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1. Introduction

Discrete Geometry is the study of arrangements of discrete sets of
objects in space. The goal of this course is to give an introduction to
some of the classical topics in the subject.

The origins of some of the topics we will discuss go back as far as
early 17-th century. For instance, one of the big motivating problems
in the subject is Kepler’s conjecture, named after Johannes Kepler,
who stated the conjecture in 1611. Suppose you want to pack balls of
the same radius in a rectangular box with equal equal height, width,
and length. One may ask for the densest possible arrangement of balls,
i.e. how should we place balls into the box to maximize the number of
balls that fit in? Here is one way to think of such problems. Let t be
the height (= width = length) of the box, then its volume is t3, and
suppose that Λ is some arrangement of the balls inside of the box. Let
us write Vol(Λ, t) to be the volume that the balls of this arrangement
take up inside of the box with side t. Define the density δ(Λ) of this
arrangement to be the limit of the ratio of the volume of the balls to
the volume of the box as the side length of the box goes to infinity, i.e.

δ(Λ) = lim
t→∞

Vol(Λ, t)

t3
.

For which arrangement Λ is this density the largest it can be, and what
is this largest value? Kepler conjectured that the maximum density,
which is about 74%, is achieved by a so called face-centered cubic
or hexagonal close packing arrangements. We will rigorously define
these and other arrangements later in the course once we develop some
necessary terminology. Kepler’s conjecture has been open for nearly
four hundred years, until its proof was announced by Thomas Hales in
1998 and published in 2005 ([16]). Of course analogous questions about
optimal packing density of balls can be asked in spaces of different
dimensions as well. The answer to such questions is only known in
dimensions 1,2, and 3. However if one were to restrict to only a certain
nice class of periodic arrangements associated with algebraic structures
called lattices, then more is known. We will discuss some of these
questions and results in more details later in the course.

Another example of a topic in discrete geometry that we will discuss
in this course has to do with counting integer lattice points in various
convex sets. Let us for instance consider a square C(t) of side length
2t, where t is an integer, centered at the origin in the plane. How many
points with integer coordinates are contained in the interior or on the
boundary of C(t)?
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Exercise 1.1. Prove that this number is equal to

(2t+ 1)2.

More generally, suppose that

CN(t) = {(x1, . . . , xN) ∈ RN : max{|x1|, . . . , |xN |} ≤ t}

is a cube of side length 2t, where t is an integer, centered at the origin
in the Euclidean space RN . Prove that the number of points with integer
coordinates in CN(t) is equal to

(2t+ 1)N .

What if t is not an integer - can you generalize the formula to include
such cases?

Of course we can ask the analogous question not just for a cube CN(t),
but also for much more complicated sets S. It turns out that to give
a precise answer to this question even in the plane is quite difficult.
In special situations, however, a lot is known, and even in general
something can be said as we will see. Let us give an example of the
general principle. Consider the formula of Excercise 1.1, and apply
Newton’s binomial formula to it:

(2t+ 1)N =
N∑
i=0

(
N

i

)
(2t)i1N−i = (2t)N +N(2t)N−1 + · · ·+ 1

= Vol(CN(t)) + terms of smaller order.(1)

In other words, it seems that for large t the number of points with
integer coordinates in CN(t) is approximately equal to the volume of
this cube. This principle holds in more general situations as well, as we
will see later in the course, however estimating the remainder term of
this approximation in general (or, even better, getting exact formulas)
is very hard. Moreover, to make sense of the formula (1) we first need
to rigorously define what do we mean by volume.

Here is a slightly different related question. Suppose now that I
have some symmetric set S centered at the origin in RN , so that the
only integer lattice point (= point with integer coordinates) in S is the
origin. Let us homogeneously expand S by a real parameter t, in
other words consider sets of the form

tS = {(tx1, . . . , txN) : (x1, . . . , xN) ∈ S},

where t ∈ R. It is easy to see that if t is large enough, then tS will
contain a non-zero integer lattice point. But how large does t have to
be in order for this to happen? An answer to this question is given by
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a deep and influential theory of Minkowski, which has some fascinating
connections to some topics in modern theoretical computer science.

We now have some basic idea of the flavor of questions asked in
Discrete Geometry. In order to learn more we will need to develop
some notation and machinery. Let us get to work!
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2. Norms, sets, and volumes

Throughout these notes, unless explicitly stated otherwise, we will
work in RN , where N ≥ 1.

Definition 2.1. A function ‖ ‖ : RN → R is called a norm if

(1) ‖x‖ ≥ 0 with equality if and only if x = 0,
(2) ‖ax‖ = |a|‖x‖ for each a ∈ R, x ∈ RN ,
(3) Triangle inequality: ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x,y ∈ RN .

For each positive integer p, we can introduce the Lp-norm ‖ ‖p on
RN defined by

‖x‖p =

(
N∑
i=1

|xi|p
)1/p

,

for each x = (x1, . . . , xN) ∈ RN . We also define the sup-norm, given
by

|x| = max
1≤i≤N

|xi|.

Exercise 2.1. Prove that ‖ ‖p for each p ∈ Z>0 and | | are indeed
norms on RN .

Unless stated otherwise, we will regard RN as a normed linear space
(i.e. a vector space equipped with a norm) with respect to the Eu-
clidean norm ‖ ‖2; recall that for every two points x,y ∈ RN , Euclidean
distance between them is given by

d(x,y) = ‖x− y‖2.

We start with definitions and examples of a few different types of
subsets of RN that we will often encounter.

Definition 2.2. A subset X ⊆ RN is called compact if it is closed
and bounded.

Recall that a set is closed if it contains all of its limit points, and it
is bounded if there exists M ∈ R>0 such that for every two points x,y
in this set d(x,y) ≤M .

For instance, the closed unit ball centered at the origin in RN

BN = {x ∈ RN : ‖x‖2 ≤ 1}
is a compact set, but its interior, the open ball

Bo
N = {x ∈ RN : ‖x‖2 < 1}
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is not a compact set. If we now write

SN−1 = {x ∈ RN : ‖x‖2 = 1}

for the unit sphere centered at the origin in RN , then it is easy to
see that BN = SN−1 ∪ Bo

N , and we refer to SN−1 as the boundary of
BN (sometimes we will write SN−1 = ∂BN) and to Bo

N as the interior
of BN .

From here on we will also assume that all our compact sets
have no isolated points. Then we can say more generally that every
compact set X ⊂ RN has boundary ∂X and interior Xo, and can be
represented asX = ∂X∪Xo. To make this notation precise, we say that
a point x ∈ X is a boundary point of X if every open neighborhood
U of x contains points in X and points not in X; we write ∂X for
the set of all boundary points of X. All points x ∈ X that are not in
∂X are called interior points of X, and we write Xo for the set of all
interior points of X.

Definition 2.3. A compact subset X ⊆ RN is called convex if when-
ever x,y ∈ X, then any point of the form

tx + (1− t)y,

where t ∈ [0, 1], is also in X; i.e. whenever x,y ∈ X, then the entire
line segment from x to y lies in X.

Exercise 2.2. Let ‖ ‖ be a norm on RN , and let C ∈ R be a positive
number. Define

AN(C) = {x ∈ RN : ‖x‖ ≤ C}.

Prove that AN(C) is a convex set. What is AN(C) when ‖ ‖ = ‖ ‖1?

We now briefly mention a special class of convex sets. Given a set
X in RN , we define the convex hull of X to be the set

Co(X) =

{∑
x∈X

txx : tx ≥ 0 ∀ x ∈ X,
∑
x∈X

tx = 1

}
.

It is easy to notice that whenever a convex set contains X, it must also
contain Co(X). Hence convex hull of a collection of points should be
thought of as the smallest convex set containing all of them. If the set
X is finite, then its convex hull is called a convex polytope. Most of
the times we will be interested in convex polytopes, but occasionally
we will also need convex hulls of infinite sets.

There is an alternative way of describing convex polytopes. Recall
that a hyperplane in RN is a translate of a co-dimension one subspace,
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i.e. a subset H in RN is called a hyperplane if

(2) H =

{
x ∈ RN :

N∑
i=1

aixi = b

}
,

for some a1, . . . , aN , b ∈ R.

Exercise 2.3. Prove that a hyperplane H as in (2) above is a subspace
of RN if and only if b = 0. Prove that in this case dimension of H
is N − 1 (we define co-dimension of an L-dimensional subspace of
an N-dimensional vector space, where 1 ≤ L ≤ N , to be N − L; thus
co-dimension of H here is 1, as indicated above).

Notice that each hyperplane divides RN into two halfspaces. More
precisely, a closed halfspace H in RN is a set of all x ∈ RN such that
either

∑N
i=1 aixi ≥ b or

∑N
i=1 aixi ≤ b for some a1, . . . , aN , b ∈ R.

Exercise 2.4. Prove that each convex polytope in RN can be described
as a bounded intersection of finitely many halfspaces, and vice versa.

Remark 2.1. Exercise 2.4 is sometimes referred to as Minkowski-Weyl
theorem.

Polytopes form a very nice class of convex sets in RN , and we will
talk more about them later.

There is, of course, a large variety of sets that are not necessarily
convex. Among these, ray sets and star bodies form a particularly nice
class. In fact, they are among the not-so-many non-convex sets for
which many of the methods we develop here still work, as we will see
later.

Definition 2.4. A set X ⊆ RN is called a ray set if for every x ∈ X,
tx ∈ X for all t ∈ [0, 1].

Clearly every ray set must contain 0. Moreover, ray sets can be
bounded or unbounded. Perhaps the simplest examples of bounded
ray sets are convex sets that contain 0. Star bodies form a special class
of ray sets.

Definition 2.5. A set X ⊆ RN is called a star body if for every
x ∈ RN either tx ∈ X for all t ∈ R, or there exists t0(x) ∈ R>0

such that tx ∈ X for all t ∈ R with |t| ≤ t0(x), and tx /∈ X for all
|t| > t0(x).

Remark 2.2. We will also require all our star bodies to have boundary
which is locally homeomorphic to RN−1. Loosely speaking, this
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means that the boundary of a star body can be subdivided into small
patches, each of which looks like a ball in RN−1. More precisely, suppose
X is a closed star body and ∂X is its boundary. We say that ∂X is
locally homeomorphic to RN−1 if for every point x ∈ ∂X there exists
an open neighbourhood U ⊆ ∂X of x such that U is homeomorphic
to RN−1. See Remark 2.4 below for the definition of what it means for
two sets to be homeomorphic. Unless explicitly stated otherwise, all
star bodies will be assumed to have this property.

Here is an example of a collection of unbounded star bodies:

Stn =

{
(x, y) ∈ R2 : − 1

xn
≤ y ≤ 1

xn

}
,

where n ≥ 1 is an integer.

There is also an alternative description of star bodies. For this we
need to introduce an additional piece of notation.

Definition 2.6. A function F : RN → R is called a distance func-
tion if

(1) F (x) ≥ 0 for all x ∈ RN ,
(2) F is continuous,
(3) Homogeneity: F (ax) = |a|F (x) for all x ∈ RN , a ∈ R.

Let f(X1, . . . , XN) be a polynomial in N variables with real coeffi-
cients. We say that f is homogeneous if every monomial in f has the
same degree. For instance, x2 +xy−y2 is a homogeneous polynomial of
degree 2, while x2−y+xy is an inhomogeneous polynomial of degree 2.

Exercise 2.5. Let f(X1, . . . , XN) be a homogeneous polynomial of de-
gree d with real coefficients. Prove that

F (x) = |f(x)|1/d

is a distance function.

As expected, distance functions are closely related to star bodies.

Exercise 2.6. If F is a distance function on RN , prove that the set

X = {x ∈ RN : F (x) ≤ 1}
is a bounded star body.

In fact, a converse is also true.

Theorem 2.1. Let X be a star body in RN . Then there exists a dis-
tance function F such that

X = {x ∈ RN : F (x) ≤ 1}.
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Proof. Define F in the following way. For every x ∈ RN such that
tx ∈ X for all t ≥ 0, let F (x) = 0. Suppose that x ∈ RN is such that
there exists t0(x) > 0 with the property that tx ∈ X for all t ≤ t0(x),
and tx /∈ X for all t > t0(x); for such x define F (x) = 1

t0(x)
. It is now

easy to verify that F is a distance function; this is left as an exercise,
or see Theorem I on p. 105 of [6]. �

Notice that all our notation above for convex sets, polytopes, and
bounded ray sets and star bodies will usually pertain to closed sets;
sometimes we will use the terms like “open polytope” or “open star
body” to refer to the interiors of the closed sets.

Definition 2.7. A subset X ⊆ RN which contains 0 is called 0-
symmetric if whenever x is in X, then so is −x.

It is easy to see that every set AN(C) of Exercise 2.2, as well as every
star body, is 0-symmetric, although ray sets in general are not. In fact,
star bodies are precisely the 0-symmetric ray sets. Here is an example
of a collection of asymmetric unbounded ray sets:

Rn =

{
(x, y) ∈ R2 : 0 ≤ y ≤ 1

xn

}
,

where n ≥ 1 is an integer. An example of a bounded asymmetric ray
set is a cone on L points x1, . . . ,xL ∈ RN , i.e. Co(0,x1, . . . ,xL).

Exercise 2.7. Let X be a star body, and let F be its distance function,
i.e. X = {x ∈ RN : F (x) ≤ 1}. Prove that

F (x + y) ≤ F (x) + F (y),

for all x,y ∈ X if and only if X is a convex set.

Next we want to introduce the notion of volume for bounded sets in RN .

Definition 2.8. Characteristic function of a set X is defined by

χX(x) =

{
1 if x ∈ X
0 if x /∈ X

Definition 2.9. A bounded set X is said to have Jordan volume if
its characteristic function is Riemann integrable, and then we define
Vol(X) to be the value of this integral.

Remark 2.3. A set that has Jordan volume is also called Jordan mea-
surable.
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Definition 2.10. Let X and Y be two sets. A function f : X → Y
is called injective (or one-to-one) if whenever f(x1) = f(x2) for some
x1, x2 ∈ X, then x1 = x2; f is called surjective (or onto) if for every
y ∈ Y there exists x ∈ X such that f(x) = y; f is called a bijection
if it is injective and surjective.

Exercise 2.8. Let f : X → Y be a bijection. Prove that f has an
inverse f−1. In other words, prove that there exists a function f−1 :
Y → X such that for every x ∈ X and y ∈ Y ,

f−1(f(x)) = x, f(f−1(y)) = y.

Remark 2.4. In fact, it is also not difficult to prove that f : X → Y has
an inverse if and only if it is a bijection, in which case this inverse is
unique. If such a function f between two sets X and Y exists, we say
that X and Y are in bijective correspondence. Furthermore, if f
and f−1 are both continuous, then they are called homeomorphisms
and we say that X and Y are homeomorphic to each other. If f and
f−1 are also differentiable, then they are called diffeomorphisms, and
X and Y are said to be diffeomorphic.

Exercise 2.9. Let R be the set of all real numbers, and define sets

L1 = {(x, x) : x ∈ R},

L2 = {(x, x) : x ∈ R, x ≥ 0} ∪ {(x,−x) : x ∈ R, x < 0}.

(1) Prove that L1 is diffeomorphic to R.
(2) Prove that L2 is homeomorphic to R by explicitly constructing

a homeomorphism.
(3) Is the homeomorphism you constructed in part (2) a diffeomor-

phism?

Theorem 2.2. All convex sets and bounded ray sets have Jordan vol-
ume.

Sketch of proof. We will only prove this theorem for convex sets; for
bounded ray sets the proof is similar. Let X be a convex set. Write
∂X for the boundary of X and notice that X = ∂X if and only if X is a
straight line segment: otherwise it would not be convex. Since it is clear
that a straight line segment has Jordan volume (it is just its length),
we can assume that X 6= ∂X, then X has nonempty interior, denote
it by Xo, so X = Xo ∪ ∂X. We can assume that 0 ∈ Xo; if not, we
can just translate X so that it contains 0 - translation does not change
measurability properties. Write SN−1 for the unit sphere centered at
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the origin in RN , i.e. SN−1 = ∂BN . Define a map ϕ : ∂X → SN−1,
given by

ϕ(x) =
x

‖x‖2

.

Since X is a bounded convex set, it is not difficult to see that ϕ is
a homeomorphism. For each ε > 0 there exists a finite collection of
points x1, . . . ,xk(ε) ∈ SN−1 such that if we let Cxi

(ε) be an (N − 1)-
dimensional cap centered at xi in SN−1 of radius ε, i.e.

Cxi
(ε) = {y ∈ SN−1 : ‖y − xi‖2 ≤ ε},

then SN−1 =
⋃k(ε)
i=1 Cxi

(ε), and so ∂X =
⋃k(ε)
i=1 ϕ

−1 (Cxi
(ε)). For each

1 ≤ i ≤ k(ε), let yi, zi ∈ ϕ−1 (Cxi
(ε)) be such that

‖yi‖2 = max{‖x‖2 : x ∈ ϕ−1 (Cxi
(ε))},

and
‖zi‖2 = min{‖x‖2 : x ∈ ϕ−1 (Cxi

(ε))}.
Let δ1(ε) and δ2(ε) be minimal positive real numbers such that the
spheres centered at the origin of radii ‖yi‖2 and ‖zi‖2 are covered by
caps of radii δ1(ε) and δ2(ε), Cxi

(yi, ε) and Cxi
(zi, ε), centered at xi.

Define cones

C1
i = Co(0, Cxi

(yi, ε)), C
2
i = Co(0, Cxi

(zi, ε)),

for each 1 ≤ i ≤ k(ε). Now notice that

k(ε)⋃
i=1

C2
i ⊆ X ⊆

k(ε)⋃
i=1

C1
i .

Exercise 2.10. Prove that cones like C1
i and C2

i have Jordan volume.

Since the cones C1
i , C2

i have Jordan volume, the same is true about
their finite unions. Moreover,

Vol

k(ε)⋃
i=1

C1
i

− Vol

k(ε)⋃
i=1

C2
i

→ 0,

as ε → 0. Hence X must have Jordan volume, which is equal to the
common value of

lim
ε→0

Vol

k(ε)⋃
i=1

C1
i

 = lim
ε→0

Vol

k(ε)⋃
i=1

C2
i

 .

�

This is Theorem 5 on p. 9 of [15], and the proof is also very similar.
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3. Lattices

We start with an algebraic definition of lattices. Let a1, . . . ,ar be a
collection of linearly independent vectors in RN .

Exercise 3.1. Prove that in this case r ≤ N .

Definition 3.1. A lattice Λ of rank r, 1 ≤ r ≤ N , spanned by
a1, . . . ,ar in RN is the set of all possible linear combinations of the
vectors a1, . . . ,ar with integer coefficients. In other words,

Λ = spanZ {a1, . . . ,ar} :=

{
r∑
i=1

niai : ni ∈ Z for all 1 ≤ i ≤ r

}
.

The set a1, . . . ,ar is called a basis for Λ. There are usually infinitely
many different bases for a given lattice.

Exercise 3.2. Prove that if Λ is a lattice of rank r in RN , 1 ≤ r ≤ N ,
then spanR Λ is a subspace of RN of dimension r (by spanR Λ we mean
the set of all finite linear combinations with real coefficients of vectors
from Λ).

Notice that in general a lattice in RN can have any rank 1 ≤ r ≤ N .
We will often however talk specifically about lattices of rank N , that
is of full rank. The most obvious example of a lattice is the set of all
points with integer coordinates in RN :

ZN = {x = (x1, . . . , xN) : xi ∈ Z for all 1 ≤ i ≤ N}.
Notice that the set of standard basis vectors e1, . . . , eN , where

ei = (0, . . . , 0, 1, 0, . . . , 0),

with 1 in i-th position is a basis for ZN . Another basis is the set of all
vectors

ei + ei+1, 1 ≤ i ≤ N − 1.

If Λ is a lattice of rank r in RN with a basis a1, . . . ,ar and y ∈ Λ,
then there exist n1, . . . , nr ∈ Z such that

y =
r∑
i=1

niai = An,

where

n =

n1
...
nr

 ∈ Zr,

and A is an N × r basis matrix for Λ of the form A = (a1 . . . ar),
which has rank r. In other words, a lattice Λ of rank r in RN can always
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be described as Λ = AZr, where A is its N × r basis matrix with real
entries of rank r. As we remarked above, bases are not unique; as we
will see later, each lattice has bases with particularly nice properties.

An important property of lattices is discreteness. To explain what we
mean more notation is needed. First notice that Euclidean space RN

is clearly not compact, since it is not bounded. It is however locally
compact: this means that for every point x ∈ RN there exists an open
set containing x whose closure is compact, for instance take an open
unit ball centered at x. More generally, every subspace V of RN is also
locally compact. A subset Γ of V is called discrete if for each x ∈ Γ
there exists an open set S ⊆ V such that S ∩ Γ = {x}. For instance
ZN is a discrete subset of RN : for each point x ∈ ZN the open ball
of radius 1/2 centered at x contains no other points of ZN . We say
that a discrete subset Γ is co-compact in V if there exists a compact
0-symmetric subset U of V such that the union of translations of U by
the points of Γ covers the entire space V , i.e. if

V =
⋃
{U + x : x ∈ Γ}.

Here U + x = {u + x : u ∈ U}.

Exercise 3.3. Let Λ be a lattice of rank r in RN . By Excercise 3.2,
V = spanR Λ is an r-dimensional subspace of RN . Prove that Λ is a
discrete co-compact subset of V .

We now need one more very important definition.

Definition 3.2. A subset G of RN is called an additive group if it
satisfies the following conditions:

(1) Identity: 0 ∈ G,
(2) Closure: For every x,y ∈ G, x + y ∈ G,
(3) Inverses: For every x ∈ G, −x ∈ G.

If G and H are two additive groups in RN , and H ⊆ G, then we say
that H is a subgroup of G.

Exercise 3.4. Let Λ be a lattice of rank r in RN , and let V = spanR Λ
be an r-dimensional subspace of RN , as in Excercise 3.3 above. Prove
that Λ and V are both additive groups, and Λ is a subgroup of V .

Combining Excercises 3.3 and 3.4, we see that a lattice Λ of rank r
in RN is a discrete co-compact subgroup of V = spanR Λ. In fact, the
converse is also true. Exercise 3.3 and Theorem 3.1 are basic gener-
alizations of Theorems 1 and 2 respectively on p. 18 of [15], and the
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proofs are essentially the same; the idea behind this argument is quite
important.

Theorem 3.1. Let V be an r-dimensional subspace of RN , and let Γ
be a discrete co-compact subgroup of V . Then Γ is a lattice of rank r
in RN .

Proof. In other words, we want to prove that Γ has a basis, i.e. that
there exists a collection of linearly independent vectors a1, . . . ,ar in Γ
such that Γ = spanZ{a1, . . . ,ar}. We start by inductively constructing
a collection of vectors a1, . . . ,ar, and then show that it has the required
properties.

Let a1 6= 0 be a point in Γ such that the line segment connecting
0 and a1 contains no other points of Γ. Now assume a1, . . . ,ai−1,
2 ≤ i ≤ r, have been selected; we want to select ai. Let

Hi−1 = spanR{a1, . . . ,ai−1},

and pick any c ∈ Γ \ Hi−1: such c exists, since Γ 6⊆ Hi−1 (otherwise
Γ would not be co-compact in V ). Let Pi be the closed parallelotope
spanned by the vectors a1, . . . ,ai−1, c. Notice that since Γ is discrete
in V , Γ∩Pi is a finite set. Moreover, since c ∈ Pi, Γ∩Pi * Hi−1. Then
select ai such that

d(ai, Hi−1) = min
y∈(Pi∩Γ)\Hi−1

{d(y, Hi−1)},

where for any point y ∈ RN ,

d(y, Hi−1) = inf
x∈Hi−1

{d(y,x)}.

Let a1, . . . ,ar be the collection of points chosen in this manner. Then
we have

a1 6= 0, ai /∈ spanZ{a1, . . . ,ai−1} ∀ 2 ≤ i ≤ r,

which means that a1, . . . ,ar are linearly independent. Clearly,

spanZ{a1, . . . ,ar} ⊆ Γ.

We will now show that

Γ ⊆ spanZ{a1, . . . ,ar}.

First of all notice that a1, . . . ,ar is certainly a basis for V , and so if
x ∈ Γ ⊆ V , then there exist c1, . . . , cr ∈ R such that

x =
r∑
i=1

ciai.
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Notice that

x′ =
r∑
i=1

[ci]ai ∈ spanZ{a1, . . . ,ar} ⊆ Γ,

where [ ] stands for the integer part function (i.e. [ci] is the largest
integer which is no larger than ci). Since Γ is a group, we must have

z = x− x′ =
r∑
i=1

(ci − [ci])ai ∈ Γ.

Then notice that

d(z, Hr−1) = (cr − [cr]) d(ar, Hr−1) < d(ar, Hr−1),

but by construction we must have either z ∈ Hr−1, or

d(ar, Hr−1) ≤ d(z, Hr−1),

since z lies in the parallelotope spanned by a1, . . . ,ar, and hence in
Pr as in our construction above. Therefore cr = [cr]. We proceed in
the same manner to conclude that ci = [ci] for each 1 ≤ i ≤ r, and
hence x ∈ spanZ{a1, . . . ,ar}. Since this is true for every x ∈ Γ, we
are done. �

From now on, until further notice, our lattices will be of full rank in
RN , that is of rank N . In other words, a lattice Λ ⊂ RN will be of the
form Λ = AZN , where A is a non-singular N ×N basis matrix for Λ.

Theorem 3.2. Let Λ be a lattice of rank N in RN , and let A be a basis
matrix for Λ. Then B is another basis matrix for Λ if and only if there
exists an N ×N integral matrix U with determinant ±1 such that

B = UA.

Proof. First suppose that B is a basis matrix. Notice that, since A is
a basis matrix, for every 1 ≤ i ≤ N the i-th column vector bi of B can
be expressed as

bi =
N∑
j=1

uijaj,

where a1, . . . ,aN are column vectors of A, and uij’s are integers for all
1 ≤ j ≤ N . This means that B = UA, where U = (uij)1≤i,j≤N is an
N ×N matrix with integer entries. On the other hand, since B is also
a basis matrix, we also have for every 1 ≤ i ≤ N

ai =
N∑
j=1

wijbj,
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where wij’s are also integers for all 1 ≤ j ≤ N . Hence A = WB, where
W = (wij)1≤i,j≤N is also an N ×N matrix with integer entries. Then

B = UA = UWB,

which means that UW = IN , the N ×N identity matrix. Therefore

det(UW ) = det(U) det(W ) = det(IN) = 1,

but det(U), det(W ) ∈ Z since U and W are integral matrices. This
means that

det(U) = det(W ) = ±1.

Next assume that B = UA for some integral N ×N matrix U with
det(U) = ±1. This means that det(B) = ± det(A) 6= 0, hence column
vectors of B are linearly independent. Also, U is invertible over Z,
meaning that U−1 = (wij)1≤i,j≤N is also an integral matrix, hence A =
U−1B. This means that column vectors of A are in the span of the
column vectors of B, and so

Λ ⊆ spanZ{b1, . . . , bN}.
On the other hand, bi ∈ Λ for each 1 ≤ i ≤ N . Thus B is a basis
matrix for Λ. �

Corollary 3.3. If A and B are two basis matrices for the same lattice
Λ, then

| det(A)| = | det(B)|.

Definition 3.3. The common determinant value of Corollary 3.3 is
called the determinant of the lattice Λ, and is denoted by det(Λ).

We now talk about sublattices of a lattice. Let us start with a
definition.

Definition 3.4. If Λ and Ω are both lattices in RN , and Ω ⊆ Λ, then
we say that Ω is a sublattice of Λ.

Unless stated otherwise, when we say Ω ⊆ Λ is a sublattice, we always
assume that it has the same full rank in RN as Λ.

Definition 3.5. Suppose Λ is a lattice in RN and Ω ⊂ Λ is a sublattice.
For each x ∈ Λ, the set

x + Ω = {x + y : y ∈ Ω}
is called a coset of Ω in Λ.

We now study some important properties of cosets.
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Lemma 3.4. Two cosets x + Ω and z + Ω of Ω in Λ are equal if and
only if x− z ∈ Ω.

Proof. First assume x + Ω = z + Ω. Since 0 ∈ Ω,

x + 0 = x ∈ x + Ω = z + Ω,

hence there exists some y ∈ Ω such that x = z + y, so

x− z = y ∈ Ω.

On the other hand, assume x−z ∈ Ω, then there exists some y ∈ Ω
such that x − z = y, therefore x = z + y. This means that each
element x + t ∈ x + Ω, where t ∈ Ω, can be expressed in the form

z + y + t ∈ z + Ω,

since y + t ∈ Ω (this follows by Excercise 3.4, since Ω is a group, so it
must be closed under addition). Thus we showed that x + Ω ⊆ z + Ω.
In precisely the same way one can show that z + Ω ⊆ x + Ω, and this
completes our proof. �

Corollary 3.5. A coset x + Ω is equal to Ω if and only if x ∈ Ω.

Proof. Apply Lemma 3.4 with z = 0 ∈ Ω. �

Exercise 3.5. Given a lattice Λ and a real number µ, define

µΛ = {µx : x ∈ Λ}.
Prove that µΛ is also a lattice. Prove that if µ is an integer, then µΛ
is a sublattice of Λ.

Lemma 3.6. Let Ω be a subattice of Λ. There exists a positive integer
D such that DΛ ⊆ Ω.

Proof. Recall that Λ and Ω are both lattices of rank N in RN . Let
a1, . . . ,aN be a basis for Ω and b1, . . . , bN be a basis for Λ. Then

spanR{a1, . . . ,aN} = spanR{b1, . . . , bN} = RN .

Since Ω ⊆ Λ, there exist integers u11, . . . , uNN such that
a1 = u11b1 + · · ·+ u1NbN
...

...
...

aN = uN1b1 + · · ·+ uNNbN .

Solving this linear system for b1, . . . , bN in terms of a1, . . . ,aN , we
easily see that there must exist rational numbers p11

q11
, . . . , pNN

qNN
such that

b1 = p11
q11

a1 + · · ·+ p1N
q1N

aN
...

...
...

bN = pN1

qN1
a1 + · · ·+ pNN

qNN
aN .
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Let D = q11× · · · × qNN , then D/qij ∈ Z for each 1 ≤ i, j,≤ N , and so
all the vectors 

Db1 = Dp11
q11

a1 + · · ·+ Dp1N
q1N

aN
...

...
...

DbN = DpN1

qN1
a1 + · · ·+ DpNN

qNN
aN

are in Ω. Therefore spanZ{Db1, . . . , DbN} ⊆ Ω. On the other hand,

spanZ{Db1, . . . , DbN} = D spanZ{b1, . . . , bN} = DΛ,

which completes the proof. �

We can now prove that a lattice always has a basis with “nice”
properties with respect to a given sublattice; this is Theorem 1 on p.
11 of [6].

Theorem 3.7. Let Λ be a lattice, and Ω a sublattice of Λ. For each
basis b1, . . . , bN of Λ, there exists a basis a1, . . . ,aN of Ω of the form

a1 = v11b1

a2 = v21b1 + v22b2

. . . . . . . . . . . . . . . . . . . . . . . .
aN = vN1b1 + · · ·+ vNNbN ,

where all vij ∈ Z and vii 6= 0 for all 1 ≤ i ≤ N . Conversely, for every
basis a1, . . . ,aN of Ω there exists a basis b1, . . . , bN of Λ such that the
relations as above hold.

Proof. Let b1, . . . , bN be a basis for Λ. We will first prove the existence
of a basis a1, . . . ,aN for Ω as claimed by the theorem. By Lemma 3.6,
there exist integer multiples of b1, . . . , bN in Ω, hence it is possible to
choose a collection of vectors a1, . . . ,aN ∈ Ω of the form

ai =
i∑

j=1

vijbj,

for each 1 ≤ i ≤ N with vii 6= 0. Clearly, by construction, such a
collection of vectors will be linearly independent. In fact, let us pick
each ai so that |vii| is as small as possible, but not 0. We will now
show that a1, . . . ,aN is a basis for Ω. Clearly,

spanZ{a1, . . . ,aN} ⊆ Ω.

We want to prove the inclusion in the other direction, i.e. that

(3) Ω ⊆ spanZ{a1, . . . ,aN}.
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Suppose (3) is not true, then there exists c ∈ Ω which is not in
spanZ{a1, . . . ,aN}. Since c ∈ Λ, we can write

c =
k∑
j=1

tjbj,

for some integers 1 ≤ k ≤ N and t1, . . . , tk. In fact, let us select a c like
this with minimal possible k. Since vkk 6= 0, we can choose an integer
s such that

(4) |tk − svkk| < |vkk|.
Then we clearly have

c− sak ∈ Ω \ spanZ{a1, . . . ,aN}.
Therefore we must have tk− svkk 6= 0 by minimality of k. But then (4)
contradicts the minimality of |vkk|: we could take c−sak instead of ak,
since it satisfies all the conditions that ak was chosen to satisfy, and
then |vkk| is replaced by the smaller nonzero number |tk − svkk|. This
proves that c like this cannot exist, and so (3) is true, hence finishing
one direction of the theorem.

Now suppose that we are given a basis a1, . . . ,aN for Ω. We want
to prove that there exists a basis b1, . . . , bN for Λ such that relations
in the statement of the theorem hold. This is a direct consequence
of the argument in the proof of Theorem 3.1. Indeed, at i-th step of
the basis construction in the proof of Theorem 3.1, we can choose i-th
vector, call it bi, so that it lies in the span of the previous i− 1 vectors
and the vector ai. Since b1, . . . , bN constructed this way are linearly
independent (in fact, they form a basis for Λ by the construction), we
obtain that

ai ∈ spanZ{b1, . . . , bi} \ spanZ{b1, . . . , bi−1},
for each 1 ≤ i ≤ N . This proves the second half of our theorem. �

Exercise 3.6. Prove that it is possible to select the coefficients vij in
Theorem 3.7 so that the matrix (vij)1≤i,j≤N is upper (or lower) trian-
gular with non-negative entries, and the largest entry of each row (or
column) is on the diagonal.

Remark 3.1. Let the notation be as in Theorem 3.7. Notice that if A
is any basis matrix for Ω and B is any basis for Λ, then there exists
an integral matrix V such that A = V B. Then Theorem 3.7 implies
that for a given B there exists an A such that V is lower triangular,
and for for a given A exists a B such that V is lower triangular. Since
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two different basis matrices of the same lattice are always related by
multiplication by an integral matrix with determinant equal to ±1,
Theorem 3.7 can be thought of as the construction of Hermite normal
form for an integral matrix. Exercise 3.6 places additional restrictions
that make Hermite normal form unique.

Here is an important implication of Theorem 3.7; this is Lemma 1
on p. 14 of [6].

Theorem 3.8. Let Ω ⊆ Λ be a sublattice. Then det(Ω)
det(Λ)

is an integer;

moreover, the number of cosets of Ω in Λ is equal to det(Ω)
det(Λ)

.

Proof. Let b1, . . . , bN be a basis for Λ, and a1, . . . ,aN be a basis for
Ω, so that these two bases satisfy the conditions of Theorem 3.7, and
write A and B for the corresponding basis matrices. Then notice that

A = V B,

where V = (vij)1≤i,j≤N is an N × N triangular matix with entries as

described in Theorem 3.7; in particular det(V ) =
∏N

i=1 |vii|. Hence

det(Ω) = | det(A)| = | det(V )|| det(B)| = det(Λ)
N∏
i=1

|vii|,

which proves the first part of the theorem.
Moreover, notice that each vector c ∈ Λ is contained in the same

coset of Ω in Λ as precisely one of the vectors

q1b1 + · · ·+ qNbN , 0 ≤ qi < vii ∀ 1 ≤ i ≤ N,

in other words there are precisely
∏N

i=1 |vii| cosets of Ω in Λ. This
completes the proof. �

Definition 3.6. The number of cosets of a sublattice Ω inside of a
lattice Λ is called the index of Ω in Λ and is denoted by [Λ : Ω].
Theorem 3.8 then guarantees that when Ω and Λ have the same rank,

[Λ : Ω] =
det(Ω)

det(Λ)
,

in particular it is finite.

There is yet another, more analytic, description of the determinant
of a lattice.
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Definition 3.7. A fundamental domain of a lattice Λ of full rank
in RN is a Jordan measurable set F ⊆ RN containing 0, so that

RN =
⋃
x∈Λ

(F + x),

and for every x 6= y ∈ Λ, (F + x) ∩ (F + y) = ∅.

Exercise 3.7. Prove that for every point x ∈ RN there exists uniquely
a point y ∈ F such that

x− y ∈ Λ,

i.e. x lies in the coset y + Λ of Λ in RN . This means that F is a full
set of coset representatives of Λ in RN .

Although each lattice has infinitely many different fundamental do-
mains, they all have the same volume, which depends only on the lat-
tice. This fact can be easily proved for a special class of fundamental
domains.

Definition 3.8. Let Λ be a lattice, and a1, . . . ,aN be a basis for Λ.
Then the set

F =

{
N∑
i=1

tiai : 0 ≤ ti < 1, ∀ 1 ≤ i ≤ N

}
,

is called a fundamental parallelotope of Λ with respect to the basis
a1, . . . ,aN . It is easy to see that this is an example of a fundamental
domain for a lattice.

Exercise 3.8. Prove that volume of a fundamental parallelotope is
equal to the determinant of the lattice.

Fundamental parallelotopes form the most important class of funda-
mental domains, which we will work with most often. Notice that they
are not closed sets; we will often write F for the closure of a fundamen-
tal parallelotope, and call them closed fundamental domains. There is
one more kind of closed fundamental domains which plays a central
role in discrete geometry.

Definition 3.9. The Voronoi cell of a lattice Λ is the set

V = {x ∈ RN : ‖x‖2 ≤ ‖x− y‖2 ∀ y ∈ Λ}.
It is easy to see that V is a closed fundamental domain for Λ.

The advantage of the Voronoi cell is that it is the most “round” funda-
mental domain for a lattice; we will see that it comes up very naturally
in the context of sphere packing and covering problems.
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Notice that all the things we discussed here also have analogues
for lattices of not necessarily full rank. We mention this here briefly
without proofs. Let Λ be a lattice in RN of rank 1 ≤ r ≤ N , and let
a1, . . . ,ar be a basis for it. Write A = (a1 . . . ar) for the corresponding
N ×r basis matrix of Λ, then A has rank r since its column vectors are
linearly independent. For any r×r integral matrix U with determinant
±1, UA is another basis matrix for Λ; moreover, if B is any other
basis matrix for Λ, there exists such a U so that B = AU . For each
basis matrix A of Λ, we define the corresponding Gram matrix to be
M = AAt, so it is a square r × r non-singular matrix. Notice that if
A and B are two basis matrices so that B = UA for some U as above,
then

det(BBt) = det((UA)(UA)t) = det(U(AAt)U t)

= det(U)2 det(AAt) = det(AAt).

This observation calls for the following general definition of the de-
terminant of a lattice. Notice that this definition coincides with the
previously given one in case r = N .

Definition 3.10. Let Λ be a lattice of rank 1 ≤ r ≤ N in RN , and let
A be an N × r basis matrix for Λ. The determinant of Λ is defined
to be

det(Λ) =
√

det(AAt),

that is the determinant of the corresponding Gram matrix. By the
discussion above, this is well defined, i.e. does not depend on the
choice of the basis.

With this notation, all results and definitions of this section can be
restated for a lattice Λ of not necessarily full rank. For instance, in
order to define fundamental domains we can view Λ as a lattice inside
of the vector space spanR(Λ). The rest works essentially verbatim,
keeping in mind that if Ω ⊆ Λ is a sublattice, then index [Λ : Ω] is only
defined if rk(Ω) = rk(Λ).
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4. Quadratic forms

In this section we outline the connection between lattices and positive
definite quadratic forms. We start by defining quadratic forms and
sketching some of their basic properties.

A quadratic form is a homogeneous polynomial of degree 2; unless
explicitly stated otherwise, we consider quadratic forms with real co-
efficients. More generally, we can talk about a symmetric bilinear
form, that is a polynomial

B(X,Y ) =
N∑
i=1

N∑
j=1

bijXiYj,

in 2N variables X1, . . . , XN , Y1, . . . , YN so that bij = bji for all 1 ≤
i, j ≤ N . Such a polynomial B is called bilinear because although
it is not linear, it is linear in each set of variables, X1, . . . , XN and
Y1, . . . , YN . It is easy to see that a bilinear form B(X,Y ) can also be
written as

B(X,Y ) = X tBY ,

where

B =


b11 b12 . . . b1N

b12 b22 . . . b2N
...

...
. . .

...
b1N b2N . . . bNN

 ,

is the corresponding N ×N symmetric coefficient matrix, and

X =

X1
...
XN

 , Y =

Y1
...
YN

 ,

are the variable vectors. Hence symmetric bilinear forms are in bijective
correspondence with symmetricN×N matrices. It is also easy to notice
that
(5)
B(X,Y ) = X tBY = (X tBY )t = Y tBtX = Y tBX = B(Y ,X),

since B is symmetric. We can also define the corresponding quadratic
form

Q(X) = B(X,X) =
N∑
i=1

N∑
j=1

bijXiXj = X tBX.

Hence to each bilinear symmetric form in 2N variables there corre-
sponds a quadratic form in N variables. The converse is also true.



24 LENNY FUKSHANSKY

Exercise 4.1. Let Q(X) be a quadratic form in N variables. Prove
that

B(X,Y ) =
1

2
(Q(X + Y )−Q(X)−Q(Y ))

is a symmetric bilinear form.

Definition 4.1. We define the determinant or discriminant of a
symmetric bilinear form B and of its associated quadratic form Q to
be the determinant of the coefficient matrix B, and will denote it by
det(B) or det(Q).

Many properties of bilinear and corresponding quadratic forms can
be deduced from the properties of their matrices. Hence we start by
recalling some properties of symmetric matrices.

Lemma 4.1. A real symmetric matrix has all real eigenvalues.

Proof. Let B be a real symmetric matrix, and let λ be an eigenvalue
of B with a corresponding eigenvector x. Write λ for the complex
conjugate of λ, and B and x for the matrix and vector correspondingly
whose entries are complex conjugates of respective entries of B and x.
Then Bx = λx, and so

Bx = Bx = Bx = λx = λx,

since B is a real matrix, meaning that B = B. Then, by (5)

λ(xtx) = (λx)tx = (Bx)tx = xtBx = xt(λx) = λ(xtx),

meaning that λ = λ, since xtx 6= 0. Therefore λ ∈ R. �

Remark 4.1. Since eigenvectors corresponding to real eigenvalues of a
matrix must be real, Lemma 4.1 implies that a real symmetric matrix
has all real eigenvectors as well. In fact, even more is true.

Lemma 4.2. Let B be a real symmetric matrix. Then there exists an
orthonormal basis for RN consisting of eigenvectors of B.

Proof. We argue by induction on N . If N = 1, the result is trivial.
Hence assume N > 1, and the statement of the lemma is true for N−1.
Let x1 be an eigenvector of B with the corresponding eigenvalue λ1.
We can assume that ‖x1‖2 = 1. Use Gram-Schmidt orthogonalization
process to extend x1 to an orthonormal basis for RN , and write U for
the corresponding basis matrix such that x1 is the first column. Then
it is easy to notice that U−1 = U t.
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Exercise 4.2. Prove that the matrix U tBU is of the form
λ1 0 . . . 0
0 a11 . . . a1(N−1)
...

...
. . .

...
0 a(N−1)1 . . . a(N−1)(N−1)

 ,

where the (N − 1)× (N − 1) matrix

A =

 a11 . . . a1(N−1)
...

. . .
...

a(N−1)1 . . . a(N−1)(N−1)


is also symmetric.

Now we can apply induction hypothesis to the matrix A, thus obtaining
an orthonormal basis for RN−1, consisting of eigenvectors of A, call
them y2, . . . ,yN . For each 2 ≤ i ≤ N , define

y′i =

(
0
yi

)
∈ RN ,

and let xi = Uy′i. There exist λ2, . . . , λN such that Ayi = λiyi for
each 2 ≤ i ≤ N , hence

U tBUy′i = λiy
′
i,

and so Bxi = λixi. Moreover, for each 2 ≤ i ≤ N ,

xt1xi = (xt1U)

(
0
yi

)
= 0,

by construction of U . Finally notice that for each 2 ≤ i ≤ N ,

‖xi‖2 =

(
U

(
0
yi

))t
U

(
0
yi

)
= (0,yti)U

tU

(
0
yi

)
= ‖yi‖2 = 1,

meaning that x1,x2, . . . ,xN is precisely the basis we are looking for.
�

Remark 4.2. An immediate implication of Lemma 4.2 is that a real
symmetric matrix has N linearly independent eigenvectors, hence is
diagonalizable; we will prove an even stronger statement below. In
particular, this means that for each eigenvalue, its algebraic multi-
plicity (i.e. multiplicity as a root of the characteristic polynomial) is
equal to its geometric multiplicity (i.e. dimension of the corresponding
eigenspace).

Definition 4.2. Let GLN(R) be the set of all invertible N×N matrices
with real entries. We say that GLN(R) is a matrix group under
multiplication, meaning that the following conditions hold:
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(1) Identity: There exists the N ×N identity matrix IN in GLN(R),
which has the property that INA = AIN = A for any A ∈ GLN(R),

(2) Closure: For every A,B ∈ GLN(R), AB,BA ∈ GLN(R),
(3) Inverses: For every A ∈ GLN(R), A−1 ∈ GLN(R).

GLN(R) is the called the N × N real general linear group. Any
subset H of GLN(R) that satisfies the conditions (1)-(3) is called a
subgroup of GLN(R).

Exercise 4.3. Prove that conditions (1)-(3) in the definition above
indeed hold for GLN(R).

Definition 4.3. A matrix U ∈ GLN(R) is called orthogonal if U−1 =
U t, and the subset of all such matrices in GLN(R) is

ON(R) = {U ∈ GLN(R) : U−1 = U t}.

Exercise 4.4. Prove that ON(R) is a subgroup of GLN(R). It is called
the N ×N real orthogonal group.

Exercise 4.5. Prove that a matrix U is in ON(R) if and only if its
column vectors form an orthonormal basis for RN .

Definition 4.4. Define GLN(Z) to be the set of all invertible N ×N
matrices with integer coordinates, whose inverses also have integral
coordinates.

Exercise 4.6. Prove that GLN(Z) is a subgroup of GLN(R), which
consists of all matrices with integers coordinates whose determinant is
equal to ±1.

Lemma 4.3. Every real symmetric matrix B is diagonalizable by an
orthogonal matrix, i.e. there exists a matrix U ∈ ON(R) such that
U tBU is a diagonal matrix.

Proof. By Lemma 4.2, we can pick an orthonormal basis u1, . . . ,uN
for RN consisting of eigenvectors of B. Then let

U = (u1 . . . uN),

so by Exercise 4.5 the matrix U is orthogonal. Moreover, for each
1 ≤ i ≤ N ,

utiBui = uti(λiui) = λi(u
t
iui) = λi,

where λi is the corresponding eigenvalue, since

1 = ‖ui‖2
2 = utiui.

Also, for each 1 ≤ i 6= j ≤ N ,

utiBuj = uti(λjuj) = λj(u
t
iuj) = 0.
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Therefore, U tBU is a diagonal matrix whose diagonal entries are pre-
cisely the eigenvalues of B. �

Remark 4.3. Lemma 4.3 is often referred to as the Principal Axis The-
orem. The statements of Lemmas 4.1, 4.2, and 4.3 together are usu-
ally called the Spectral Theorem for symmetric matrices; it has many
important applications in various areas of mathematics, especially in
Functional Analysis, where it is usually interpreted as a statement
about self-adjoint (or hermitian) linear operators. A more general ver-
sion of Lemma 4.3, asserting that any matrix is unitary-similar to an
upper triangular matrix over an algebraically closed field, is usually
called Schur’s theorem.

What are the implications of these results for quadratic forms?

Definition 4.5. A nonsingular linear transformation σ : RN → RN

is called an isomorphism. Notice that σ like this is always given by
left-multiplication by an N × N non-singular matrix, and vice versa:
left-multiplication by an N×N non-singular matrix with coefficients in
R is always an isomorphism from RN to RN . By abuse of notation, we
will identify an isomorphism σ with its matrix, and hence we can say
that the set of all possible isomorphisms of RN with itself is precisely
the group GLN(R).

Definition 4.6. Two real symmetric bilinear forms B1 and B2 in 2N
variables are called isometric if there exists an isomorphism σ : RN →
RN such that

B1(σx, σy) = B2(x,y),

for all x,y ∈ RN . Their associated quadratic forms Q1 and Q2 are also
said to be isometric in this case, and the isomorphism σ is called an
isometry of these bilinear (respectively, quadratic) forms.

Isometry is easily seen to be an equivalence relation on real symmetric
bilinear (respectively quadratic) forms, so we can talk about isometry
classes of real symmetric bilinear (respectively quadratic) forms.
Notice that it is possible to have an isometry from a bilinear form B
to itself, which we will call an autometry of B. This is the case when
an isomorphism σ : RN → RN is such that B(σX, σY ) = B(X,Y ),
and so the same is true for the associated quadratic form Q.

Exercise 4.7. Prove that if σ is an autometry of a symmetric bilinear
form B, then det(σ) = ±1. Prove that the set of all autometries of
a symmetric bilinear (respectively quadratic) is a group under matrix
multiplication. Hence it must be a subgroup of GLN(R).
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Definition 4.7. A symmetric bilinear form B and its associated qua-
dratic form Q are called diagonal if their coefficient matrix B is diag-
onal. In this case we can write

B(X,Y ) =
N∑
i=1

biXiYi, Q(X) =
N∑
i=1

biX
2
i ,

where b1, . . . , bN are precisely the diagonal entries of the matrix B.

With this notation we readily obtain the following result.

Theorem 4.4. Every real symmetric bilinear form, as well as its as-
sociated quadratic form, is isometric to a real diagonal form. In fact,
there exists such an isometry whose matrix is in ON(R).

Proof. This is an immediate consequence of Lemma 4.3. �

Remark 4.4. Notice that this diagonalization is not unique, i.e. it is
possible for a bilinear or quadratic form to be isometric to more than
one diagonal form (notice that an isometry can come from the whole
group GLN(R), not necessarilly from ON(R)). This procedure does
however yield an invariant for nonsingular real quadratic forms, called
signature.

Definition 4.8. A symmetric bilinear or quadratic form is called non-
singular (or nondegenerate, or regular) if its coefficient matrix is
nonsingular.

Exercise 4.8. Let B(X,Y ) be a symmetric bilinear form and Q(X)
its associated quadratic form. Prove that the following four conditions
are equivalent:

(1) B is nonsingular.
(2) For every 0 6= x ∈ RN , there exists y ∈ RN so that B(x,y) 6= 0.
(3) For every 0 6= x ∈ RN at least one of the partial derivatives

∂Q

∂Xi

(x) 6= 0.

(4) Q is isometric to a diagonal form with all coefficients nonzero.

We now deal with nonsingular quadratic forms until further notice.

Definition 4.9. A nonsingular diagonal quadratic form Q can be writ-
ten as

Q(X) =
r∑
j=1

bijX
2
ij
−

s∑
j=1

bkjX
2
kj
,

where all coefficients bij , bkj are positive. In other words, r of the
diagonal terms are positive, s are negative, and r + s = N . The pair
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(r, s) is called the signature of Q. Moreover, even if Q is a non-
diagonal nonsingular quadratic form, we define its signature to be
the signature of an isometric diagonal form.

The following is Lemma 5.4.3 on p. 333 of [18]; the proof is essentially
the same.

Theorem 4.5. Signature of a nonsingular quadratic form is uniquely
determined.

Proof. We will show that signature of a nonsingular quadratic form Q
does not depend on the choice of diagonalization.

Let B be the coefficient matrix of Q, and let U,W ∈ ON(R) be two
different matrices that diagonalize B with colum vectors u1, . . . ,uN
and w1, . . . ,wN , respectively, arranged in such a way that

Q(u1), . . . , Q(ur1) > 0, Q(ur1+1), . . . , Q(uN) < 0,

and

Q(w1), . . . , Q(wr2) > 0, Q(wr2+1), . . . , Q(wN) < 0,

for some r1, r2 ≤ N . Define vector spaces

V +
1 = spanR{u1, . . . ,ur1}, V −1 = spanR{ur1+1, . . . ,uN},

and

V +
2 = spanR{w1, . . . ,wr2}, V −2 = spanR{wr2+1, . . . ,wN}.

Clearly, Q is positive on V +
1 , V

+
2 and is negative on V −1 , V

−
2 . Therefore,

V +
1 ∩ V −2 = V +

2 ∩ V −1 = {0}.

Then we have

r1 + (N − r2) = dim(V +
1 ⊕ V −2 ) ≤ N,

and

r2 + (N − r1) = dim(V +
2 ⊕ V −1 ) ≤ N,

which implies that r1 = r2. This completes the proof. �

The importance of signature for nonsingular real quadratic forms is that
it is an invariant not just of the form itself, but of its whole isometry
class. The following result, which we leave as an exercise, is due to
Sylvester.

Exercise 4.9. Prove that two nonsingular real quadratic forms in N
variables are isometric if and only if they have the same signature.
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An immediate implication of Exercise 4.9 is that for each N ≥ 2, there
are precisely N+1 isometry classes of nonsingular real quadratic forms
in N variables, and by Theorem 4.4 each of these classes contains a
diagonal form. Some of these isometry classes are especially important
for our purposes.

Definition 4.10. A quadratic form Q is called positive or negative
definite if, respectively, Q(x) > 0, or Q(x) < 0 for each 0 6= x ∈
RN ; Q is called positive or negative semi-definite if, respectively,
Q(x) ≥ 0, or Q(x) ≤ 0 for each 0 6= x ∈ RN . Otherwise, Q is called
indefinite.

Exercise 4.10. Prove that a real quadratic form is positive (respec-
tively, negative) definite if and only if it has signature (N, 0) (respec-
tively, (0, N)). In particular, a definite form has to be nonsingular.

Positive definite real quadratic forms are also sometimes called norm
forms. We now have the necessary machinery to relate quadratic forms
to lattices. Let Λ be a lattice of full rank in RN , and let A be a basis
matrix for Λ. Then y ∈ Λ if and only if y = Ax for some x ∈ ZN .
Notice that the Euclidean norm of y in this case is

‖y‖2 = (Ax)t(Ax) = xt(AtA)x = QA(x),

where QA is the quadratic form whose symmetric coefficient matrix
is AtA. By construction, QA must be a positive definite form. This
quadratic form is called a norm form for the lattice Λ, corresponding
to the basis matrix A.

Now suppose C is another basis matrix for Λ. Then there must
exist U ∈ GLN(Z) such that C = AU . Hence the matrix of the qua-
dratic form QC is (AU)t(AU) = U t(AtA)U ; we call two such matrices
GLN(Z)-congruent. Notice in this case that for each x ∈ RN

QC(x) = xtU t(AtA)Ux = QA(Ux),

which means that the quadratic forms QA and QC are isometric. In
such cases, when there exists an isometry between two quadratic forms
in GLN(Z), we will call them arithmetically equivalent. We proved
the following statement.

Proposition 4.6. All different norm forms of a lattice Λ of full rank
in RN are arithmetically equivalent to each other.

Moreover, suppose that Q is a positive definite quadratic form with
coefficient matrix B, then there exists U ∈ ON(R) such that

U tBU = D,
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where D is a nonsingular diagonal N ×N matrix with positive entries
on the diagonal. Write

√
D for the diagonal matrix whose entries are

positive square roots of the entries of D, then D =
√
Dt
√
D, and so

B = (
√
DU)t(

√
DU).

Letting A =
√
DU and Λ = AZN , we see that Q is a norm form of Λ.

Notice that the matrix A is unique only up to orthogonal transforma-
tions, i.e. for any W ∈ ON(R)

(WA)t(WA) = At(W tW )A = AtA = B.
Therefore Q is a norm form for every lattice WAZN , where W ∈
ON(R). Let us call two lattices Λ1 and Λ2 isometric if there ex-
ists W ∈ ON(R) such that Λ1 = WΛ2. This is easily seen to be an
equivalence relation on lattices. Hence we have proved the following.

Theorem 4.7. Arithmetic equivalence classes of real positive definite
quadratic forms in N variables are in bijective correspondence with
isometry classes of full rank lattices in RN .

Notice in particular that if a lattice Λ and a quadratic form Q corre-
spond to each other as described in Theorem 4.7, then

(6) det(Λ) =
√
| det(Q)|.
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5. Theorems of Blichfeldt and Minkowski

In this section we will discuss some of the famous theorems related
to the following very classical problem in the geometry of numbers:
given a set M and a lattice Λ in RN , how can we tell if M contains
any points of Λ? Although our discussion will be mostly limited to the
0-symmetric convex sets, we start with a fairly general result; this is
Theorem 2 on p. 42 of [15], the proof is the same.

Theorem 5.1 (Blichfeldt, 1914). Let M be a Jordan measurable set
in RN . Suppose that Vol(M) > 1, or that M is closed, bounded, and
Vol(M) ≥ 1. Then there exist x,y ∈M such that 0 6= x− y ∈ ZN .

Proof. First suppose that Vol(M) > 1. Let us assume that M is
bounded: if not, then there must exist a bounded subset M1 ⊆ M
such that Vol(M1) > 1, so we can take M1 instead of M . Let

P = {x ∈ RN : 0 ≤ xi < 1 ∀ 1 ≤ i ≤ N},
and let

S = {u ∈ ZN : M ∩ (P + u) 6= ∅}.
Since M is bounded, S is a finite set, say S = {u1, . . . ,ur0}. Write
Mr = M ∩ (P + ur) for each 1 ≤ r ≤ r0. Also, for each 1 ≤ r ≤ r0,
define

M ′
r = Mr − ur,

so that M ′
1, . . . ,M

′
r0
⊆ P . On the other hand,

⋃r0
r=1Mr = M , and

Mr ∩Ms = ∅ for all 1 ≤ r 6= s ≤ r0, since Mr ⊆ P + ur, Ms ⊆ P + us,
and (P + ur) ∩ (P + us) = ∅. This means that

1 < Vol(M) =

r0∑
r=1

Vol(Mr).

However, Vol(M ′
r) = Vol(Mr) for each 1 ≤ r ≤ r0,

r0∑
r=1

Vol(M ′
r) > 1,

but
⋃r0
r=1M

′
r ⊆ P , and so

Vol

(
r0⋃
r=1

M ′
r

)
≤ Vol(P ) = 1.

Hence the sets M ′
1, . . . ,M

′
r0

are not mutually disjoined, meaning that
there exist indices 1 ≤ r 6= s ≤ r0 such that there exists x ∈M ′

r ∩M ′
s.

Then we have x + ur,x + us ∈M , and

(x + ur)− (x + us) = ur − us ∈ ZN .
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Now suppose M is closed, bounded, and Vol(M) = 1. Let {sr}∞r=1

be a sequence of numbers all greater than 1, such that

lim
r→∞

sr = 1.

By the argument above we know that for each r there exist

xr 6= yr ∈ srM
such that xr−yr ∈ ZN . Then there are subsequences {xrk} and {yrk}
converging to points x,y ∈M , respectively. Since for each rk, xrk−yrk
is a nonzero lattice point, it must be true that x 6= y, and x−y ∈ ZN .
This completes the proof. �

As a corollary of Theorem 5.1 we can prove the following version of
Minkowski’s Convex Body Theorem; recall here that our convex
sets are always compact, i.e. closed and bounded. For this proof, we
will need one additional fact, that we state here as an exercise.

Exercise 5.1. Let S and T be two Jordan measurable sets in RN such
that

T = AS = {Ax : x ∈ S},
where A ∈ GLN(R). Prove that

Vol(T ) = | det(A)|Vol(S).

Hint: If we treat multiplication by A as coordinate transformation,
prove that its Jacobian is equal to det(A). Now use it in the integral
for the volume of T to relate it to the volume of S.

Theorem 5.2 (Minkowski). Let M ⊂ RN be a convex 0-symmetric set
with Vol(M) ≥ 2N . Then there exists 0 6= x ∈M ∩ ZN .

Proof. Notice that the set

1

2
M =

{
1

2
x : x ∈M

}
=


1/2 0 . . . 0
0 1/2 . . . 0
...

...
. . .

...
0 0 . . . 1/2

M

is also convex, 0-symmetric, and by Exercise 5.1 its volume is

det


1/2 0 . . . 0
0 1/2 . . . 0
...

...
. . .

...
0 0 . . . 1/2

Vol(M) = 2−N Vol(M) ≥ 1.
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Thererfore, by Theorem 5.1, there exist 1
2
x 6= 1

2
y ∈ 1

2
M such that

1

2
x− 1

2
y ∈ ZN .

But, by symmetry, since y ∈ M , −y ∈ M , and by convexity, since
x,−y ∈M ,

1

2
x− 1

2
y =

1

2
x +

1

2
(−y) ∈M.

This completes the proof. �

Remark 5.1. This result is sharp: for any ε > 0, the cube

C =

{
x ∈ RN : max

1≤i≤N
|xi| ≤ 1− ε

2

}
is a convex 0-symmetric set of volume (2 − ε)N , which contains no
nonzero integer lattice points.

We also briefly mention a generalization of Blichfeldt’s theorem which
was proved by van der Corput in 1936, using a method of Mordell; this
is Theorem 1 on p. 47 of [15], and the proof (which we do not include
here) uses a generalized Dirichlet’s box principle.

Theorem 5.3. Let k ∈ Z>0, and let M ⊆ RN be a bounded Jordan
measurable set with Vol(M) > k. Then there exist at least k+1 distinct
points u1, . . . ,uk+1 ∈M such that

ui − uj ∈ ZN ∀ 1 ≤ i, j ≤ k + 1.

A generalized version of Minkowski’s theorem follows as a corollary
of Theorem 5.3, using the same type of argument as in the proof of
Theorem 5.2, but now referring to Theorem 5.3 instead of Theorem
5.1; we skip the proof - it can be found for instance on p. 71 of [6].

Theorem 5.4. Let k ∈ Z>0, and let M ⊂ RN be a convex 0-symmetric
set with Vol(M) > 2Nk. Then there exists distinct nonzero points

±x1, . . . ,±xk ∈M ∩ ZN .

Exercise 5.2. Prove versions of Theorems 5.1 - 5.2 where ZN is re-
placed by a general lattice Λ ⊆ RN or rank N and the lower bounds on
volume of M are multiplied by det(Λ).

Hint: Let Λ = AZN for some A ∈ GLN(R). Then a point x ∈ A−1M ∩
ZN if and only if Ax ∈ M ∩ Λ. Now use Exercise 5.1 to relate the
volume of A−1M to the volume of M .
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From now on we will assume the versions of Blichfeldt and Minkowski
theorems for arbitrary lattices, as in Exercise 5.2.

We will now discuss a couple applications of these results, following
[15]. First we can prove Minkowski’s Linear Forms Theorem; this
is Theorem 3 on p. 43 of [15].

Theorem 5.5. Let B = (bij)1≤i,j≤N ∈ GLN(R), and for each 1 ≤ i ≤
N define a linear form with coefficients bi1, . . . , biN by

Li(X) =
N∑
j=1

bijXj.

Let c1, . . . , cN ∈ R>0 be such that

c1 . . . cN = | det(B)|.

Then there exists 0 6= x ∈ ZN such that

|Li(x)| ≤ ci,

for each 1 ≤ i ≤ N .

Proof. Let us write b1, . . . , bN for the row vectors of B, then

Li(x) = bix,

for each x ∈ RN . Consider parallelepiped

P = {x ∈ RN : |Li(x)| ≤ ci ∀ 1 ≤ i ≤ N} = B−1R,

where R = {x ∈ RN : |xi| ≤ ci ∀ 1 ≤ i ≤ N} is the rectangular box
with sides of length 2c1, . . . , 2cN centered at the origin in RN . Then by
Exercise 5.1

Vol(P ) = | det(B)|−1 Vol(R) = | det(B)|−12Nc1 . . . cN = 2N ,

and so by Theorem 5.2 there exists 0 6= x ∈ P ∩ ZN . �

Next application is to positive definite quadratic forms; this is The-
orem 4 on p. 44 of [15]. Let

(7) ωN =

{
πk

k!
if N = 2k for some k ∈ Z

22k+1k!πk

(2k+1)!
if N = 2k + 1 for some k ∈ Z

be the volume of a unit ball in RN . Hence the volume of a ball of radius
r in RN is ωNr

N .
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Theorem 5.6. Let

Q(X) =
N∑
i=1

N∑
j=1

bijXiXj = X tBX

be a positive definite quadratic form in N variables with symmetric
coefficient matrix B. There exists 0 6= x ∈ ZN such that

Q(x) ≤ 4

(
det(B)

ω2
N

)1/N

.

Proof. As at the end of section 4 (proof of Theorem 4.7), we can de-
compose B as B = AtA for some A ∈ GLN(R). Then

det(B) = det(A)2.

For each r ∈ R>0, define the set

Er = {x ∈ RN : Q(x) ≤ r} = {x ∈ RN : (Ax)t(Ax) ≤ r} = A−1Sr,

where Sr = {y ∈ RN : ‖y‖2
2 ≤ r} is a ball of radius

√
r centered at the

origin in RN . Hence Er is an ellipsoid centered at the origin, and by
Exercise 5.1

Vol(Er) = | det(A)|−1 Vol(Sr) = ωN

√
rN

det(B)
.

Hence if

r = 4

(
det(B)

ω2
N

)1/N

,

then Vol(Er) = 2N , and so by Theorem 5.2 there exists 0 6= x ∈
Er ∩ ZN . �
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6. Successive minima

Theorem 5.4 gives a criterion for a convex, 0-symmetric set to contain
a collection of lattice points. This collections however is not guaranteed
to be linearly independent. A natural next question to ask is, given
a convex, 0-symmetric set M and a lattice Λ, under which conditions
does M contain i linearly independent points of Λ for each 1 ≤ i ≤ N?
To answer this question is the main objective of this section. We start
with some terminology.

Definition 6.1. Let M be a convex, 0-symmetric set M ⊂ RN of non-
zero volume and Λ ⊆ RN a lattice of full rank. For each 1 ≤ i ≤ N
define the i-th succesive minimum of M with respect to Λ, λi, to
be the infimum of all positive real numbers λ such that the set λM
contains i linearly independent points of Λ.

Remark 6.1. Notice that the N linearly independent vectors u1, . . . ,uN
corresponding to successive minima λ1, . . . , λN , respectively, do not
necessarily form a basis. It was already known to Minkowski that they
do in dimensions N = 1, . . . , 4, but when N = 5 there is a well known
counterexample. Let

Λ =


1 0 0 0 1

2
0 1 0 0 1

2
0 0 1 0 1

2
0 0 0 1 1

2
0 0 0 0 1

2

Z5,

and let M = B5, the closed unit ball centered at 0 in RN . Then the
successive minima of B5 with respect to Λ is

λ1 = · · · = λ5 = 1,

since e1, . . . , e5 ∈ B5 ∩ Λ, and

x =

(
1

2
,
1

2
,
1

2
,
1

2
,
1

2

)t
/∈ B5.

On the other hand, x cannot be expressed as a linear combination of
e1, . . . , e5 with integer coefficients, hence

spanZ{e1, . . . , e5} ( Λ.

An immediate observation is that

0 < λ1 ≤ λ2 ≤ · · · ≤ λN .
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Moreover, Minkowski’s convex body theorem implies that

λ1 ≤ 2

(
det(Λ)

Vol(M)

)1/N

.

Can we produce bounds on all the successive minima in terms of
Vol(M) and det(Λ)? This question is answered by Minkowski’s Suc-
cessive Minima Theorem.

Theorem 6.1. With notation as above,

2N det(Λ)

N ! Vol(M)
≤ λ1 . . . λN ≤

2N det(Λ)

Vol(M)
.

Proof. We present the proof in case Λ = ZN , leaving generalization of
the given argument to arbitrary lattices as an excercise. We start with
a proof of the lower bound following [15], which is considerably easier
than the upper bound. Let u1, . . . ,uN be the N linearly independent
vectors corresponding to the respective successive minima λ1, . . . , λN ,
and let

U = (u1 . . .uN) =

u11 . . . uN1
...

. . .
...

u1N . . . uNN

 .

Then U = UZN is a full rank sublattice of ZN with index | det(U)|.
Notice that the 2N points

±u1

λ1

, . . . ,±uN
λN

lie in M , hence M contains the convex hull P of these points, which is
a generalized octahedron. In fact,

(8) P =

λ
−1
1 . . . 0
...

. . .
...

0 . . . λ−1
N

UKN ,

where

KN =

{
x ∈ RN :

N∑
i=1

|xi| ≤ 1

}
is the n-dimensional cross-polytope with vertices ±e1, . . . ,±eN .

Exercise 6.1. Prove that the cross-polytope KN has volume 2N/N !.
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Combining Exercise 6.1 with (8), we deduce that the volume of P is
(9)

Vol(P ) =
2N

N !

∣∣∣∣∣∣∣det


u11
λ1

. . . uN1

λN
...

. . .
...

u1N
λ1

. . . uNN

λN


∣∣∣∣∣∣∣ =

2N | det(U)|
N ! λ1 . . . λN

≥ 2N

N ! λ1 . . . λN
,

since det(U) is an integer. Since P ⊆ M , Vol(M) ≥ Vol(P ). Combin-
ing this last observation with (9) yields the lower bound of the theorem.

Next we prove the upper bound. The argument we present is due to
M. Henk [17], and is at least partially based on Minkowski’s original
geometric ideas. For each 1 ≤ i ≤ N , let

Ei = spanR{e1, . . . , ei},

the i-th coordinate subspace of RN , and define

Mi =
λi
2
M.

As in the proof of the lower bound, we take u1, . . . ,uN to be the N
linearly independent vectors corresponding to the respective successive
minima λ1, . . . , λN . In fact, notice that there exists a matrix A ∈
GLN(Z) such that

A spanR{u1, . . . ,ui} ⊆ Ei,

for each 1 ≤ i ≤ N , i.e. we can rotate each spanR{u1, . . . ,ui} so that
it is contained in Ei. Moreover, volume of AM is the same as volume
of M , since det(A) = 1 (i.e. rotation does not change volumes), and

Aui ∈ λ′iAM ∩ Ei, ∀ 1 ≤ i ≤ N,

where λ′1, . . . λ
′
N is the successive minima of AM with respect to ZN .

Hence we can assume without loss of generality that

spanR{u1, . . . ,ui} ⊆ Ei,

for each 1 ≤ i ≤ N .

For an integer q ∈ Z>0, define the integral cube of sidelength 2q
centered at 0 in RN

CN
q = {z ∈ ZN : |z| ≤ q},

and for each 1 ≤ i ≤ N define the section of CN
q by Ei

Ci
q = CN

q ∩ Ei.
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Notice that CN
q is contained in real cube of volume (2q)N , and so the

volume of all translates of M by the points of CN
q can be bounded

(10) Vol(CN
q +MN) ≤ (2q + γ)N ,

where γ is a constant that depends on M only. Also notice that if
x 6= y ∈ ZN , then

int(x +M1) ∩ int(y +M1) = ∅,
where int stands for interior of a set: suppose not, then there exists

z ∈ int(x +M1) ∩ int(y +M1),

and so

(z − x)− (z − y) = y − x ∈ int(M1)− int(M1)

= {z1 − z2 : z1, z2 ∈M1} = int(λ1M),(11)

which would contradict minimality of λ1. Therefore

(12) Vol(CN
q +M1) = (2q+1)N Vol(M1) = (2q+1)N

(
λ1

2

)N
Vol(M).

To finish the proof, we need the following lemma.

Lemma 6.2. For each 1 ≤ i ≤ N − 1,

(13) Vol(CN
q +Mi+1) ≥

(
λi+1

λi

)N−i
Vol(CN

q +Mi).

Proof. If λi+1 = λi the statement is obvious, so assume λi+1 > λi. Let
x,y ∈ ZN be such that

(xi+1, . . . , xN) 6= (yi+1, . . . , yN).

Then

(14) (x + int(Mi+1)) ∩ (y + int(Mi+1)) = ∅.
Indeed, suppose (14) is not true, i.e. there exists z ∈ (x+ int(Mi+1))∩
(y + int(Mi+1)). Then, as in (11) above, x− y ∈ int(λi+1M). But we
also have

u1, . . . ,ui ∈ int(λi+1M),

since λi+1 > λi, and so λiM ⊆ int(λi+1M). Moreover, u1, . . . ,ui ∈ Ei,
meaning that

ujk = 0 ∀ 1 ≤ j ≤ i, i+ 1 ≤ k ≤ N.

On the other hand, at least one of

xk − yk, i+ 1 ≤ k ≤ N,
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is not equal to 0. Hence x−y,u1, . . . ,ui are linearly independent, but
this means that int(λi+1M) contains i+ 1 linearly independent points,
contradicting minimality of λi+1. This proves (14). Notice that (14)
implies

Vol(CN
q +Mi+1) = (2q + 1)N−i Vol(Ci

q +Mi+1),

and
Vol(CN

q +Mi) = (2q + 1)N−i Vol(Ci
q +Mi),

since Mi ⊆Mi+1. Hence, in order to prove the lemma it is sufficient to
prove that

(15) Vol(Ci
q +Mi+1) ≥

(
λi+1

λi

)N−i
Vol(Ci

q +Mi).

Define two linear maps f1, f2 : RN → RN , given by

f1(x) =

(
λi+1

λi
x1, . . . ,

λi+1

λi
xi, xi+1, . . . , xN

)
,

f2(x) =

(
x1, . . . , xi,

λi+1

λi
xi+1, . . . ,

λi+1

λi
xN

)
,

and notice that f2(f1(Mi)) = Mi+1, f2(Ci
q) = Ci

q. Therefore

f2(Ci
q + f1(Mi)) = Ci

q +Mi+1.

This implies that

Vol(Ci
q +Mi+1) =

(
λi+1

λi

)N−i
Vol(Ci

q + f1(Mi)),

and so (15) follows from the observation that

(16) Vol(Ci
q + f1(Mi)) ≥ Vol(Ci

q +Mi).

This completes the proof of the lemma. �

Now, combining (10), (12), and (13), we obtain:

(2q + γ)N ≥ Vol(CN
q +MN) ≥

(
λN
λN−1

)
Vol(CN

q +MN−1) ≥ . . .

≥
(

λN
λN−1

)(
λN−1

λN−2

)2

. . .

(
λ2

λ1

)N−1

Vol(CN
q +M1)

= λN . . . λ1
Vol(M)

2N
(2q + 1)N ,

hence

λ1 . . . λN ≤
2N

Vol(M)

(
2q + γ

2q + 1

)N
→ 2N

Vol(M)
,
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as q →∞, since q ∈ Z>0 is arbitrary. This completes the proof. �

We can talk about successive minima of any convex 0-symmetric
set in RN with respect to the lattice Λ. Perhaps the most frequently
encountered such set is the closed unit ball BN in RN centered at 0.
We define the successive minima of Λ to be the successive minima
of BN with respect to Λ. Notice that successive minima are invariants
of the lattice.
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7. Inhomogeneous minimum

Here we exhibit one important application of Minkowski’s successive
minima theorem. As before, let Λ ⊆ RN be a lattice of full rank, and let
M ⊆ RN be a convex 0-symmetric set of non-zero volume. Throughout
this section, we let

λ1 ≤ · · · ≤ λN

to be the successive minima of M with respect to Λ. We define the
inhomogeneous minimum of M with respect to Λ to be

µ = inf{λ ∈ R>0 : λM + Λ = RN}.
The main objective of this section is to obtain some basic bounds on µ.
We start with the following result of Jarnik [19].

Lemma 7.1.

µ ≤ 1

2

N∑
i=1

λi.

Proof. Let F be the distance function corresponding to M , i.e. F is
such that

M = {x ∈ RN : F (x) ≤ 1}.
Recall from Theorem 2.1 that such F exists, since M is a convex 0-
symmetric set, hence a bounded star body. In fact, F can be defined
by

F (x) = inf{a ∈ R>0 : x ∈ aM},
for every x ∈ RN .

Let z ∈ RN be an arbitrary point. We want to prove that there
exists a point v ∈ Λ such that

F (z − v) ≤ 1

2

N∑
i=1

λi.

This would imply that z ∈
(

1
2

∑N
i=1 λi

)
M + v, and hence settle the

lemma, since z is arbitrary. Let u1, . . . ,uN be the linearly independent
vectors corresponding to successive minima λ1, . . . , λN , respectively.
Then

F (ui) = λi, ∀ 1 ≤ i ≤ N.

Since u1, . . . ,uN form a basis for RN , there exist a1, . . . , aN ∈ R such
that

z =
N∑
i=1

aiui.
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We can also choose integer v1, . . . , vN such that

|ai − vi| ≤
1

2
, ∀ 1 ≤ i ≤ N,

and define v =
∑N

i=1 viui, hence v ∈ Λ. Now notice that

F (z − v) = F

(
N∑
i=1

(ai − vi)ui

)

≤
N∑
i=1

|ai − vi|F (ui) ≤
1

2

N∑
i=1

λi,

by the definition of a distance function and Exercise 2.7. This completes
the proof. �

Using Lemma 7.1 along with Minkowski’s successive minima theo-
rem, we can obtain some bounds on µ in terms of the determinant of Λ
and volume of M . A nice bound can be easily obtained in an important
special case.

Corollary 7.2. If λ1 ≥ 1, then

µ ≤ 2N−1N det(Λ)

Vol(M)
.

Proof. Since
1 ≤ λ1 ≤ · · · ≤ λN ,

Theorem 6.1 implies

λN ≤ λ1 . . . λN ≤
2N det(Λ)

Vol(M)
,

and by Lemma 7.1,

µ ≤ 1

2

N∑
i=1

λi ≤
N

2
λN .

The result follows by combining these two inequalities. �

A general bound depending also on λ1 was obtained by Scherk [25],
once again using Minkowski’s successive minima theorem (Theorem
6.1) and Jarnik’s inequality (Lemma 7.1) He observed that if λ1 is
fixed and λ2, . . . , λN are subject to the conditions

λ1 ≤ · · · ≤ λN , λ1 . . . λN ≤
2N det(Λ)

Vol(M)
,

then the maximum of the sum

λ1 + · · ·+ λN
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is attained when

λ1 = λ2 = · · · = λN−1, λN =
2N det(Λ)

λN−1
1 Vol(M)

.

Hence we obtain Scherk’s inequality for µ.

Corollary 7.3.

µ ≤ N − 1

2
λ1 +

2N−1 det(Λ)

λN−1
1 Vol(M)

.

One can also obtain lower bounds for µ. First notice that for every
σ > µ, then the bodies σM +x cover RN as x ranges through Λ. This
means that µM must contain a fundamental domain F of Λ, and so

Vol(µM) = µN Vol(M) ≥ Vol(F) = det(Λ),

hence

(17) µ ≥
(

det(Λ)

Vol(M)

)1/N

.

In fact, by Theorem 6.1,(
det(Λ)

Vol(M)

)1/N

≥ (λ1 . . . λN)1/N

2
≥ λ1

2
,

and combining this with (17), we obtain

(18) µ ≥ λ1

2
.

Jarnik obtained a considerably better lower bound for µ in [19].

Lemma 7.4.

µ ≥ λN
2
.

Proof. Let u1, . . . ,uN be the linearly independent points of Λ corre-
sponding to the successive minima λ1, . . . , λN of M with respect to Λ.
Let F be the distance function of M , then

F (ui) = λi, ∀ 1 ≤ i ≤ N.

We will first prove that for every x ∈ Λ,

(19) F

(
x− 1

2
uN

)
≥ 1

2
λN .
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Suppose not, then there exists some x ∈ Λ such that F
(
x− 1

2
uN
)
<

1
2
λN , and so, by Exercise 2.7

F (x) ≤ F

(
x− 1

2
uN

)
+ F

(
1

2
uN

)
<

1

2
λN +

1

2
λN = λN ,

and similarly

F (uN − x) ≤ F

(
1

2
uN − x

)
+ F

(
1

2
uN

)
< λN .

Therefore, by definition of λN ,

x,uN − x ∈ spanR{u1, . . . ,uN−1},
and so uN = x + (uN − x) ∈ spanR{u1, . . . ,uN−1}, which is a contra-
diction. Hence we proved (19) for all x ∈ Λ.

Exercise 7.1. Prove that

µ = max
z∈RN

min
x∈Λ

F (x− z).

Then lemma follows by combining (19) with Exercise 7.1. �

We define the inhomogeneous minimum of Λ to be the inhomo-
geneous minimum of the closed unit ball BN with respect to Λ, since
it will occur quite often. This is another invariant of the lattice.
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8. Sphere packings and coverings

In this section we will very briefly discuss the two very old and famous
problems that are closely related to the techniques in the geometry of
numbers that we have so far developed, namely sphere packing and
sphere covering. An excellent comprehensive, although slightly out-
dated, reference on this subject is the celebrated book by Conway and
Sloane [7]. Throughout this section N ≥ 2, since packing and covering
problems in dimension N = 1 are clearly trivial.

Throughout this section by a sphere in RN we will really mean a
closed ball whose boundary is this sphere. We will say that a collection
of spheres {Bi} of radius r is packed in RN if

int(Bi) ∩ int(Bj) = ∅, ∀ i 6= j,

and there exist indices i 6= j such that

int(B′i) ∩ int(B′j) 6= ∅,

whenever B′i and B′j are spheres of radius larger than r such that
Bi ( B′i, Bj ( B′j. The sphere packing problem in dimension N

is to find how densely identical spheres can be packed in RN . Loosely
speaking, the density of a packing is the proportion of the space occu-
pied by the spheres. It is easy to see that the problem really reduces to
finding the strategy of positioning centers of the spheres in a way that
maximizes density. One possibility is to position sphere centers at the
points of some lattice Λ of full rank in RN ; such packings are called
lattice packings. Alhtough clearly most packings are not lattices, it
is not unreasonable to expect that best results may come from lattice
packings; we will mostly be concerned with them.

Definition 8.1. Let Λ ⊆ RN be a lattice of full rank. The density of
corresponding sphere packing is defined to be

∆ = ∆(Λ) := proportion of the space occupied by spheres

=
volume of one sphere

volume of a fundamental domain of Λ

=
rNωN
det(Λ)

,

where ωN is the volume of a unit ball in RN , given by (7), and r is the
packing radius, i.e. radius of each sphere in this lattice packing. It
is easy to see that r is precisely the radius of the largest ball inscribed
into the Voronoi cell V of Λ, i.e. the inradius of V . Clearly ∆ ≤ 1.
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The first observation we can make is that the packing radius r must
depend on the lattice. In fact, it is easy to see that r is precisely one
half of the length of the shortest non-zero vector in Λ, in other words
r = λ1

2
, where λ1 is the first successive minimum of Λ. Therefore

∆ =
λN1 ωN

2N det(Λ)
.

It is not known whether the packings of largest density in each dimen-
sion are necessarily lattice packings, however we do have the following
celebrated result of Minkowski (1905) generalized by Hlawka in (1944),
which is usually known as Minkowski-Hlawka theorem; we present
a partial case of it without proof (see Theorem 1 on p. 200 of [15] for
the general version with proof).

Theorem 8.1. In each dimension N there exist lattice packings with
density

(20) ∆ ≥ ζ(N)

2N−1
,

where ζ(s) =
∑∞

k=1
1
ks

is the Riemann zeta-function.

Ironically, all known proofs of Theorem 8.1 are non-constructive, so it
is not generally known how to construct lattice packings with density
as good as (20); in particular, in dimensions above 1000 the lattices
whose existence is guaranteed by Theorem 8.1 are denser than all the
presently known ones.

In general, it is not known whether lattice packings are the best
sphere packings in each dimension. In fact, the only dimensions in
which optimal packings are known are N = 2, 3. In case N = 2,
Gauss has proved that the best possible lattice packing is given by the
hexagonal lattice

(21)

(
1 1

2

0
√

3
2

)
Z2,

and in 1940 L. Fejes Tóth proved that this indeed is the optimal pack-

ing. Its density is π
√

3
6
≈ 0.9068996821.

In case N = 3, it was conjectured by Kepler that the optimal packing
is given by the face-centered cubic lattice−1 −1 0

1 −1 0
0 1 −1

Z3.

The density of this packing is ≈ 0.74048. Once again, it has been shown
by Gauss in 1831 that this is the densest lattice packing, however until
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recently it was still not proved that this is the optimal packing. It
seems now that the famous Kepler’s conjecture has been settled by
Thomas Hales in 1998. Theoretical part of this proof is published only
in 2005 [16], and the lengthy computational part was published in a
series of papers in the Journal of Discrete and Computational Geometry
(vol. 36, no. 1 (2006)). Best lattice packings are known in dimensions
N ≤ 8, however optimal packing is not known in any dimension N > 3.
There are dimensions in which the best known packings are not lattice
packings, for instance N = 11.

Next we give a very brief introduction to sphere covering. The prob-
lem of sphere covering is to cover RN with spheres such that these
spheres have the least possible overlap, i.e. the covering has smallest
possible thickness. Once again, we will be most interested in lattice
coverings, that is in coverings for which the centers of spheres are
positioned at the points of some lattice.

Definition 8.2. Let Λ ⊆ RN be a lattice of full rank. The thickness
Θ of corresponding sphere covering is defined to be

Θ(Λ) = average number of spheres containing a point of the space

=
volume of one sphere

volume of a fundamental domain of Λ

=
RNωN
det(Λ)

,

where ωN is the volume of a unit ball in RN , given by (7), and R is the
covering radius, i.e. radius of each sphere in this lattice covering.
It is easy to see that R is precisely the radius of the smallest ball
circumscribed around the Voronoi cell V of Λ, i.e. the circumradius
of V . Clearly Θ ≥ 1.

Notice that the covering radius R is precisely µ, the inhomogeneous
minimum of the lattice Λ. Hence combining Lemmas 7.1 and 7.4 we
obtain the following bounds on the covering radius in terms of succes-
sive minima of Λ:

λN
2
≤ µ = R ≤ 1

2

N∑
i=1

λi ≤
NλN

2
.

The optimal sphere covering is only known in dimension N = 2, in
which case it is given by the same hexagonal lattice (21), and is equal
to ≈ 1.209199. Best possible lattice coverings are currently known only
in dimensions N ≤ 5, and it is not known in general whether optimal
coverings in each dimension are necessarily given by lattices. Once
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again, there are dimensions in which the best known coverings are not
lattice coverings.

In summary, notice that both, packing and covering properties of a
lattice Λ are very much dependent on its Voronoi cell V . Moreover, to
simultaneously optimize packing and covering properties of Λ we want
to ensure that the inradius r of V is largest possible and circumradius
R is smallest possible. This means that we want to take lattices with
the “roundest” possible Voronoi cell. This property can be expressed
in terms of the successive minima of Λ: we want

λ1 = · · · = λN .

Lattices with these property are called well-rounded lattices, abbre-
viated WR; another term ESM lattices (equal successive minima) is
also sometimes used. Notice that if Λ is WR, then by Lemma 7.4 we
have

r =
λ1

2
=
λN
2
≤ R,

although it is clearly impossible for equality to hold in this inequality.

Sphere packing and covering results have numerous engineering appli-
cations, among which there are applications to coding theory, telecom-
munications, and image processing. WR lattices play an especially
important role in these fields of study.
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9. Lattice packings in dimension 2

In this section we will prove that best lattice packing in R2 is achieved
by the hexagonal lattice. First we show that our consideration can be
reduced to well-rounded lattices.

Lemma 9.1. Let Λ and Ω be lattices of full rank in R2 with succes-
sive minima λ1(Λ), λ2(Λ) and λ1(Ω), λ2(Ω) respectively. Let x1,x2 and
y1,y2 be vectors in Λ and Ω, respectively, corresponding to successive
minima. Suppose that x1 = y1, and angles between the vectors x1,x2

and y1,y2 are equal, call this common value θ. Suppose also that

λ1(Λ) = λ2(Λ).

Then

∆(Λ) ≥ ∆(Ω).

Proof. Recall that in RN for all N < 5 the vectors corresponding to
successive minima in a lattice form a basis (we will call it a minimal
basis for the lattice), hence x1,x2 and y1,y2 are bases for Λ and Ω,
respectively. Notice that

λ1(Λ) = λ2(Λ) = ‖x1‖2 = ‖x2‖2

= ‖y1‖2 = λ1(Ω) ≤ ‖y2‖2 = λ2(Ω).

Then:

∆(Λ) =
λ1(Λ)2ω2

4 det(Λ)
=

λ1(Λ)2π

4‖x1‖2‖x2‖2 sin θ
=

π

4 sin θ

≥ λ1(Ω)2π

4‖y1‖2‖y2‖2 sin θ
=
λ1(Ω)2π

4 det(Ω)
= ∆(Ω),(22)

where ω2 = π is the area of a unit circle in R2, as usual. This completes
the proof. �

Notice that if {x,y} is a minimal basis for a lattice Λ, then so are
{−x,y}, {x,−y}, {−x,−y}. Out of these, let us agree to always pick
the one with both vectors lying in the first quadrant, so that the angle
θ between the vectors is in the interval [0, π/2].

Lemma 9.2. Let Λ ⊂ R2 be a lattice of full rank with successive min-
ima λ1 ≤ λ2, and let x,y be the basis vectors corresponding to λ1, λ2,
respectively. Let θ ∈ [0, π/2] be the angle between x and y. Then

π/3 ≤ θ ≤ π/2.
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Proof. Notice that xty > 0, since both vectors are in the first quadrant.
Assume that θ < π/3, then

1

2
< cos θ =

xty

‖x‖2‖y‖2

=
xty

λ2
1λ

2
2

,

and hence

‖x− y‖2
2 = (x− y)t(x− y) = ‖x‖2

2 + ‖y‖2
2 − 2xty < λ2

2,

meaning that ‖x − y‖2 < λ2, where x − y 6= 0, and x,x − y are
linearly independent. But this contradicts the fact that λ2 is the second
successive minimum of Λ, hence we must have π/3 ≤ θ ≤ π/2. This
completes the proof. �

Lemma 9.3. Let Λ ⊂ R2 be a lattice of full rank, and let x,y be a
basis for Λ such that

‖x‖2 = ‖y‖2,

and the angle θ between these vectors lies in the interval [π/3, π/2].
Then x,y is a minimal basis for Λ. In particular, this implies that Λ
is WR.

Proof. Let z ∈ Λ, then z = ax + by for some a, b ∈ Z. Then

‖z‖2
2 = a2‖x‖2

2 + b2‖y‖2
2 + 2abxty = (a2 + b2 + 2ab cos θ)‖x‖2

2.

If ab ≥ 0, then clearly ‖z‖2
2 ≥ ‖x‖2

2. Now suppose ab < 0, then again

‖z‖2
2 ≥ (a2 + b2 − |ab|)‖x‖2

2 ≥ ‖x‖2
2,

since cos θ ≤ 1/2. Therefore x,y are shortest non-zero vectors in Λ,
hence they correspond to successive minima, and so form a minimal
basis. Thus Λ is WR, and this completes the proof. �

Lemma 9.4. Let Ω be a lattice in R2 with successive minima λ1, λ2

and corresponding basis vectors x1,x2, respectively. Then the lattice

ΩWR =

(
x1

λ1

λ2

x2

)
Z2

is WR with successive minima equal to λ1.

Proof. By Lemma 9.2, the angle θ between x1 and x2 is in the interval
[π/3, π/2], and clearly this is the same as the angle between the vectors
x1 and λ1

λ2
x2. Then by Lemma 9.3, ΩWR is WR with successive minima

equal to λ1. �

Now combining Lemma 9.1 with Lemma 9.4 implies that the packing
density of the WR lattice ΩWR is no smaller than that of Ω. Therefore
the maximum packing density among lattices in R2 must occur on a
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WR lattice, and so for the rest of this section we talk about WR lattices
only. Next observation is that for any WR lattice Λ in R2, (22) implies:

sin θ =
π

4∆(Λ)
,

meaning that sin θ is an invariant of Λ, and does not depend on the
specific choice of the minimal basis. Since by our conventional choice
of the minimal basis, this angle θ is in the first quadrant, it is also an
invariant of the lattice, and we call it the angle of Λ, denoted by θ(Λ).

Theorem 9.5. The largest lattice packing density in R2 is achieved by
the hexagonal lattice, and this density is equal to π

2
√

3
= 0.906899 . . .

Proof. Lemma 9.1 says that the largest lattice packing density in R2 is
attained by some WR lattice Λ, and (22) implies that

(23) ∆(Λ) =
π

4 sin θ(Λ)
,

meaning that the smaller is sin θ(Λ) the larger is ∆(Λ). Lemma 9.2
implies that θ(Λ) ≥ π/3, meaning that sin θ(Λ) ≥

√
3/2. Notice that

if Λ is the hexagonal lattice

Λh :=

(
1 1

2

0
√

3
2

)
Z2,

then sin θ(Λ) =
√

3/2, meaning that the angle between the basis vectors
(1, 0) and (1/2,

√
3/2) is θ = π/3, and so by Lemma 9.3 this is a minimal

basis and θ(Λ) = π/3. Hence the largest lattice packing density in R2

is achieved by the hexagonal lattice. This value now follows from (23).
This completes the proof. �

Remark 9.1. In fact, the density of Theorem 9.5 is attained by any
lattice Λ in R2 with θ(Λ) = π/3. There are infinitely many such lattices,
but all of them are similar to Λh in the sense that they can be obtained
by rotation and dilation of Λh (i.e. they are all of the form αAΛh, where
0 6= α ∈ R and A ∈ O2(R)).
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10. Reduction theory

Throughout this section we let M ⊆ RN be a 0-symmetric convex
set of non-zero volume, and let Λ ⊆ RN be a lattice of full rank, as
before. In section 5 we discussed the following question: by how much
should M be homogeneously expanded so that it contains N linearly
independent points of Λ? We learned however that the resulting set
of N minimal linearly independent vectors produced this way is not
necessarily a basis for Λ. In this section we want to understand by how
much should M be homogeneously expanded so that it contains a basis
of Λ? We start with some definitions.

As before, let us write F for the distance function which corresponds
to M , i.e.

M = {x ∈ RN : F (x) ≤ 1}.
Recall that since M is a convex 0-symmetric set

F (x + y) ≤ F (x) + F (y).

Also write λ1, . . . , λN for the successive minima of M with respect to Λ.

Definition 10.1. A basis {v1, . . . ,vN} of Λ is said to be Minkowski
reduced with respect to M if for each 1 ≤ i ≤ N , vi is such that

F (vi) = min{F (v) : v1, . . . ,vi−1,v is extendable to a basis of Λ}.
In the frequently occurring case when M is the closed unit ball BN

centered at 0, we will just say that a corresponding such basis is
Minkowski reduced. Notice in particular that a Minkowski reduced
basis contains a shortest non-zero vector in Λ.

From here on let {v1, . . . ,vN} be a Minkowski reduced basis of Λ with
respect to M . Then

F (v1) = λ1, F (vi) ≥ λi ∀ 2 ≤ i ≤ N.

Assume first that M = BN , then F = ‖ ‖2. Write A for the corre-
sponding basis matrix of Λ, i.e. A = (v1 . . .vN), and so Λ = AZN . Let
Q be the corresponding positive definite quadratic form, i.e. for each
x ∈ RN

Q(x) = xtAtAx.

Then, as we noted before, Q(x) = ‖Ax‖2
2. In particular, for each

1 ≤ i ≤ N ,

Q(ei) = ‖vi‖2
2.

Hence for each 1 ≤ i ≤ N , Q(ei) ≤ Q(x) for all x such that

v1, . . . ,vi−1, Ax
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is extendable to a basis of Λ. This means that for every 1 ≤ i ≤ N

(24) Q(ei) ≤ Q(x) ∀ x ∈ ZN , gcd(xi, . . . , xN) = 1.

If a positive definite quadratic form satisfies (24), we will say that it is
Minkowski reduced.

Exercise 10.1. Prove that every positive definite quadratic form is
arithmetically equivalent to a Minkowski reduced form.

Exercise 10.2. Let B = (bij)1≤i,j≤N be the symmetric coefficient ma-
trix of a Minkowski reduced positive definite quadratic form Q. Prove
that

0 < b11 ≤ b22 ≤ · · · ≤ bNN ,

and
|2bij| ≤ bii ∀ 1 ≤ i < j ≤ N.

Now let us drop the assumption that M = BN , but preserve the
rest of notation as above. We can prove the following analogue of
Minkowski’s successive minima theorem; this is essentially Theorem 2
on p. 66 of [15], which is due to Minkowski, Mahler, and Weyl.

Theorem 10.1. Let ν1 = 1, and νi =
(

3
2

)i−2
for each 2 ≤ i ≤ N .

Then

(25) λi ≤ F (vi) ≤ νiλi.

Moreover,

(26)
N∏
i=1

F (vi) ≤ 2N
(

3

2

) (N−1)(N−2)
2 det(Λ)

Vol(M)
.

Proof. It is easy to see that (26) follows immediately by combining
(25) with Theorem 6.1, hence we only need to prove (25). We will only
prove (25) in case Λ = ZN , leaving the general case as an exercise for
the reader.

It is obvious by definition of reduced basis that F (vi) ≥ λi for each
1 ≤ i ≤ N , and that F (v1) = λ1. Hence we only need to prove that
for each 2 ≤ i ≤ N

(27) F (vi) ≤ νiλi.

Let u1, . . . ,uN be the linearly independent vectors corresponding to
successive minima λ1, . . . , λN , i.e.

F (ui) = λi, ∀ 1 ≤ i ≤ N.

Then, by linear independence, for each 2 ≤ i ≤ N at least one of
u1, . . . ,ui does not belong to the subspace spanR{v1, . . . ,vi−1}, call
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this vector uj. If the set v1, . . . ,vi−1,uj is extendable to a basis of ZN ,
then by construction of reduced basis we must have

λi ≥ λj = F (uj) ≥ F (vi),

and so it implies that λi = F (vi), proving (27) in this case.
Next assume that the set v1, . . . ,vi−1,uj is not extendable to a

basis of ZN . Let v ∈ spanR{v1, . . . ,vi−1,uj} be such that the set
v1, . . . ,vi−1,v is extendable to a basis of ZN . Then we can write

uj = k1v1 + · · ·+ ki−1vi−1 ±mv,

where k1, . . . , ki−1,m ∈ Z, and m ≥ 2. Indeed, m 6= 0 since uj /∈
spanR{v1, . . . ,vi−1}; on the other hand, if m = 1 then

v ∈ spanZ{v1, . . . ,vi−1,uj},
which would imply that v1, . . . ,vi−1,uj is extendable to a basis. Thus
m ≥ 2, and we can write

v = α1v1 + · · ·+ αi−1vi−1 ±
1

m
uj,

where α1, . . . , αi−1 ∈ R. In fact, for each 1 ≤ k ≤ i− 1, there exists an
integer lk and a real number βk with |βk| ≤ 1

2
such that

αk = lk + βk.

Then

v =
i−1∑
k=1

(lk + βk)vk ±
1

m
uj =

i−1∑
k=1

lkvk + v′,

where v′ =
∑i−1

k=1 βkvk ±
1
m
uj. Since v − v′ ∈ spanZ{v1, . . . ,vi−1}, it

must be that v′ ∈ ZN , and the set v1, . . . ,vi−1,v
′ is extendable to a

basis of ZN . Then, by definition of vi, we have

F (vi) ≤ F (v′) ≤
i−1∑
k=1

F (βkvk) + F

(
1

m
uj

)

=
i−1∑
k=1

|βk|F (vk) +
1

m
F (uj)

≤ 1

2

(
i−1∑
k=1

F (vk) + F (uj)

)
≤ 1

2

(
i−1∑
k=1

F (vk) + λi

)
.

Combining this with the previous case, we conclude that

(28) F (vi) ≤ max

{
λi,

1

2

(
i−1∑
k=1

F (vk) + λi

)}
, ∀ 2 ≤ i ≤ N.
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Hence we obtain

F (v2) ≤ max

{
λ2,

1

2
(λ1 + λ2)

}
= λ2,

hence F (v2) = λ2. More generally, one can easily deduce (27) from
(28). This finishes the proof. �

As a corollary of Theorem 10.1, we can easily deduce the follow-
ing bound on the product of diagonal coefficients of reduced positive
definite quadratic forms.

Exercise 10.3. Let

Q(X) =
N∑
i=1

N∑
j=1

bijXiXj

be a Minkowski reduced positive definite quadratic form. Then

(29)
N∏
i=1

bii ≤
4N

ω2
N

(
3

2

) (N−1)(N−2)
2

det(Q),

where ωN is the volume of a unit ball in RN , which is given by (7).

(Hint: let Λ = ZN , and let M be the convex body corresponding to the
distance function F =

√
Q; apply Theorem 10.1.)

There are also other reduction procedures for lattice bases, most
notably there is a notion of Korkin-Zolotarev reduced basis, which has
many applications, for instance in coding theory. In general, depending
on particular situation or application one has in mind, one or another
reduction may be preferable. The common feature of all reduced bases
is that they all contain the shortest non-zero vector of the lattice. One
may then ask how to find a Minkowski-reduced basis for a lattice Λ
with respect to a convex 0-symmetric set M in RN? This problem
happens to be very difficult in a rather precise sense; in fact, it is a
harder version of a famous problem in theoretical computer science,
called the shortest vector problem. We briefly discuss this problem in
the next section.
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11. Shortest vector problem and computational
complexity

Let Λ ⊂ RN be a lattice of full rank, and let

BN =
{
x ∈ RN : ‖x‖2 ≤ 1

}
be a closed unit ball in RN centered at the origin, as usual. Let λ1 be
the first successive minimum of Λ with respect to BN . Then

λ1 = inf {λ ∈ R>0 : λBN ∩ Λ 6= {0}} ,
and so there exists a vector 0 6= w ∈ λ1BN ∩ Λ, meaning that

‖w‖2 = λ1 = min {‖x‖2 : x ∈ Λ \ {0}} .
Such a vector w is called a shortest vector in Λ. The famous short-
est vector problem (SVP) asks for an algorithm that allows to find
a shortest vector in a given lattice Λ. This problem has been studied
by Gauss, Dirichlet, Hermite, Minkowski, and many other mathemati-
cians. As we discussed above, if v1, . . . ,vN is a Minkowski reduced
basis for Λ with respect to BN , then v1 is a shortest vector in Λ.
But the question is how do you actually find it? The problem with
Minkowski’s reduction algorithm is that it is hard to implement. Let
us explain what we mean by this. For this we will need to briefly in-
troduce the notion of computational complexity, an important concept
in theoretical computer science.

A key notion in theoretical computer science is that of a Turing ma-
chine as introduced by Alan Turing in 1936. Roughly speaking, this is
an abstract computational device, a good practical model of which is a
modern computer. Elementary operations on a Turing include reading
a symbol and writing a symbol, along with fast-forward and rewind,
and correspond to elementary operations on a computer. We will say
that a given problem can be solved in polynomial time on a Turing
machine if the number of elementary operations required to solve the
problem on a computer is bounded from above by a fixed polynomial
function in the size of the input. The class of all polynomial-time prob-
lems is denoted by P. This is our first example of a computational
complexity class.

For some problems we may not know whether it is possible to solve
them on a computer in polynomial time, but given a potential an-
swer we can verify whether it is correct or not in polynomial time.
Such problems are said to lie in the NP computational complexity
class, where NP stands for non-deterministic polynomial. One
of the most important open problems in contemporary mathematics
(and arguably the most important problem in theoretical computer
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science) asks whether P = NP? In other words, if an answer to a prob-
lem can be verified in polynomial time, can this problem be solved by
a polynomial-time algorithm? Most frequently this question is asked
about decision problem, that is problems the answer to which is YES
or NO. This problem, commonly known as P vs NP, was originally
posed in 1971 independently by Stephen Cook and by Leonid Levin.
It is believed by most experts that P 6= NP, meaning that there ex-
ist problems answer to which can be verified in polynomial time, but
which cannot be solved in polynomial time.

For the purposes of thinking about the P vs NP problem, it is quite
helpful to introduce the following additional notions. A problem is
called NP-hard if it is ”at least as hard as any problem in the NP
class”, meaning that for each problem in the NP class there exists a
polynomial-time algorithm using which our problem can be reduced to
it. A problem is called NP-complete if it is NP-hard and is know to
lie in the NP class. Now suppose that we wanted to prove that P = NP.
One way to do this would be to find an NP-complete problem which we
can show is in the P class. Since it is NP, and is at least as hard as any
NP problem, this would mean that all NP problems are in the P class,
and hence the equality would be proved. Although this equality seems
unlikely to be true, this argument still presents serious motivation to
study NP-complete problems.

The shortest vector problem is known to be NP-complete. In par-
ticular, this means that it is not known how to implement Minkowski
reduction to work in polynomial time on a Turing machine, i.e. on a
modern computer. However, for practical applications, it is often suffi-
cient to produce a close enough approximation to such shortest vector.
The most famous such approximation algorithm is LLL, which stands
for Lenstra, Lenstra, Lovasz. LLL is a polynomial time reduction al-
gorithm that, given a lattice Λ, produces a basis b1, . . . , bN for Λ such
that

min
1≤i≤N

‖bi‖2 ≤ 2N−1‖w‖,

where w ∈ Λ is a shortest non-zero vector. Some good references on
this subject are [21], [15], [2], and [23].

There are many known examples of NP-complete problems (over
3000, it seems). Another famous example of an NP-complete problem
with discrete geometry interpretation to it is the Coin Exchange Prob-
lem of Frobenius (see [1] for a detailed account, and [3], [14] for a more
geometric interpretation).
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12. Siegel’s lemma

In the discussion of the shortest vector problem we were concerned
with a polynomial-time algorithm that would allow us to find the short-
est nonzero vector in a lattice of full rank in RN . Such an algorithm is
not currently known, and is not necessarily believed to exist. Here we
discuss a different approach to a similar problem for certain lattices of
not full rank. For the rest of this section Λ ⊂ RN will be a lattice of
rank N −M , 1 ≤M < N . More specifically, let

A =

 a11 . . . a1N
...

. . .
...

aM1 . . . aMN


be an M ×N matrix with integer entries and rank equal to M . Define

Λ = {x ∈ ZN : Ax = 0}.

Exercise 12.1. Prove that Λ is a lattice of rank N −M .

We will say that Λ is the null-lattice of the matrix A. Suppose we
want to find a shortest nonzero vector x ∈ Λ. Here is one way to do
it. Suppose that we can prove that there must exist a nonzero vector
x ∈ Λ with

(30) ‖x‖2 ≤ N |x| ≤ f(A),

where |x| = max1≤i≤N |xi| is the usual sup-norm of x, and f(A) =
f(a11, . . . , aMN) is some explicit function of the entries of A. Then for
each vector x ∈ ZN with ‖x‖2 ≤ f(A) we can check whether x ∈ Λ,
ordering them in the order of ascending norm, and hence finding a
shortest nonzero vector in Λ; f(A) like this is often called a search
bound for solutions of the linear system Ax = 0. Therefore we are
interested in proving the existence of a nonzero vector x ∈ Λ with
explicitly bounded norm, as suggested by (30). An idea of this sort
was first used by A. Thue in 1909 [29], but formally stated only in
1929 by C. L. Siegel [27]. Our presentation partially follows [26].

Theorem 12.1 (Siegel’s Lemma). With notation as above, there exists
0 6= x ∈ Λ with

(31) |x| < 2 + (N |A|)
M

N−M ,

where |A| = max{|amn| : 1 ≤ m ≤M, 1 ≤ n ≤ N}.

Proof. Let H ∈ Z>0, and let

CN
H = {x ∈ RN : |x| ≤ H}
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be the cube centered at the origin in RN with sidelength 2H. Then

|CN
H ∩ ZN | = (2H + 1)N .

Let TA : RN → RM be a linear map, given by TA(x) = Ax for each
x ∈ RN . Notice that for every x ∈ CN

H ,

|TA(x)| ≤ N |A|H,

i.e. TA maps CN
H into CM

N |A|H ⊆ RM , since rk(A) = M . Now

|CM
N |A|H ∩ ZM | = (2N |A|H + 1)M .

Now let us choose H to be a positive integer satisfying

(N |A|)
M

N−M ≤ 2H < (N |A|)
M

N−M + 2.

Then

|CN
H ∩ ZN | = (2H + 1)N = (2H + 1)M(2H + 1)N−M

≥ (2H + 1)M(N |A|)M > (2N |A|H + 1)M

= |CM
N |A|H ∩ ZM |.

This means that TA cannot be mapping CN
H ∩ZN into CM

N |A|H ∩ZM in

a one-to-one manner. Hence, there must exist x 6= y ∈ CN
H ∩ ZN such

that TA(x) = TA(y), i.e.

TA(x− y) = 0,

and so x− y ∈ Λ. On the other hand,

|x− y| ≤ |x|+ |y| ≤ 2H < (N |A|)
M

N−M + 1,

and this finishes the proof. �

Notice that the main underlying idea in the proof of Siegel’s Lemma
was the pigeon hole principle. It is remarkable that the exponent M

N−M
in the upper bound of (31) cannot be improved. To see this, let for
instanceM = N−1 and for a positive integer R consider the (N−1)×N
matrix

A =


R −1 0 . . . 0 0
0 R −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . R −1

 .

Then |A| = R, and every nonzero integer solution of the system of
linear equations Ax = 0 must have xN = RN−1x1. Therefore, if

Λ = {x ∈ ZN : Ax = 0},
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and 0 6= x ∈ Λ, then

|x| ≥ RN−1 = |A|
M

N−M .

Siegel’s Lemma-type results have been proved in a considerably more
general settings by a number of authors, employing quite sophisticated
machinery from number theory and arithmetic geometry. Most notably,
see the celebrated papers of Bombieri and Vaaler [4] and of Roy and
Thunder [24], as well as a very nice overview of this subject in [26].
For some of the more recent related results also see [10], [11], [12], [13].
The original motivation for Siegel’s Lemma came from Diophantine
approximation and transcendental number theory.
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13. Lattice points in homogeneously expanding domains

Let M ⊆ RN be closed, bounded, and Jordan measurable with
Vol(M) > 0, and let Λ ⊆ RN be a lattice of full rank. Suppose we
homogeneously expand M by a positive real parameter t, i.e. for each
positive real value of t we will consider the set tM . How many points of
Λ are there in tM as t grows? In this section we will at least partially
answer this question. We will be interested in the asymptotic behavior
of the function

G(t) = G(t,M,Λ) = |tM ∩ Λ|
as t→∞. In general, this is a very difficult question. We will need to
make some additional assumptions on M in order to study G(t).

Definition 13.1. Let S be a subset of some Eucildean space. A map

ϕ : S → RN

is called a Lipschitz map if there exists C ∈ R>0 such that for all
x,y ∈ S

‖ϕ(x)− ϕ(y)‖2 ≤ C‖x− y‖2.

We say that C is the corresponding Lipschitz constant.

Let
CN = {x ∈ RN : 0 ≤ xi ≤ 1 ∀ 1 ≤ i ≤ N}

be the closed unit cube.

Definition 13.2. We say that S ⊆ RN is Lipschitz parametrizable
if there exists a finite number of Lipschitz maps

ϕj : CN → S,

such that S =
⋃
j ϕj(C

N).

Definition 13.3. Let f(t) and g(t) be two functions defined on R. We
will say that

f(t) = O(g(t)) as t→∞
if there exists a positive real number B and a real number t0 such that
for all t ≥ t0,

|f(t)| ≤ B|g(t)|.
We usually use the O-notation to emphasize the fact that f(t) behaves
similar to g(t) when t is large. This is quite useful if g(t) is a simpler
function than f(t); in this case, such a statement helps us to understand
the asymptotic behavior of f(t), namely its behavior as t→∞.

Let ∂M be the boundary of M , and assume that ∂M is (N − 1)-
Lipschitz parametrizable. Notice that for t ∈ R>0, ∂(tM) = t∂M . The
following result is Theorem 2 on p. 128 of [20].
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Theorem 13.1. Let t ∈ R>0, then

G(t) =
Vol(M)

det(Λ)
tN +O(tN−1),

where the constant in O-notation depends on Λ, N , and Lipschitz con-
stants.

Proof. Let x1, . . . ,xN be a basis for Λ, and let F be the corresponding
fundamental parallelotope, i.e.

F =

{
N∑
i=1

tixi : 0 ≤ ti < 1, ∀ 1 ≤ i ≤ N

}
.

For each point x ∈ Λ we will write Fx for the translate of F by x:

Fx = F + x.

Notice that if x ∈ tM ∩ Λ, then Fx ∩ tM 6= ∅. Moreover, either

Fx ⊆ int(tM),

or
Fx ∩ ∂(tM) 6= ∅.

Let
m(t) = |{x ∈ Λ : Fx ⊆ int(tM)}| ,
b(t) = |{x ∈ Λ : Fx ∩ ∂(tM) 6= ∅}| .

Then clearly
m(t) ≤ G(t) ≤ m(t) + b(t).

Moreover, since Vol(F) = det(Λ)

m(t) det(Λ) ≤ Vol(tM) = tN Vol(M) ≤ (m(t) + b(t)) det(Λ),

hence

m(t) ≤ Vol(M)

det(Λ)
tN ≤ m(t) + b(t).

Therefore to conclude the proof we only need to estimate b(t). Let

ϕ : CN−1 → ∂M

be one of the Lipschitz paramterizing maps for a piece of the boundary
of M , and let C be the maximum of all Lipschitz constants correspond-
ing to these maps. Then tϕ parametrizes a corresponding piece of
∂(tM) = t∂M . Cut up each side of CN−1 into segments of length
1/[t], then we can represent CN−1 as a union of [t]N−1 small cubes with
sidelength 1/[t] each, call them C1, . . . , C[t]N−1 . For each such Ci, we
have

‖ϕ(x)− ϕ(y)‖2 ≤ C‖x− y‖2 ≤
C
√
N − 1

[t]
,
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for each x,y ∈ Ci, i.e. the image of each such Ci under ϕ has diameter

at most C
√
N−1
[t]

. Hence image of each such Ci under the map tϕ has

diameter at most

C
√
N − 1

t

[t]
≤ 2 C

√
N − 1.

Clearly therefore the number of x ∈ Λ such that the corresponding
translate Fx has nonempty intersection with tϕ(Ci), for each 1 ≤ i ≤
[t]N−1, is bounded by some constant C ′ that depends only on Λ, C, and
N . Hence

b(t) ≤ C ′[t]N−1.

This completes the proof. �

Theorem 13.1 provides an asymptotic formula for G(t), demonstrat-
ing a very important general principle, namely that as t → ∞, G(T )

grows like Vol(M)
det(Λ)

tN , which is what one would expect. However, it does

not give any explicit information about the constant in the error term
O(tN−1). Can this constant be somehow bounded, i.e. what can be
said about the quantity ∣∣∣∣G(t)− Vol(M)

det(Λ)
tN
∣∣∣∣ ?

A large amount of work has been done in this direction (see for instance
pp. 140 - 147 of [15] for an overview of results and bibliography).
This subject essentially originated in a paper of Davenport [8], who
used a principle of Lipschitz [22]; also see [30] for a nice overview of
Davenport’s result and its generalizations. We present here without
proof a result of P. G. Spain [28], which is a refinement of Davenport’s
bound, and can be thought of as a continuation of Theorem 13.1.

Theorem 13.2. Let the notation be as in Theorem 13.1, and let C
be the maximal Lipschitz constant corresponding to parametrization of
∂M . Then for each t ∈ R>0,∣∣∣∣G(t)− Vol(M)

det(Λ)
tN
∣∣∣∣ ≤ 2N(Ct+ 1)N−1.



66 LENNY FUKSHANSKY

14. Erhart polynomial

As in section 9, let M ⊆ RN be closed, bounded, Jordan measurable
with Vol(M) > 0, and suppose that ∂M is Lipschitz parametrizable
with maximal Lipschitz constant C. Let Λ ⊆ RN be a lattice of full
rank, then from Theorems 13.1 and 13.2, we can conclude that

(32) G(t,M,Λ) = |tM ∩ Λ| ≤ Vol(M)

det(Λ)
tN +

N−1∑
i=0

2NCi
(
N − 1

i

)
ti,

i.e. there is a polynomial bound on G(t,M,Λ) with coefficients depen-
dent on C. Under which conditions is G(t,M,Λ) equal to a polynomial?
This is known to happen for a more special class of sets. Here is the
simplest example of such a situation. Let Λ = ZN , and

M = {x ∈ RN : |x| ≤ 1},

then ∂M is Lipschitz parametrizable by linear maps, so maximal Lip-
schitz constant is equal to 1. Clearly for each t ∈ Z>0

(33) |tM ∩ Λ| = (2t+ 1)N =
N∑
i=0

2i
(
N

i

)
ti,

which is similar to the upper bound of (32) in this case.

For the rest of this section, let P ⊆ RN be a convex polytope such
that Vol(P) > 0, and vertices of P are points of ZN ; we will say that
P is a lattice polytope. Write

G(tP) =
∣∣tP ∩ ZN

∣∣ .
We want to understand the behaviour of G(tP) for all t ∈ Z>0; specif-
ically, we will prove a famous theorem of Erhart, which states that
G(tP) is a polynomial in t. Our presentation closely follows [9]. First
we consider a special case of polytopes, namely simplices.

Lemma 14.1. Let a1, . . . ,aN ∈ ZN be linearly independent, and define
the simplex

S = Co(0,a1, . . . ,aN) =

{
N∑
i=1

tiai : ti ≥ 0 ∀ 1 ≤ i ≤ N,

N∑
i=1

ti ≤ 1

}
.

Then there exist β1, . . . , βN ∈ Z≥0 such that for every t ∈ Z>0, we have

G(tS) =
∣∣tS ∩ ZN

∣∣ =

(
N + t

N

)
+

N∑
i=1

(
N + t− i

N

)
βi.
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Proof. Let A be the half-open parallelotope spanned by the vectors
a1, . . . ,aN , i.e.

A =

{
N∑
i=1

tiai : 0 ≤ ti < 1 ∀ 1 ≤ i ≤ N

}
.

For every y ∈ tS ∩ ZN there exists a unique representation of y of the
form

(34) y = x +
N∑
i=1

αiai,

where x ∈ A ∩ ZN and α1, . . . , αN ∈ Z≥0. For each 0 ≤ j ≤ t, let Hj

be the hyperplane which passes through the points ja1, . . . , jaN . We
will determine the number of points of ZN in Hj ∩ tS, and the number
of points of ZN ∩ tS in the strips of space bounded by Hj−1 and Hj for
each 1 ≤ j ≤ t; notice that H0 = {0}.

First, let x = 0 in (34). Then y as in (34) lies in Hj if and only if

(35)
N∑
i=1

αi = j, 0 ≤ αi ≤ j ∀ 1 ≤ i ≤ N.

We will prove now that there are precisely
(
N+j−1
N−1

)
possibilities for

α1, . . . , αN satisfying (35) for each j. We argue by induction on N . If
N = 1, then there is only 1 =

(
j
0

)
possibility. Suppose the claim is true

for N − 1. Then there are
(
N+(j−αN )−2

N−2

)
possibilities for α1, . . . , αN−1

such that
N−1∑
i=1

αi = j − αN

for each value of 0 ≤ αN ≤ j. Then the number of possibilities for
α1, . . . , αN satisfying (35) is

(36)

j∑
αN=0

(
N + (j − αN)− 2

N − 2

)
=

j∑
i=0

(
N + i− 2

N − 2

)
.

Then our claim follows by combining (36) with the result of the follow-
ing excercise.

Exercise 14.1. Prove that
j∑
i=0

(
N + i− 2

N − 2

)
=

(
N + j − 1

N − 1

)
.
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Now to find the number of points y as in (34) with x = 0 on
⋃t
j=0 Hj,

we sum over j, using the result of Excercise 14.1 once again:

t∑
j=0

(
N + j − 1

N − 1

)
=

(
N + t

N

)
.

If x in (34) lies properly between H0 and H1, then the number of
possible y as given by (34) that lie in

⋃t
j=0 Hj reduces to

(
N+t−1
N

)
.

Similarly, the number of possibilities for y as in (34) with x lying
properly between Hi−1 and Hi or on Hi is

(
N+t−i
N

)
for each 1 ≤ i ≤ N .

Therefore, if βi is the number of points x ∈ A ∩ ZN which lie properly
betweenHi−1 andHi or onHi, then the number of corresponding points
y as in (34) is (

N + t− i
N

)
βi.

Finally, in the case t < N , we let βi = 0 for each t + 1 ≤ i ≤ N . The
statement of the lemma follows.

�

Let a1, . . . ,aN ∈ ZN be linearly independent, and let S be the sim-
plex Co(0,a1, . . . ,aN), as in Lemma 14.1. Define the pseudo-simplex
associated with S

S0 = S \ (Co(0,a1, . . . ,aN−1) ∪ . . . ∪ Co(0,a2, . . . ,aN)) .

Lemma 14.2. G(tS0) is a polynomial in t ∈ Z≥0.

Proof. We argue by induction on dimension of S0. If dim(S0) = 0, there
is nothing to prove, so assume the lemma is true for pseudo-simplices of
dimension < N . Let F (1), . . . , F (s) be proper faces of S which contain
0 and satisfy

0 < dim(F (i)) < N, ∀ 1 ≤ i ≤ s.

Then

S \ S0 = {0} ∪ F (1)
0 ∪ . . . ∪ F

(s)
0

is a disjoint union. By induction hypothesis,

G(t(S \ S0)) = 1 +G(tF
(1)
0 ) + · · ·+G(tF

(s)
0 )

is a polynomial in t. Hence, by Lemma 14.1,

G(tS0) = G(tS)−G(t(S \S0)) = G(tS)− 1−G(tF
(1)
0 )−· · ·−G(tF

(s)
0 )

is a polynomial in t. �

We are now ready to prove Erhart’s theorem.
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Theorem 14.3 (Erhart). Let P be a lattice polytope in RN . Then
G(tP) is a polynomial in t ∈ Z≥0.

Proof. We can assume 0 to be a vertex of P , since such translation
would not change the number of integer lattice points. Notice that each
(N − 1)-dimensional face of P which does not contain 0 can be given
a decomposition as a simplicial complex whose 0-cells are the vertices
of this face. We can then join each simplex, obtained in this manner,
to 0 resulting in a decomposition of P into a simplicial complex whose
0-cells are precisely the vertices of P . Then P can be represented as a
disjoint union

P = {0} ∪ S(1)
0 ∪ . . . ∪ S

(r)
0 ,

where S
(1)
0 , . . . , S

(r)
0 are precisely the cells of this simplicial complex

which contain 0, but are not equal to {0}. The theorem follows by
Lemma 14.2. �

G(tP) as in Theorem 14.3 is called Erhart polynomial of P . An
excellent reference on Erhart polynomials, their many fascinating prop-
erties, and connections to other important mathematical objects is [3].
For a general lattice polytope P very little is known about the coeffi-
cients of its Erhart polynomial G(tP). Let

G(tP) =
N∑
i=0

ci(P)ti,

then it is known that the leading coefficient cN(P) is equal to Vol(P),
and cN−1(P) is (N−1)-dimensional volume of the boundary ∂P , which
is normalized by the determinants of the sublattices induced by the cor-
responding faces of P . Also, c0(P) is the combinatorial Euler char-
acteristic χ(P):

χ(P) =
N∑
i=0

(−1)i(number of i− dimensional faces of P).

The rest of the coefficients of G(tP) are in general unknown, however
there are known relations and identities that they satisfy; see [3] for
further details.

Notice that (33) provides an explicit example of Erhart polynomial
in the simple case of a cube. To conclude this section, we will give two
more explicit examples of Erhart polynomial. The first one is for an
open simplex, which is precisely the interior of the simplex S of Lemma
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14.1 with ai = ei for each 1 ≤ i ≤ N ; the following observation along
with the proof is due to S. I. Sobolev.

Proposition 14.4. Define an open simplex

S◦ =

{
x ∈ RN : xi > 0 ∀ 1 ≤ i ≤ N,

N∑
i=1

xi < 1

}
.

Then G(tS◦) = 0 if t ≤ N , and for every t ∈ Z>N ,

(37) G(tS◦) =

(
t− 1

N

)
.

Proof. Let t > N , and notice that the simplex tS◦ can be mapped by
an affine transformation to the simplex

tS◦1 =
{
x ∈ RN : 0 < x1 < · · · < xk < t

}
.

This transformation is volume-preserving and maps ZN to itself. In-
tegral points of tS◦1 correspond to increasing sequences of integers
0 < y1 < · · · < yN < t. The number of such sequences is precisely(
t−1
N

)
, which is the number of all possible N -element subsets of the set

{1, ..., t− 1}. �

Notice that (37) can be thought of as a geometric interpretation of bi-
nomial coeddicients. The next example is related to the one in Propo-
sition 14.4, but is more general.

Proposition 14.5 ([5]). Let

SN =

{
x ∈ RN :

N∑
i=1

|xi| ≤ 1

}
.

Then for every t ∈ Z>0

(38) G(tSN) =

min{t,N}∑
i=0

2i
(
N

i

)(
t

i

)
.

Proof. Notice that for each 0 ≤ i ≤ min{t, N} the number of points in
tSN ∩ ZN with precisely i nonzero coordinates is

2i
(
N

i

)(
t

i

)
.

Indeed, the number of choices of which coordinates are nonzero is
(
N
i

)
;

for each such choice there are 2i choices of ± signs, and
(
t
i

)
choices of

absolute values. Summing over all 0 ≤ i ≤ min{t, N} completes the
proof. �
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Remark 14.1. A remarkable property of the polynomial in Proposition
14.5 is that the right hand side (38) is symmetric in t and N . This
means that

|tSN ∩ ZN | = |NSt ∩ Zt|.



72 LENNY FUKSHANSKY

References

[1] J. L. Ramirez Alfonsin. The Diophantine Frobenius Problem. Oxford University
Press, 2005.

[2] A. H. Banihashemi and A. K. Khandani. On the complexity of decoding lat-
tices using the Korkin-Zolotarev reduced basis. IEEE Trans. Inform. Theory,
44(1):162–171, 1998.

[3] M. Beck and S. Robins. Computing the Continuous Discretely. Integer-Point
Enumeration in Polyhedra. Springer-Verlag, 2006.

[4] E. Bombieri and J. D. Vaaler. On Siegel’s lemma. Invent. Math., 73(1):11–32,
1983.

[5] D. Bump, K. K. Choi, P. Kurlberg, and J. Vaaler. A local Riemann hypothesis,
I. Math. Z., 233(1):1–19, 2000.

[6] J. W. S. Cassels. An Introduction to the Geometry of Numbers. Springer-Verlag,
1959.

[7] J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices, and Groups.
Springer-Verlag, 1988.

[8] H. Davenport. On a principle of Lipschitz. J. London Math. Soc., 26:179–183,
1951.

[9] G. Ewald. Combinatorial convexity and algebraic geometry. Springer-Verlag,
1996.

[10] L. Fukshansky. Integral points of small height outside of a hypersurface.
Monatsh. Math., 147(1):25–41, 2006.

[11] L. Fukshansky. Siegel’s lemma with additional conditions. J. Number Theory,
120(1):13–25, 2006.

[12] L. Fukshansky. Effective structure theorems for symplectic spaces via height. In
Quadratic forms – algebra, arithmetic, and geometry, Contemp. Math., volume
493, pages 117–129, Amer. Math. Soc., Providence, RI, 2009.

[13] L. Fukshansky. Algebraic points of small height missing a union of varieties.
J. Number Theory, 130(10):2099–2118, 2010.

[14] L. Fukshansky and S. Robins. Frobenius problem and the covering radius of a
lattice. Discrete Comput. Geom., 37(3):471–483, 2007.

[15] P. M. Gruber and C. G. Lekkerkerker. Geometry of Numbers. North-Holland
Publishing Co., 1987.

[16] T. Hales. A proof of the Kepler conjecture. Ann. of Math. (2), 162(3):1065–
1185, 2005.

[17] M. Henk. Successive minima and lattice points. IV International Conference
in Stochastic Geometry, Convex Bodies, Empirical Measures and Applications
to Engineering Science, Vol. I (Tropea, 2001). Rend. Circ. Mat. Palermo (2)
Suppl. No. 70, part I, pages 377–384, 2002.

[18] B. Jacob. Linear Algebra. W.H. Freeman and Company, 1990.
[19] V. Jarnik. Zwei Bemerkungen zur Geometrie de Zahlen. Věstnik Krǎlovské
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