived from [19, Lemma 1].
Moreover, Theorem 5 of [19], with the surmised correction mentioned above after

Corollary 4.4, gives the second term in the asymptotics of c§") for symbols as in

Example 5.3. In the case of two singularities with the same exponent, that is, for
a(t) = [t1 — t|**[t2 — ¢]**b(t) with —1/2 < a < 1/2, which is a special case of Ex-
ample 5.4, Theorem 7 of [18] says that c§n) = (a3')j-1/G(a) +O(1/n), which is stronger
than our result c§n) = (a3")j-1/G(a) + o(1).
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