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1. Introduction

This paper was prompted by a problem from lattices associated with finite Abelian 
groups. This problem, which will be described in Section 2, led to the computation of 
the determinant of the n × n analogue An of the matrix

A6 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

6 −4 1 0 0 1
−4 6 −4 1 0 0

1 −4 6 −4 1 0
0 1 −4 6 −4 1
0 0 1 −4 6 −4
1 0 0 1 −4 6

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (1)

It turns out that detAn = (n + 1)3. What makes the matter captivating is that the 
determinant of the n × n version Tn of

T6 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

6 −4 1 0 0 0
−4 6 −4 1 0 0

1 −4 6 −4 1 0
0 1 −4 6 −4 1
0 0 1 −4 6 −4
0 0 0 1 −4 6

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(2)

is a so-called pure Fisher–Hartwig determinant. The latter determinant is known to be

(n + 1)(n + 2)2(n + 3)
12 . (3)

This formula was established in [3]. See also [5, Theorem 10.59] or [6]. We were intrigued 
by the question why the perturbations in the corners lower the growth from n4 to n3.

The general context is as follows. Every complex-valued function a ∈ L1 on the unit 
circle T has well-defined Fourier coefficients

ak = 1
2π

π∫
−π

a
(
eiθ

)
e−ikθ dθ, k ∈ Z,

and generates the infinite Toeplitz matrix T (a) = (aj−k)∞j,k=1. The principal n × n

truncation of this matrix is denoted by Tn(a). Thus, Tn(a) = (aj−k)nj,k=1. The function 
a is usually referred to as the symbol of the infinite matrix T (a) and of the sequence 
{Tn(a)}∞n=1. For example, matrix (2) is just T6(a) with

a(t) = t−2 − 4t−1 + 6 − 4t + t2 =
(

1 − 1
)2

(1 − t)2 = |1 − t|4, (4)

t
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where here and in the following t = eiθ. The function a(t) = |1 −t|4 has a zero on the unit 
circle and therefore the classical Szegő limit theorem cannot be used to compute detTn(a)
asymptotically. Fortunately, a(t) = |1 − t|4 is a special pure Fisher–Hartwig symbol, and 
for such symbols the determinants are known both exactly and asymptotically.

In Section 3 we consider the determinants of perturbations of Tn(a) under the as-
sumption that the norms of the inverses of Tn(a) remain bounded as n → ∞. In that 
case, under mild additional conditions, the determinants of the unperturbed matrices 
are asymptotically given by Szegő’s strong limit theorem.

The (standard) techniques of Section 3 do not work for so-called Fisher–Hartwig 
symbols. This class of symbols was introduced by Fisher and Hartwig in [10] in connection 
with several problems of statistical physics. Paper [7] contains a very readable exposition 
of the entire story up to the recent developments. See also the books [4] and [5]. A pure 
Fisher–Hartwig symbol is of the form a(t) = (1 − t)γ(1 − 1/t)δ. In particular, symbol (4)
is of this form with γ = δ = 2. Determinants of perturbed Toeplitz matrices with pure 
Fisher–Hartwig symbols are studied in Section 4. Among other things, we there give an 
explanation of the growth drop from n4 to n3 when replacing (2) by (1).

In Section 5 we consider the very general case of symbols a ∈ L1 which are nonnegative 
a.e. on the unit circle and whose logarithm log a is also in L1. We there show that the 
quotient of the perturbed and unperturbed determinants approaches a limit as n → ∞
and we determine this limit. The class of symbols treated in Section 5 includes the 
general positive Fisher–Hartwig symbols a(t) = |t1 − t|2α1 · · · |tr − t|2αrb(t) where the tj
are distinct points on T, the αj are real numbers in (−1/2, 1/2), and b is a sufficiently 
smooth and strictly positive function on T.

2. The lattice of a cyclic group

The idea behind paper [11] is to associate a lattice with an elliptic curve and then to 
connect arithmetic properties of the curve with geometric properties of the lattice. The 
lattices obtained in this way are generated by finite Abelian (additively written) groups 
G = {0, P1, . . . , Pn} and are of the form

{
(x1, . . . , xn,−x1 − · · · − xn) ∈ Zn+1 : x1P1 + · · · + xnPn = 0

}
. (5)

One may think of these lattices as full rank sublattices of the well-known family of root 
lattices

An :=
{
(x1, . . . , xn,−x1 − · · · − xn) ∈ Zn+1 : x1, . . . , xn ∈ Z

}
.

A fundamental quantity of every lattice is its determinant (i.e., the volume of a funda-
mental domain). Papers [1] and [20] contain a simple, purely group-theoretic argument 
which shows that the determinant of the lattice (5) equals (n + 1)3/2. In particular, the 
determinant depends only on the order of the group. As shown in [1], this result can also 
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be derived in a completely elementary fashion via the computation of (usual) determi-
nants. Here is this computation in the simple case where G is the cyclic group of order 
n + 1. The corresponding lattice is

Ln :=
{
(x1, . . . , xn,−x1 · · · − xn) ∈ Zn+1 : x1 + 2x2 + · · · + nxn = 0 modulo n + 1

}
.

The rank of the lattice Ln ⊂ An is n, and in [1] it is proved that the columns of the 
(n + 1) × n matrix

Bn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 . . . 0 0
1 −2 1 . . . 0 0

0 1 −2
. . . 0 0

...
. . . . . . . . . . . .

...

0 0 0
. . . −2 1

0 0 0 . . . 1 −2
1 0 0 . . . 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
form a basis of the lattice Ln. The determinant of Ln is known to be 

√
det(B�

n Bn), and 
B�

n Bn is just the matrix An we encountered in the introduction. Thus, the calculation 
of the determinant of the lattice Ln is equivalent to the computation of the determinant 
of the matrix An.

Applying the Cauchy–Binet formula, we may write

detAn = det
(
B�

n Bn

)
= (detC1)2 + (detC2)2 + · · · + (detCn+1)2,

where Cj results from Bn by deleting the jth row. Expanding detCj along the last row 
and using the fact that the determinant of the k×k tridiagonal Toeplitz matrix with −2
on the main diagonal and 1 on the two neighboring diagonals is (−1)k(k + 1), it follows 
that each detCj equals ±(n + 1). Consequently,

detAn = (n + 1) · (n + 1)2 = (n + 1)3,

as desired.

3. The tame case

We now turn to Toeplitz determinants and their perturbations. Suppose the symbol 
a is a piecewise continuous function, that is, the one-sided limits a(t ± 0) exist for 
each t ∈ T. Let a� be the continuous and naturally oriented curve in the plane that 
results from the range of a by filling in the line segments [a(t − 0), a(t + 0)] for each t
where a makes a jump. A famous theorem of Gohberg [12] (see also [4, Corollary 2.19]
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or [13, Theorem IV.4.1]) says that if the curve a� does not pass through the origin 
and has winding number zero about the origin, then the infinite matrix T (a) generates 
a bounded and invertible operator on �2, the truncations Tn(a) are invertible for all 
sufficiently large n, and the inverses T−1

n (a) := [Tn(a)]−1 converge strongly to the inverse 
T−1(a) := [T (a)]−1. To be more precise,

T−1
n (a)Pnx converges in �2 to T−1(a)x for every x ∈ �2, (6)

where Pn is the projection Pn : {x1, x2, x3, . . .} �→ {x1, . . . , xn, 0, . . .}.
Let E11, E12, E21, E22 be four m0 ×m0 matrices. For n ≥ 2m0, we denote by En the 

n × n matrix with the matrices Ejk in the corners and zeros elsewhere,

En =

⎛⎜⎝E11 0 E12
0 0 0

E21 0 E22

⎞⎟⎠ . (7)

If T (a) is invertible, then the operator T−1(a) is given by an infinite matrix in the natural 
fashion. We denote the entries of T−1(a) by cjk and let S11 = (cjk)m0

j,k=1 stand for the 
upper-left m0 ×m0 block of T−1(a),

T−1(a) =

⎛⎜⎜⎜⎝
c11 . . . c1,m0 . . .

. . . . . . . . .

cm0,1 . . . cm0,m0 . . .

. . . . . . . . . . . .

⎞⎟⎟⎟⎠ =
(
S11 ∗
∗ ∗

)
.

Let Wm be the m × m counter-identity matrix, that is, Wm has ones on the counter-
diagonal and zeros elsewhere. Given an m × m matrix B, we denote by B̃ the matrix 
WmBWm. Recall that B� stands for the transposed matrix. Toeplitz matrices enjoy 
the property that [Tn(a)] ̃ = [Tn(a)]� = Tn(ã), where ã is the function defined by 
ã(t) = a(1/t), t ∈ T. Finally, Im and 0m are the m ×m identity and zero matrices.

Theorem 3.1. Let a be piecewise continuous and suppose a� does not contain the origin 
and has winding number zero about the origin. Then

lim
n→∞

det(Tn(a) + En)
detTn(a) = det

[(
Im0 0
0 Im0

)
+
(
S11 0
0 S̃�

11

)(
E11 E12
E21 E22

)]
. (8)

Proof. We know that Tn(a) is invertible for sufficiently large n, in which case

det
(
Tn(a) + En

)
= detTn(a) det

(
In + T−1

n (a)En

)
. (9)

We write T−1
n (a) as
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T−1
n (a) =

⎛⎜⎝ S
(n)
11 ∗ S

(n)
12

∗ ∗ ∗
S

(n)
21 ∗ S

(n)
22

⎞⎟⎠ (10)

with m0 ×m0 matrices S(n)
jk . From (6) we infer that

PnXn :=

⎛⎜⎝ S
(n)
11
∗

S
(n)
21

⎞⎟⎠ = T−1
n (a)

⎛⎜⎝ Im0

0n−2m0

0m0

⎞⎟⎠ → T−1(a)
(
Im0

0

)
=

(
S11
∗

)
=: X.

It follows immediately that S(n)
11 = Pm0PnXn → Pm0X = S11. On the other hand, letting 

Qn = I − Pn, we have S(n)
21 = Qn−m0PnXn and thus S(n)

21 → 0 because

‖Qn−m0PnXn‖ ≤ ‖Qn−m0‖‖PnXn −X‖ + ‖Qn−m0X‖ = ‖PnXn −X‖ + ‖Qn−m0X‖

and Qn−m0 → 0 strongly as n → ∞. (Here we tacitly and in the obvious fashion extended 
the action of Pn and Qn from scalar-valued sequences in �2 to vector-valued sequences.) 
We further have

T−1
n (ã) = WnT

−1
n (a)Wn =

⎛⎜⎝ S̃
(n)
22 ∗ S̃

(n)
21

∗ ∗ ∗
S̃

(n)
12 ∗ S̃

(n)
11

⎞⎟⎠ ,

and

[
T−1
n (a)

]� =

⎛⎜⎝ [S(n)
11 ]� ∗ [S(n)

21 ]�
∗ ∗ ∗

[S(n)
12 ]� ∗ [S(n)

22 ]�

⎞⎟⎠ .

Since T−1
n (ã) = [T−1

n (a)]�, we see that S̃(n)
22 = [S(n)

11 ]� and hence, by what was already 
proved, S(n)

22 = [S̃(n)
11 ]� → S̃�

11. The curves a� and ã� coincide up to the orientation. We 
may therefore repeat the above argument with a replaced by ã to deduce that S̃(n)

12 → 0
and thus also that S(n)

12 → 0. The matrix In + T−1
n (a)En equals⎛⎜⎝ Im0 + S

(n)
11 E11 + S

(n)
12 E21 0 S

(n)
11 E12 + S

(n)
12 E22

0 In−2m0 0
S

(n)
21 E11 + S

(n)
22 E21 0 Im0 + S

(n)
21 E12 + S

(n)
22 E22

⎞⎟⎠
and hence det(In + T−1

n (a)En) is equal to

det
(
Im0 + S

(n)
11 E11 + S

(n)
12 E21 S

(n)
11 E12 + S

(n)
12 E22

S
(n)

E + S
(n)

E I + S
(n)

E + S
(n)

E

)
. (11)
21 11 22 21 m0 21 12 22 22
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This goes to the limit

det
(
Im0 + S11E11 S11E12

S̃�
11E21 Im0 + S̃�

11E22

)

= det
[(

Im0 0
0 Im0

)
+
(
S11 0
0 S̃�

11

)(
E11 E12
E21 E22

)]
.

The assertion is now straightforward from (9). �
As already said, the curve a� has a natural orientation. Under the assumption of 

Theorem 3.1, we may associate an argument to each point of a� such that this argument 
changes continuously as the point moves along the curve. The restriction of this argument 
to the points in the range of a defines an argument and thus a logarithm log a of a. Note 
that if a itself is continuous, then log a is also a continuous function on the unit circle. 
Let (log a)k denote the kth Fourier coefficient of log a. The geometric mean of a is defined 
by

G(a) = exp(log a)0 = exp
(

1
2π

π∫
−π

log a
(
eiθ

)
dθ

)
. (12)

It is well known that the (1, 1) entry of T−1(a) is just 1/G(a); see, e.g., [5, Prop. 10.6(b)].

Example 3.2. Suppose m0 = 1, that is, suppose Tn(a) has at most perturbations by four 
scalars Ejk in its four corners. Then S11 = S̃�

11 = c11 = 1/G(a) and the right-hand side 
of (8) becomes

det
[(

1 0
0 1

)
+ 1

G(a)

(
E11 E12
E21 E22

)]
. (13)

For (
E11 E12
E21 E22

)
=

(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 1
1 1

)
,

this is (
1 + 1

G(a)

)2

, 1 − 1
G(a)2 , 1 + 2

G(a) ,

respectively. The limit (8) is zero if and only if G(a) is an eigenvalue of the 2 × 2 matrix 
−
(E11 E12

)
.

E21 E22
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If the symbol a is continuous, then the curve a� is simply the range a(T). Now suppose 
that a is sufficiently smooth, say

∞∑
k=−∞

kλ|ak| < ∞, (14)

for some λ > 0. The set of all a satisfying (14) is a weighted Wiener algebra and will be 
denoted by Wλ. If λ > 1/2 and if a has no zeros on the unit circle and winding number 
zero about the origin, then the asymptotic behavior of the determinants detTn(a) is 
described by Szegő’s strong limit theorem. This theorem says that

detTn(a) = G(a)nE(a)
(
1 + o(1)

)
(15)

where G(a) is given by (12) and E(a) is defined by

E(a) = exp
∞∑
k=1

k(log a)−k(log a)k.

Formula (15) may also be written in the form

lim
n→∞

detTn

(
a

G(a)

)
= E(a).

In other words, after appropriate normalization the determinants approach a finite and 
nonzero limit as their order increases to infinity. In [5, Corollary 10.38] it is shown that 
the o(1) in (15) is o(1/n2λ−1).

The following result is a refinement of Theorem 3.1 for smooth symbols.

Theorem 3.3. Let a ∈ Wλ with λ > 1/2 and suppose a has no zeros on the unit circle 
and winding number zero about the origin. Then

det(Tn(a) + En)
detTn(a) = det

[(
Im0 0
0 Im0

)
+
(
S11 0
0 S̃�

11

)(
E11 E12
E21 E22

)]
+ O

(
1
nλ

)
.

Proof. We adopt the notations of the proof of Theorem 3.1. From Theorem 2.15 of 
[4] we see that S(n)

11 = S11 + O(1/nλ) (entry-wise). It follows that S(n)
22 = [S̃(n)

11 ]� =
S̃�

11 + O(1/nλ). Let �2λ be the weighted �2 space of all sequences x satisfying

‖x‖2,λ :=
( ∞∑

n=1
n2λ|xn|2

)1/2

< ∞.

Theorem 7.25 of [5] implies that if x ∈ �2λ, then T−1(a)x ∈ �2λ and
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∥∥T−1
n (a)Pnx− T−1(a)x

∥∥
2,λ → 0. (16)

Let T−1
n (a) = (c(n)

jk )nj,k=1. The kth column of S(n)
12 is (c(n)

n−m0+1,k, . . . , c
(n)
n,k)�, while the 

last m0 components of the kth column of PnT
−1(a) are cn−m0+1,k, . . . , cn,k.

Let ek be the sequence which has 1 in position k and zeros elsewhere. The convergence 
result (16) with x = ek shows that

m0∑
j=1

(n−m0 + j)2λ
∣∣c(n)

n−m0+j,k − cn−m0+j,k

∣∣2 → 0.

This implies that (n −m0 + j)2λ|c(n)
n−m0+j,k − cn−m0+j,k|2 → 0 and hence

c
(n)
n−m0+j,k = cn−m0+j,k + o

(
1/nλ

)
.

Since T−1(a)ek ∈ �2λ, we also have 
∑∞

n=1 n
2λ|cn,k|2 < ∞, which yields

cn−m0+j,k = o
(
1/nλ

)
.

Consequently, c(n)
n−m0+j,k = o(1/nλ) and thus S(n)

12 = O(1/nλ). Applying the above argu-
ments to Tn(ã) instead of Tn(a) we obtain that also S(n)

21 = O(1/nλ). In summary, the 
determinant (11) is

det
[(

Im0 0
0 Im0

)
+

(
S11 0
0 S̃�

11

)(
E11 E12
E21 E22

)]
+ O

(
1
nλ

)
,

which completes the proof. �
Example 3.4. Let a(t) = (1 − μt)(1 − ν/t) with |μ| < 1, |ν| < 1. The n × n versions of 
the matrices⎛⎜⎜⎜⎝

1 + μν −ν 0 0
−μ 1 + μν −ν 0
0 −μ 1 + μν −ν

0 0 −μ 1 + μν

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1 + μν −ν 0 1
−μ 1 + μν −ν 0
0 −μ 1 + μν −ν

1 0 −μ 1 + μν

⎞⎟⎟⎟⎠ ,

are Tn(a) and Tn(a) +En. We have G(a) = 1 and E(a) = 1/(1 −μν), and hence Szegő’s 
strong limit theorem tells us that detTn(a) has the limit 1/(1 − μν). Theorem 3.3 may 
be applied with arbitrarily large λ. Since G(a) = 1 is an eigenvalue of

−
(
E11 E12
E21 E22

)
=

(
0 −1

−1 0

)
,
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Example 3.2 and Theorem 3.3 predict that det(Tn(a) +En)/ detTn(a) goes to zero faster 
than an arbitrary power of 1/n. In fact it is easy to compute the determinants exactly. 
We have

detTn(a) = 1 − (μν)n+1

1 − μν
,

det
(
Tn(a) + En

)
= (1 + μν)2(μν)n−1 + μn−1 + νn−1.

This shows that the quotient det(Tn(a) + En)/ detTn(a) actually decays exponentially 
fast to zero.

4. The pure Fisher–Hartwig singularity

The symbol a(t) = (1 − t)γ(1 − 1/t)δ is referred to as the pure Fisher–Hartwig singu-
larity. Here δ and γ are complex numbers. We define

ξδ(t) := (1 − 1/t)δ :=
∞∑
k=0

(−1)k
(
δ

k

)
t−k,

ηγ(t) := (1 − t)γ :=
∞∑
k=0

(−1)k
(
γ

k

)
tk

and may then write a = ξδηγ . Throughout what follows we assume that the real parts 
of δ, γ, and δ + γ are greater than −1. This guarantees that ξδ, ηγ , and ξδηγ are in L1. 
Note that the symbol (4), which belongs to the n × n versions of matrix (2), is the pure 
Fisher–Hartwig singularity a = ξ2η2.

As shown in [5, Lemma 6.18], the kth Fourier coefficient of ξδηγ is

(−1)k Γ (1 + δ + γ)
Γ (δ + n + 1)Γ (γ − n + 1)

in case neither δ + n + 1 nor γ − n + 1 is a nonpositive integer and is equal to zero if 
δ + n + 1 or γ − n + 1 is a nonpositive integer. The determinants of Tn(ξδηγ) are known 
both exactly and asymptotically. Section 10.58 and Theorem 10.59 of [5] tell us that

detTn(ξδηγ) = G(1 + δ)G(1 + γ)
G(1 + δ + γ)

G(n + 1)G(n + 1 + δ + γ)
G(n + 1 + δ)G(n + 1 + γ) (17)

= G(1 + δ)G(1 + γ)
G(1 + δ + γ) nδγ

(
1 + o(1)

)
, (18)

where G(z) is the Barnes function. We see in particular that Tn(ξδηγ) is invertible for 
every n ≥ 1. We write T−1

n (ξδηγ) = (c(n)
jk (ξδηγ))nj,k=1.
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Theorem 4.1. For each fixed j,

c
(n)
jn (ξδηγ) = Γ (j + γ)

Γ (δ)Γ (j)n
δ−γ−1

(
1 + pj(ξδηγ)

2n + O

(
1
n2

))
(19)

with

pj(ξδηγ) = (δ − j)(δ − j − 1) + δ(δ − 1) − (δ + γ)(δ + γ − 1) − j(j − 1)

= −γ(γ − 1) + δ(δ − 1) − 2γδ + 2j(1 − δ)

and

c
(n)
n−j,n(ξδηγ) = Γ (j + δ)

Γ (δ)Γ (j + 1)

(
1 + qj(ξδηγ)

2n + O

(
1
n2

))
(20)

with

qj(ξδηγ) = (γ − j)(γ − j − 1) + δ(δ − 1) − (δ + γ)(δ + γ − 1) − (j + 1)j

= −2γ(δ + j).

Furthermore, again for each fixed j,

c
(n)
j1 (ξδηγ) = c

(n)
n−j+1,n(ξγηδ), c

(n)
n−j,1(ξδηγ) = c

(n)
j+1,n(ξγηδ). (21)

Proof. The key is the Duduchava–Roch formula, which can be found as Theorem 6.20 
in [5]; see also equalities (7.87) and (7.88) of [5].1 This formula says that

T−1
n (ξδηγ) = Γδ,γMγTn(ξ−δ)M−1

γ+δTn(η−γ)Mδ, (22)

where Γδ,γ = Γ (1 + δ)Γ (1 + γ)/Γ (1 + δ + γ), Mα stands for the diagonal matrix

Mα = diag
(
μ1(α), . . . , μn(α)

)
, μk(α) = Γ (k + α)

Γ (1 + α)Γ (k) ,

Tn(ξ−δ) is the upper-triangular Toeplitz matrix whose first row is

(
(ξ−δ)0, . . . , (ξ−δ)n−1

)
with (ξ−δ)k = Γ (k + δ)

Γ (δ)Γ (k + 1) ,

and Tn(η−γ) is the lower-triangular Toeplitz matrix with the first column

1 The formula was obtained by Duduchava in the case γ + δ = 0 in his 1974 paper [9]. In 1984, Steffen 
Roch established the formula in the general case. With Roch’s permission, it was published in [3] for the 
first time. See [5, pp. 320–321] for more on the story.
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(
(η−γ)0, . . . , (η−γ)n−1

)� with (η−γ)k = Γ (k + γ)
Γ (γ)Γ (k + 1) .

Let en = (0, . . . , 0, 1)�. Using (22) it is easily seen that the jth component of the column 
T−1
n (ξδηγ)en is

c
(n)
jn (ξδηγ) = Γδ,γ(ξ−δ)n−j(η−γ)0

μj(γ)μn(δ)
μn(δ + γ) .

Inserting the above expressions for the pieces on the right we obtain

c
(n)
jn (ξδηγ) = Γ (j + γ)

Γ (δ)Γ (j)
Γ (n− j + δ)Γ (n + δ)

Γ (n− j + 1)Γ (n + δ + γ) . (23)

Stirling’s formula gives

Γ (n + α)
Γ (n) = nα

(
1 + α(α− 1)

2n + O

(
1
n2

))
(24)

for every complex number α. Fixing j in (23), dividing numerator and denominator of 
(23) by Γ (n)2, and using (24) we arrive at (19). Replacing j by n − j in (23) we get

c
(n)
n−j,n(ξδηγ) = Γ (j + δ)

Γ (δ)Γ (j + 1)
Γ (n− j + γ)Γ (n + δ)
Γ (n− j)Γ (n + δ + γ) .

Making again use of (24), we obtain (20) for each fixed j.
The numbers (19) and (20) are the upper and lower components of the last column 

of Tn(ξδηγ), that is, of the column x given by Tn(ξδηγ)x = en. The entries in the 
first column of Tn(ξδηγ) are the entries of the column y defined by Tn(ξδηγ)y = e1 :=
(1, 0, . . . , 0)�. With the counter-identity Wn we therefore have WnTn(ξδηγ)WnWny =
Wne1 = en, and since WnTn(ξδηγ)Wn = Tn(ξγηδ), it follows that Tn(ξγηδ)Wny = en. 
This proves (21). �
Example 4.2. The proof of Theorem 3.1 shows that if the symbol a is as in this theorem, 
then the lower-left and upper-right entries of T−1

n (a) always approach zero as n → ∞. 
In Section 5 we will see that this also happens if a ∈ L1, a ≥ 0 almost everywhere on the 
unit circle, and log a ∈ L1. However, Theorem 4.1 reveals that in general the lower-left 
and upper-right entries of T−1

n (a) need not to converge to zero. Indeed, from (19) we 
infer that the upper-right entries of T−1

n (ξδηγ) decay to zero only if Re δ − Re γ < 1, 
and combining (19) and (21) we see that the lower-left entries of T−1

n (ξδηγ) go to zero 
only if Re γ − Re δ < 1. Thus, both the lower-left and upper-right entries converge to 
zero only if | Re γ − Re δ| < 1. Pure Fisher–Hartwig symbol are a nice tool to get a 
first feeling for several phenomena concerning Toeplitz matrices and in particular for 
disproving conjectures on such matrices!
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Theorem 4.1 is all we need to tackle the case m0 = 1, that is, the case where Tn(ξδηγ)
has at most four scalar perturbations in the corners. From (9) and (11) we infer that if 
the Ejk are scalars, then

det(Tn(ξδηγ) + En)
detTn(ξδηγ)

= det
[(

1 0
0 1

)
+

(
c
(n)
11 (ξδηγ) c

(n)
1n (ξδηγ)

c
(n)
n1 (ξδηγ) c

(n)
nn (ξδηγ)

)(
E11 E12
E21 E22

)]
. (25)

Example 4.3. Suppose (
E11 E12
E21 E22

)
=

(
0 1
1 0

)
.

Then

det(Tn(ξδηγ) + En)
detTn(ξδηγ) = det

[(
1 0
0 1

)
+

(
c
(n)
11 (ξδηγ) c

(n)
1n (ξδηγ)

c
(n)
n1 (ξδηγ) c

(n)
nn (ξδηγ)

)(
0 1
1 0

)]

= det
(

1 + c
(n)
1n (ξδηγ) c

(n)
11 (ξδηγ)

c
(n)
nn (ξδηγ) 1 + c

(n)
n1 (ξδηγ)

)
,

and by virtue of (21), this equals

det
(

1 + c
(n)
1n (ξδηγ) c

(n)
nn (ξγηδ)

c
(n)
nn (ξδηγ) 1 + c

(n)
1n (ξγηδ)

)
. (26)

We take only the main term of (19) for j = 1, and we take (20) for j = 0, in which case 
q0(ξδηγ) = q0(ξγηδ) = −2δγ. Then (26) becomes

det
(

1 + Γ (1+γ)
Γ (δ) nδ−γ−1 + O(nRe δ−Re γ−2) 1 − δγ

n + O( 1
n2 )

1 − δγ
n + O( 1

n2 ) 1 + Γ (1+δ)
Γ (γ) nγ−δ−1 + O(nRe γ−Re δ−2)

)
.

(27)

This is

Γ (1 + γ)
Γ (δ) nδ−γ−1 + O

(
nRe δ−Re γ−2) for Re δ ≥ Re γ + 1

and

Γ (1 + γ)
nδ−γ−1 + O

(
1
)

for Re γ + 1 > Re δ > Re γ.

Γ (δ) n
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We know that detTn(ξδηγ) is asymptotically a constant times nδγ . It follows that 
det(Tn(ξδηγ) + En) is asymptotically a constant times

nδγnδ−γ−1 = n(δ−1)(γ+1)

provided Re δ > Re γ. In the case where Re δ < Re γ, we may pass to transposed matrices, 
which does not change determinants but changes the roles of γ and δ and therefore shows 
that then det(Tn(ξδηγ) + En) is asymptotically a constant times

nδγnγ−δ−1 = n(γ−1)(δ+1).

In summary, if δ, γ are positive real numbers, in which case detTn(ξδηγ) grows with n, 
then

• det(Tn(ξδηγ) + En) grows faster than detTn(ξδηγ) if |γ − δ| > 1,
• det(Tn(ξδηγ) + En) grows slower than detTn(ξδηγ) if |γ − δ| < 1,
• det(Tn(ξδηγ) + En) decays to zero if γ < 1 and δ < 1.

The case δ = γ is especially nice and therefore deserves a separate treatment by the 
following corollary. We have ξα(t)ηα(t) = |1 − t|2α. Recall that we require Reα > −1/2
and that for α = 2 we get the symbol (4). For a square matrix A, we abbreviate detA
to |A|.

Corollary 4.4. If the Ejk are scalars, then det(Tn(ξαηα) + En)/ detTn(ξαηα) is∣∣∣∣∣ 1 + E11 E12
E21 1 + E22

∣∣∣∣∣ + α

n

(
E12 + E21 − α(E11 + E22) − 2α

∣∣∣∣∣E11 E12
E21 E22

∣∣∣∣∣
)

+ O

(
1
n2

)
.

If in particular (
E11 E12
E21 E22

)
=

(
0 1
1 0

)
, (28)

then

det(Tn(ξαηα) + En)
detTn(ξαηα) = 2α(α + 1)

n
+ O

(
1
n2

)
. (29)

Proof. From Theorem 4.1 we deduce that

c
(n)
1n (ξαηα) = c

(n)
n1 (ξαηα) = α

n
+ O

(
1
n2

)
(30)

and
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c
(n)
11 (ξαηα) = c(n)

nn (ξαηα) = 1 − α2

n
+ O

(
1
n2

)
. (31)

Thus, (25) equals∣∣∣∣∣
(

1 0
0 1

)
+

(
1 − α2

n + O( 1
n2 ) α

n + O( 1
n2 )

α
n + O( 1

n2 ) 1 − α2

n + O( 1
n2 )

)(
E11 E12
E21 E22

)∣∣∣∣∣ ,
which can be simplified to the asserted expression. �

When restricted to the present context, Theorem 5 of [19] says that

c
(n)
1n (ξαηα) = α

n

(
1 + o(1)

)
, c

(n)
11 (ξαηα) =

(
1 − α2

n

)(
1 + o(1)

)
.

The second formula is probably misstated in [19] and should correctly read

c
(n)
11 (ξαηα) = 1 − α2

n

(
1 + o(1)

)
.

Clearly, these formulas are close to but nevertheless weaker than (30) and (31).

Example 4.5. We write an ∼ bn if an/bn → 1. Combining (18) and the corollary we see 
that the two corner perturbations given by (28) lead to

det
(
Tn(ξαηα) + En

)
∼ G(1 + α)2

G(1 + 2α)2α(α + 1)nα2−1.

Thus, the exponent α2 is indeed lowered by 1. If k is a positive integer then G(k) =
(k − 2)! . . . 2!1! with G(2) = G(1) = 1. We so obtain in particular

detTn(ξ1η1) ∼ n, det
(
Tn(ξ1η1) + En

)
∼ 4,

detTn(ξ2η2) ∼
n4

12 , det
(
Tn(ξ2η2) + En

)
∼ n3,

detTn(ξ3η3) ∼
n9

8640 , det
(
Tn(ξ3η3) + En

)
∼ n8

360 .

We can of course also compute the determinants exactly. Formula (23) provides us with 
an exact expression for c(n)

jn (ξδηγ). It implies that

c
(n)
1n (ξαηα) = α

Γ (n− 1 + α)Γ (n + α)
Γ (n)Γ (n + 2α) , c(n)

nn (ξαηα) = Γ (n + α)Γ (n + α)
Γ (n)Γ (n + 2α) .

For α = 1, this gives
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c
(n)
1n (ξ1η1) = 1

n + 1 , c(n)
nn (ξ1η1) = n

n + 1 ,

and inserting this in (26) we obtain∣∣∣∣∣ 1 + 1
n+1

n
n+1

n
n+1 1 + 1

n+1

∣∣∣∣∣ = 4
n + 1 .

Since detTn(ξ1η1) = n + 1 due to (17), it follows that det(Tn(ξ1η1) + En) = 4 for all 
n ≥ 2. Analogously, for α = 2 we have

c
(n)
1n (ξ2η2) = 2n

(n + 2)(n + 3) , c(n)
nn (ξ2η2) = n(n + 1)

(n + 2)(n + 3)

and hence the determinant (26) equals∣∣∣∣∣ 1 + 2n
(n+2)(n+3)

n(n+1)
(n+2)(n+3)

n(n+1)
(n+2)(n+3) 1 + 2n

(n+2)(n+3)

∣∣∣∣∣ = 12(n + 1)2

(n + 2)2(n + 3) .

The determinant detTn(ξ2η2) is (3) by virtue of (17). Consequently,

det
(
Tn(ξ2η2) + En

)
= (n + 1)(n + 2)2(n + 3)

12 · 12(n + 1)2

(n + 2)2(n + 3) = (n + 1)3

for n ≥ 2. Similarly,

detTn(ξ3η3) = (n + 1)(n + 2)2(n + 3)3(n + 4)2(n + 5)
8640

for n ≥ 1 and

det
(
Tn(ξ3η3) + En

)
= (n + 1)(n + 2)2(n + 3)[(n + 2)2 + 1][(n + 2)2 + 2]

360

for n ≥ 2.

To treat the case m0 ≥ 2, we need the matrices S(n)
jk in (10). Theorem 4.1 provides 

us with the first and last entries of the first and last columns of T−1
n (a). The entries 

in the four corners S(n)
jk of T−1

n (a) can therefore be computed with the help of the 
Gohberg–Sementsul–Trench formula [14,22]. This formula says that if

⎛⎜⎝ x1
...
xn

⎞⎟⎠ =

⎛⎜⎜⎝
c
(n)
11
...

c
(n)
n1

⎞⎟⎟⎠ ,

⎛⎜⎝ y1
...
yn

⎞⎟⎠ =

⎛⎜⎜⎝
c
(n)
1n
...

c
(n)
nn

⎞⎟⎟⎠ (32)

are the first and last columns of T−1
n (a) and x1 �= 0, then
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T−1
n (a) = 1

x1

⎛⎜⎝ x1
...

. . .
xn . . . x1

⎞⎟⎠
⎛⎜⎝ yn . . . y1

. . .
...
yn

⎞⎟⎠

− 1
x1

⎛⎜⎝ y0
...

. . .
yn−1 . . . y0

⎞⎟⎠
⎛⎜⎝ xn+1 . . . x2

. . .
...

xn+1

⎞⎟⎠ , (33)

where xn+1 := 0 and y0 := 0. A full proof is also in [16, p. 21]. Note that actually 
x1 = yn. Moreover, Cramer’s rule shows that x1 �= 0 if and only if detTn−1(a) �= 0. If 
S

(n)
jk has a limit Sjk, then (11) implies that

lim
n→∞

det(Tn(a) + En)
detTn(a) = det

[(
Im0 0
0 Im0

)
+
(
S11 S12
S21 S22

)(
E11 E12
E21 E22

)]
. (34)

Example 4.6. Theorem 4.1 applied to a = ξαηα shows that, for fixed j,

c
(n)
j1 (ξαηα) = c

(n)
n−j+1,n(ξαηα) → cj :=

(
α + j − 2
j − 1

)
, (35)

c
(n)
jn (ξαηα) = c

(n)
n−j+1,1(ξαηα) → 0. (36)

It follows that S(n)
12 and S(n)

21 converge to zero, and formula (33) implies that S(n)
11 goes 

to

S11 = 1
c1

⎛⎜⎝ c1
...

. . .
cm0 . . . c1

⎞⎟⎠
⎛⎜⎝ c1 . . . cm0

. . .
...
c1

⎞⎟⎠ .

Since Tn(ξαηα) is symmetric, we see that S(n)
22 → S̃11. Thus, formula (34) becomes

lim
n→∞

det(Tn(ξαηα) + En)
detTn(ξαηα) = det

[(
Im0 0
0 Im0

)
+

(
S11 0
0 S̃11

)(
E11 E12
E21 E22

)]
. (37)

If m0 = 1, then S11 = (1), and for the matrix (28) we get

lim
n→∞

det(Tn(ξαηα) + En)
detTn(ξαηα) = det

[(
1 0
0 1

)
+

(
1 0
0 1

)(
0 1
1 0

)]
= 0.

This is correct but weaker than (29). Notice that here we used only limits, whereas in 
order to establish (29) we worked with finer asymptotics. In the case m0 = 2 we have

S11 =
(

1 α

α 1 + α2

)
, S̃11 =

(
1 + α2 α

α 1

)
.
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Theorem 4.1 provides us with error terms in (35) and (36) and thus with finer results in 
the case where the right-hand side of (37) is zero. However, we will not embark on this 
issue here.

5. General Hermitian Fisher–Hartwig determinants

We first embark on the general case where a ∈ L1, a ≥ 0 almost everywhere on T, 
and log a ∈ L1. Fisher–Hartwig symbols are a special case and will be considered in the 
examples at the end of this section. The constant G(a) defined by (12) is a finite and 
strictly positive real number. Let

log a(t) =
∞∑

k=−∞
(log a)ktk, t ∈ T.

For |z| < 1, we define

a+(z) = exp
∞∑
k=1

(log a)kzk

and

a−1
+ (z) = exp

(
−

∞∑
k=1

(log a)kzk
)

=
∞∑
k=0

(
a−1
+

)
k
zk.

Simon [21, p. 144] defines the Szegő function associated with a as

D(z) = exp
(

1
4π

π∫
−π

eiθ + z

eiθ − z
log a

(
eiθ

)
dθ

)
= exp

(
(log a)0

2 +
∞∑
k=1

(log a)kzk
)
.

Note that this is just the outer function whose modulus on T is |a|1/2. Clearly, a+(z) =
G(a)−1/2D(z). The sole assumption that a ∈ L1 is not identically zero but nonnegative 
almost everywhere on T implies that Tn(a) is a positive definite (Hermitian) matrix for 
every n ≥ 1. This is well known, see, e.g., [15, Section 5.2], and can be shown as follows: 
if x = (x1, . . . , xn) ∈ Cn and f(eiθ) := x1 + x2e

iθ + · · · + xne
i(n−1)θ, then

(
Tn(a)x, x

)
= 1

2π

2π∫
0

a
(
eiθ

)∣∣f(eiθ)∣∣2 dθ
is strictly positive, so that all eigenvalues of Tn(a) are strictly positive. Thus, the ma-
trices Tn(a) are in particular invertible for all n ≥ 1. We put T−1

n (a) = (c(n)
jk )nj,k=1 and 

abbreviate c(n)
j1 to c(n)

j . Thus, (c(n)
1 , . . . , c(n)

n )� is the first column of T−1
n (a).
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Theorem 5.1. For each fixed j ≥ 1,

lim
n→∞

c
(n)
j = 1

G(a)
(
a−1
+

)
j−1, lim

n→∞
c
(n)
n−j+1 = 0. (38)

Proof. The polynomial

Φn−1(z) = 1
c
(n)
1

(
c(n)
n + · · · + c

(n)
2 zn−2 + c

(n)
1 zn−1)

is known as the predictor polynomial of a. By virtue of [21, Theorem 1.5.12], it is the 
n − 1st monic orthogonal polynomial on the unit circle z = eiθ associated with the 
measure dμ(θ) = log a(eiθ) dθ/(2π). Let ‖Φn−1‖ be its norm in L2(T, dμ) and put

ϕn−1(z) = 1
‖Φn−1‖

Φn−1(z) = κn−1z
n−1 + lower order powers.

Thus, ϕn−1(z) = κn−1Φn−1(z). By [21, Theorem 1.5.11(b)], we have

κ2
n−1 =

n−2∏
j=0

1
1 − |αj |2

= detTn−1(a)
detTn(a) = c

(n)
1 ,

where α0, α1, . . . are the Verblunsky coefficients, and Szegő’s theorem [21, Theorem 2.3.1]
says that

∞∏
j=0

(
1 − |αj |2

)
= G(a).

It follows that κn−1 → G(a)−1/2 and c(n)
1 → 1/G(a). By [21, Theorem 2.4.1(iv)], the 

polynomials

ϕ∗
n−1(z) = zn−1ϕn−1(1/z) = κn−1

c
(n)
1

(
c
(n)
1 + · · · + c(n)

n zn−1)
converge uniformly on compact subsets of the unit disk |z| < 1 to the function D(z)−1 =
G(a)−1/2a−1

+ (z). This implies that the coefficient of zj−1 in ϕ∗
n−1(z) converges to the 

coefficient of zj−1 in D(z)−1 = G(a)−1/2a−1
+ (z), that is,

κn−1c
(n)
j

c
(n)
1

→ 1
G(a)1/2

(
a−1
+

)
j−1.

Taking into account that κn−1 → G(a)−1/2 and c(n)
1 → 1/G(a), we finally conclude that 

c
(n)
j → (a−1

+ )j−1/G(a).
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To prove the second equality of (38), we employ the Szegő recursion

Φn(z) = zΦn−1(z) − αn−1Φ
∗
n−1(z);

see [21, Theorem 1.5.2]. Written out this reads

1
c
(n+1)
1

(
c
(n+1)
n+1 + · · · + c

(n+1)
1 zn

)
= z

c
(n)
1

(
c(n)
n + · · · + c

(n)
1 zn−1)− αn−1

c
(n)
1

(
c
(n)
1 + · · · + c(n)

n zn−1).
Comparing the coefficients of z0 we obtain

c
(n+1)
n+1

c
(n+1)
1

= −αn−1,

and since c(n+1)
1 → 1/G(a) and αn−1 → 0, we see that c(n+1)

n+1 → 0. Comparison of the 
coefficients of z gives

c
(n+1)
n

c
(n+1)
1

= c
(n)
n

c
(n)
1

− αn−1
c
(n)
2

c
(n)
1

,

and as c(n)
1 → 1/G(a), c(n)

2 → (a−1
+ )1/G(a), αn−1 → 0, and, by what was just proved, 

c
(n)
n → 0, we arrive at the conclusion that c(n+1)

n → 0. Proceeding in this way we 
successively see that c(n+1)

n−1 → 0, c(n+1)
n−2 → 0, etc. This proves the second assertion 

in (38). �
Corollary 5.2. Let a ∈ L1, suppose a ≥ 0 almost everywhere on T, and assume log a is 
also in L1. Let En be as in (7) and define G(a) and a−1

+ as above. Put

S11 = 1
c1

⎛⎜⎝ c1
...

. . .
cm0 . . . c1

⎞⎟⎠
⎛⎜⎝ c1 . . . cm0

. . .
...
c1

⎞⎟⎠ with cj = 1
G(a)

(
a−1
+

)
j−1.

Then

lim
n→∞

det(Tn(a) + En)
detTn(a) = det

[(
Im0 0
0 Im0

)
+
(
S11 0
0 S̃�

11

)(
E11 E12
E21 E22

)]
.

Proof. We know that Tn(a) is invertible for all n ≥ 1. Consequently, the requirement 
x1 �= 0 in the Gohberg–Sementsul–Trench formula is met. Since Tn(a) is Hermitian, the 
columns (32) are
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⎛⎜⎝ x1
...
xn

⎞⎟⎠ =

⎛⎜⎜⎝
c
(n)
1
...

c
(n)
n

⎞⎟⎟⎠ ,

⎛⎜⎝ y1
...
yn

⎞⎟⎠ =

⎛⎜⎜⎝
c
(n)
n

...
c
(n)
1

⎞⎟⎟⎠ .

Combining Theorem 5.1 and formula (33) we see that

S
(n)
11 → S11, S

(n)
12 → 0, S

(n)
21 → 0, S

(n)
22 =

[
S̃

(n)
11

]� → S̃�
11. (39)

The assertion is therefore immediate from (34). �
In [8, p. 690] and [17, Lemma 3.2] it is shown that if a is a (real-valued and nonnega-

tive) trigonometric polynomial, then the norms of S(n)
11 , S(n)

12 , S(n)
21 , S(n)

22 remain bounded 
as n → ∞. From (39) we see that, under the sole assumption that a ∈ L1, a ≥ 0 almost 
everywhere on T, and log a ∈ L1, these matrices even converge to limits.

The following two examples concern perturbations of Hermitian Fisher–Hartwig ma-
trices.

Example 5.3. Let a(t) = ξα(t)ηα(t)b(t) = |1 − t|2αb(t) where α > −1/2 is a real number 
and b is a twice continuously differentiable and strictly positive function on the unit 
circle. Then

detTn(a) ∼ G(b)nnα2
E∗(a)

with some nonzero constant E∗(a); see [2, Lemma 6.47] and [4, Theorem 5.44]. In this 
case Corollary 5.2 is applicable. We have cj = (η−αb

−1
+ )j−1/G(b) and hence

c1 = 1,

c2 =
(
b−1
+

)
1 + α,

c3 =
(
b−1
+

)
2 +

(
b−1
+

)
1α + α(α + 1)/2,

and so forth.

For the pure singularity, i.e., when b(t) is identically 1, we get

c1 = 1, c2 = α, c3 = α(α + 1)/2,

and S11 takes the same form as in Example 4.6.

Example 5.4. Now suppose

a(t) = |t1 − t|2α1 · · · |tr − t|2αrb(t)

where tj are distinct points on T, αj are real numbers in (−1/2, 1/2), and b is a twice 
continuously differentiable and strictly positive function on T. This time
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detTn(a) = G(b)nnα2
1+···+α2

rE∗∗(a)

with some nonzero constant E∗∗(a); see [4, Theorem 5.47]. Corollary 5.2 is again appli-
cable. If, for example, a(t) = |t1 − t|2α1 |t2 − t|2α2 , then

c1 = 1,

c2 = α1

t1
+ α2

t2
,

c3 = α1(α1 + 1)
2t21

+ α1α2

t1t2
+ α2(α2 + 1)

2t22
.

The values for cj given in Example 5.3 can also be derived from [19, Lemma 1]. 
Moreover, Theorem 5 of [19], with the surmised correction mentioned above after 
Corollary 4.4, gives the second term in the asymptotics of c(n)

j for symbols as in 
Example 5.3. In the case of two singularities with the same exponent, that is, for 
a(t) = |t1 − t|2α|t2 − t|2αb(t) with −1/2 < α < 1/2, which is a special case of Ex-
ample 5.4, Theorem 7 of [18] says that c(n)

j = (a−1
+ )j−1/G(a) +O(1/n), which is stronger 

than our result c(n)
j = (a−1

+ )j−1/G(a) + o(1).
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