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1. Notation and sets

We will start with some algebraic notation and definitions of all the
necessary standard number sets. Our objective is to develop natural
motivation for the introduction of different number sets. We leave
many technical details to the exercises.

Definition 1.1. Let S be a set and let ∗ : S × S → S be a binary
operation on S. It is implicit in this notation that S is closed under ∗,
i.e. for every a, b ∈ S, a ∗ b ∈ S. This operation is called associative
if for any a, b, c ∈ S,

a ∗ (b ∗ c) = (a ∗ b) ∗ c.

The operation ∗ is called commutative if a ∗ b = b ∗ a for all a, b ∈
S. The set S with an associative binary operation ∗ on it is called a
semigroup, we will denote the pair by (S, ∗). A semigroup (S, ∗) is
called abelian if the operation ∗ is commutative on S. A semigroup
(S, ∗) is called a monoid if there exists an element e ∈ S, called
identity, such that e ∗ a = a ∗ e = a for every a ∈ S. A monoid (S, ∗)
is called a group if for any a ∈ S there exists b ∈ S, called inverse of
a and denoted a−1, such that a ∗ b = b ∗ a = e.

Exercise 1.1. Let (S, ∗) be a group.

(1) Prove that identity e in S is unique.
(2) Prove that for every a ∈ S, inverse a−1 ∈ S is unique.
(3) Prove the cancellation laws:

if a ∗ b = a ∗ c then b = c,

if b ∗ a = c ∗ a then b = c.

A semigroup (S, ∗) is said to be generated by a subset C ⊆ S
if every a ∈ S can be described as a product (with respect to ∗) of
some finite collection of elements in C, in any order and possibly with
repetition. A power of an element a ∈ S is a product of a with itself
(with respect to ∗) some finite number of times. For example, we can
define the set of natural numbers, which we denote by

N := {1, 2, 3, . . . }

as the set of all powers of the element 1 under the operation +, which
we call addition.

Exercise 1.2. Prove that (N,+) is an abelian semigroup, but not a
monoid.
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We introduce the additional element 0, defined by the property

0 + a = a+ 0 = a

for every a ∈ N and write

N0 = N ∪ {0} = {0, 1, 2, 3, . . . }.

Exercise 1.3. Prove that (N0,+) is a monoid, but not a group.

For each element a ∈ N we define its inverse under +, denoted by −a.
Now the set

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }
is called integers.

Exercise 1.4. Prove that (Z,+) is an abelian group.

Definition 1.2. Let R be a set with two associative binary opera-
tions +, · : R × R → R on it: we refer to + as addition and to · as
multiplication. (R,+, ·) is called a ring if:

(1) (R,+) is an abelian group.
(2) (R, ·) is a semigroup.
(3) Multiplication distributes over addition, i.e.

(a+ b) · c = (a · c) + (b · c),

a · (b+ c) = (a · b) + (a · c).
The additive identity in R is denoted by 0. A ring (R,+, ·) is said to
have (multiplicative) identity if there exists an element 1 ∈ R such
that 1 · a = a · 1 = a for all a ∈ R. A ring R is called commutative if
its multiplication is commutative. For each element a in a ring R, we
write −a for its inverse under +. If R has identity 1, we write and a−1

for the inverse of a ∈ R under ·, if it exists. Elements in R that have
multiplicative inverses are called units, and the set of units is denoted
by R×, i.e.

R× := {a ∈ R : ∃ b ∈ R such that a · b = 1}.

Remark 1.1. For the operations of addition + and multiplication ·, we
will often write a− b to denote a+ (−b) and a/b or a

b
to denote a · b−1,

whenever b−1 exists.

Exercise 1.5. Let (R,+, ·) be a ring.

(1) Prove that 0 · a = a · a = 0 for every a ∈ R.
(2) If R has identity, prove that (R×, ·) is a group.
(3) Prove that 0 ∈ R is not a unit.
(4) Prove that −a = (−1) · a for every a ∈ R.
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Definition 1.3. A commutative ring (R,+, ·) with identity is called a
field if every 0 6= a ∈ R has a multiplicative inverse, i.e. R× = R\{0}.
In other words, (R,+) and (R \ {0}, ·) are both abelian groups.

Definition 1.4. A subset T of a semigroup (respectively, monoid,
group, ring, field) S is called a sub-semigroup (respectively, sub-
monoid, subgroup, subring, subfield) if it is itself a semigroup
(respectively, monoid, group, ring, field) under the same operation(s)
as S.

Exercise 1.6. Prove that (Z,+, ·) is a commutative ring with identity,
but not a field. Furthermore, Z× = {1,−1}.

To construct an example of a field, we want to “invert” nonzero
integers, i.e. to introduce the operation of division. This can be done
by constructing the set of rational numbers. For this, we first need the
notion of an equivalence relation.

Definition 1.5. A relation ∼ on a set S is called an equivalence
relation if it is:

(1) Reflexive: a ∼ a for every a ∈ S,
(2) Symmetric: if a ∼ b then b ∼ a for all a, b ∈ S,
(3) Transitive: if a ∼ b and b ∼ c then a ∼ c for all a, b, c ∈ S.

For each a ∈ S the set

S(a) := {b ∈ S : a ∼ b}

is called the equivalence class of a. From the definition it is clear
that any two equivalence classes in S with respect to ∼ are either equal
or have empty intersection. This property allows to represent S as a
disjoint union of equivalence classes under ∼.

Exercise 1.7. Let us write

Z2 := {(a, b) : a, b ∈ Z} ,

and let

Z2
∗ :=

{
(a, b) ∈ Z2 : b 6= 0

}
.

Define a relation ∼ on Z2
∗ as follows:

(a, b) ∼ (c, d) if a · d = b · c.

Prove that this is an equivalence relation on Z2
∗. An equivalence class

in Z2
∗ under this equivalence relation is called a rational number,

and the set of all such equivalence classes is denoted by Q. Notice that
Z ⊂ Q, since each a ∈ Z corresponds to the equivalence class (a, 1).
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We usually denote an element of Q as a
b
, where a, b ∈ Z with b 6= 0,

which is precisely the equivalence class of (a, b) in Z2
∗: indeed, a

b
= c

d
if

and only if a · d = b · c. By a certain abuse of notation, we also write
a
b

for any choice of a representative of its equivalence class.

Exercise 1.8. Define addition and multiplication on Q as follows:

a

b
+
c

d
=
ad+ bc

bd
,

a

b
· c
d

=
ac

bd
,

where in the expression like ad + bc we are using addition and multi-
plication operations on Z.

(1) Prove that these operations are well defined. In other words, if
a
b

= a′

b′
and c

d
= c′

d′
, then

a

b
+
c

d
=
a′

b′
+
c′

d′
and

a

b
· c
d

=
a′

b′
· c
′

d′
.

(2) Prove that (Q,+, ·) is a field.

Our next goal is to construct the set of real numbers R. First we
introduce a metric on Q.

Definition 1.6. Each element of Z can be expressed as

1 + · · ·+ 1

n times or
(−1) + · · ·+ (−1)

also n times, i.e., it is either n-th power of 1 or of −1. In either case,
we define its absolute value to be n. We denote absolute value of
a ∈ Z by |a|. Notice that for each a ∈ Z, |a| ∈ N0.

Definition 1.7. A partial order on an abelian group (G,+) is a
relation ≤, which is

(1) Reflexive: a ≤ a for every a ∈ G,
(2) Antisymmetric: if a ≤ b and b ≤ a, then a = b,
(3) Transitive: if a ≤ b and b ≤ c, then a ≤ c.

This order is called translation invariant if a ≤ b implies a+c ≤ b+c
for every a, b, c ∈ G. Write 0 for the identity in (G,+). An element
0 6= a ∈ G is called positive if 0 ≤ a and negative otherwise.

Let us introduce a relation < on Z by defining

· · · < −3 < −2 < −1 < 0 < 1 < 2 < 3 < . . .

We write a ≤ b if either a < b or a = b for a, b ∈ Z. We write a > b or
a ≥ b if b < a or b ≤ a, respectively.



6 LENNY FUKSHANSKY

Exercise 1.9. Prove that this relation is a translation invariant partial
order on Z.

We can now extend this partial order to Q. Let a
b
, c
d
∈ Q. We say that

a
b
≤ c

d
if and only if a · d ≤ b · c for any choice of representatives of the

corresponding equivalence classes. Since 0 ∈ Z ⊂ Q, we can talk about
positive and negative rational numbers, same as we do about integers.
We also extend the absolute value | | to rationals by defining∣∣∣a

b

∣∣∣ := |a| · |b|−1 ∈ Q.

Exercise 1.10. Prove that the following is an equivalent definition of
absolute value on Q: for each r ∈ Q, |r| = r if r is positive and |r| = −r
if r is negative.

Definition 1.8. Let {xi}∞i=1 be a sequence of rational numbers, we
will denote it by (xi) for brevity of notation. It is called a Cauchy
sequence if for every positive rational number ε there exists a positive
integer N such that for all integers m,n > N ,

|xm − xn| < ε.

Define addition and multiplication of Cauchy sequences component-
wise:

(xi) + (yi) = (xi + yi), (xi) · (yi) = (xi · yi).
It is clear that these operations are commutative.

Exercise 1.11. Prove that the sum and product of Cauchy sequences
are again Cauchy sequences.

Each rational number r can be identified with a constant Cauchy se-
quence (r) := {r, r, r, . . . }, and the zero Cauchy sequence is (0) :=
{0, 0, 0, . . . }. It is easy to see that it is the additive identity among
Cauchy sequences, i.e. (xi) + (0) = (xi). We can define the addi-
tive inverse of a Cauchy sequence (xi) to be −(xi) := (−xi): indeed,
(xi) + (−(xi)) = (xi − xi) = (0).

We now introduce an equivalence relation on Cauchy sequences: two
sequences (xi) and (yi) are said to be equivalent if for every rational
ε > 0 there exists some positive integer N such that for all i ≥ N

|xi − yi| < ε.

Exercise 1.12. Prove that this is indeed an equivalence relation.

The set of all equivalence classes of Cauchy sequences of rational num-
bers is called the set of real numbers, denoted R. From our above
discussion, it is evident that Q ⊂ R.
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Exercise 1.13. Let us write 〈(xi)〉 for the equivalence class of the
Cauchy sequence (xi). Prove that the operations of addition and mul-
tiplication on the set of Cauchy sequences induce analogous operations
on the equivalence classes of Cauchy sequences, i.e.

〈(xi)〉+ 〈(yi)〉 = 〈(xi + yi)〉 , 〈(xi)〉 · 〈(yi)〉 = 〈(xi · yi)〉 .

By our previous arguments, we know that these operations are commu-
tative and that (R,+) is a group. Prove that (R \ {〈(0)〉}, ·) is a group,
this way establishing that (R,+, ·) is a field.

We can define absolute value on R as follows: given 〈(xi)〉 ∈ R, let

|〈(xi)〉| := 〈(|xi|)〉 ∈ R.

It is also possible to introduce ordering on R: we say that 〈(xi)〉 ≤
〈(yi)〉 (respectively, <, ≥, or >) if for any two representatives of these
equivalence classes, there exists a positive integer N such that for all
i ≥ N , |xi| ≤ |yi| (respectively, <, ≥, or >).

From here on, we will assume a less formal and more common no-
tation of rational and real numbers, as we are used to from school,
while always keeping in mind the actual meaning of these objects. For
instance, the notion of a convergent sequence of rational numbers from
calculus is simply a Cauchy sequence in our language, and the limit of a
convergent sequence is simply the real number which is this Cauchy se-
quence. With this in mind, we will use the standard calculus notation.

Finally, we construct complex numbers. Define

C := {(a, b) : a, b,∈ R} .

An element (a, b) of C will be called a complex number with its first
coordinate a referred to as its real part and its second coordinate b as
its imaginary part. We define addition + and multiplication · on C
as follows:

(a, b) + (c, d) = (a+ c, b+ d), (a, b) · (c, d) = (ac− bd, bc+ ad),

where in the expression like ac − bd we are using addition and multi-
plication operations on R.

Exercise 1.14. Prove that (C,+, ·) is a field.

We define an important functions on C, called conjugation:

: C→ C
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by (a, b) := (a,−b). For each (a, b) ∈ C, (a, b) is called the conjugate
of (a, b). We can identify R with the subset of all complex numbers
with imaginary part equal to 0, hence R ⊂ C. In fact,

R =
{

(a, b) ∈ C : (a, b) = (a, b)
}
.

Geometrically speaking, C can be thought of the real plane R2 and R
is identified with the horizontal axis in it. This definition, however, is
somewhat formal and does not reflect the motivation for the construc-
tion of C.

Indeed, notice that all of our other number sets thus far have been
naturally motivated: natural numbers are introduced for counting pur-
poses; integers are defined to give a full group (and ring) structure to
natural numbers, in other words to define the subtraction operation;
rational numbers allow for division, hence embedding integers into a
field; real numbers are defined to include limits of rational Cauchy se-
quences. What is the purpose of complex numbers? Notice that there
are polynomial equations with real coefficients that do not have real
roots, like x2+1. Introduction of the imaginary unit i =

√
−1 remedies

this situation. The main feature of i is that it is linearly independent
with 1 over reals, i.e. it cannot be expressed as any real multiple of the
number 1. Geometrically this can be interpreted by identifying 1 with
the unit vector (1, 0) in the real plane and i with the unit vector (0, 1).
Complex numbers are then defined as spanR{1, i}, which coincides with
our definition above. Due to this interpretation, we can also use the
notation a+ bi for a complex number previously denoted by (a, b).

In fact, one can view introduction of each next number set in terms
of solving polynomial equations. For instance, an equation of the form
x + m = 0 with m > 0 has coefficients in natural numbers, but no
solution in natural numbers: it is however solvable over Z. Similarly, an
integral equationmx+n = 0 does not necessarily have integer solutions,
but has solutions over Q. Then x2− 2 = 0 is only solvable over R, but
not over Q, and finally x2 + 1 = 0 only has complex roots. The idea
of differentiating numbers in terms of their properties as solutions or
non-solutions to polynomial equations with integer coefficients will be
central to these notes.

Given a commutative ring R with identity, we will write R[x] for the
set of all polynomials in the variable x with coefficients in R. In other
words, R[x] is the set of all finite formal sums

p(x) = a0 + a1x+ · · ·+ anx
n,
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where n ∈ N0, a0, . . . , an ∈ R, x can take any values in R, and xk

stands for the k-th power of x under multiplication on R. We can
define addition and multiplication of polynomials as follows:

n∑
i=0

aix
i +

m∑
j=0

bjx
j :=

max{n,m}∑
k=0

(ak + bk)x
k,

where ak or bk for k > n or k > m, respectively, is taken to be 0, and(
n∑
i=0

aix
i

)
·

(
m∑
j=0

bjx
j

)
:=

n∑
i=0

m∑
j=0

aibjx
i+j.

Exercise 1.15. Prove that R[x] under the above operations is a com-
mutative ring with identity.

An element α ∈ R is called a root of a polynomial p(x) ∈ R[x] if
p(α) = 0. A field K is called algebraically closed if every polynomial
in K[x] has a root in K. Here is an important fact, that we give here
without proof (we give a proof in Appendix B).

Theorem 1.1 (Fundamental Theorem of Algebra). The field of com-
plex numbers C is algebraically closed. As a consequence, any polyno-
mial p(x) ∈ C[x] of degree n has precisely n roots in C, counted with
multiplicity.

2. Brief remarks on exponential and logarithmic
functions

Before we continue, it will also be useful to define the notion of ex-
ponential and logarithmic functions. We give only an abbreviated and
restrictive definition here; for a detailed treatment of this important
topic, the reader may want to consult a good book on real and com-
plex analysis, such as [5].

We start with some more algebraic notation.

Definition 2.1. A function f : G→ H between two groups (G, ∗) and
(H,×) is called a group homomorphism if

f(a ∗ b) = f(a)× f(b)

for all a, b ∈ G. A function f : R→ S between two rings (R,+, ·) and
(S, ∗,×) is called a ring homomorphism if

f(a+ b) = f(a) ∗ f(b), f(a · b) = f(a)× f(b)

for all a, b ∈ R. If R and S are both fields, we may refer to f as a
field homomorphism. Notice, however, that it is possible for a ring
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homomorphism to exist between two rings of which one is a field and
one is not.

Exercise 2.1. Let f : G → H be a homomorphism between groups
(G, ∗) and (H,×). Prove that f carries identity to identity, inverses
to inverses, and powers to powers. In other words,

f(eG) = eH , f(a−1) = f(a)−1, f(an) = f(a)n

for all a ∈ G, n ∈ N, where eG, eH are identity elements in G and H,
respectively.

Exercise 2.2. Let f : R → S be a homomorphism between rings
(R,+, ·) and (S, ∗,×). By the above exercise, it is clear that

f(0R) = 0S, f(−a) = −f(a), f(na) = nf(a)

for all a ∈ R, n ∈ N, where 0R, 0S are additive identity elements in R
and S, respectively. Prove that in addition

f(1R) = 1S, f(a−1) = f(a)−1, f(an) = f(a)n

for all a ∈ R (provided a−1 exists in R), n ∈ N, where 1R, 1S are
multiplicative identity elements in R and S, respectively.

Exercise 2.3. Use the properties of ring homomorphisms you just es-
tablished to prove that if f : Q → Z is a ring homomorphism, then
f(a) = ±1 for all 0 6= a ∈ Q.

Definition 2.2. A group or ring homomorphism f : R → S is called
injective or one-to-one if

f(a) 6= f(b) ∀ a 6= b ∈ R.
The homomorphism f is called surjective or onto if for every b ∈ S
there exists a ∈ R such that f(a) = b. A homomorphism that is
injective and surjective is called an isomorphism. An isomorphism
always has an inverse, i.e. there exists an isomorphism f−1 : S → R
such that f−1(f(a)) = a and f(f−1(b)) = b for all a ∈ R, b ∈ S,
and this inverse is unique. If there exists an isomorphism between two
groups or rings R and S, we say that they are isomorphic, denoted
by writing R ∼= S.

Exercise 2.4. Prove that isomorphism is an equivalence relation on
the set of all groups, on the set of all rings, and on the set of all fields.

Exercise 2.5. Let f : R → S be a group or ring homomorphism.
Define the kernel of f to be

Ker(f) := {a ∈ R : f(a) = eS},
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where eS stands for the additive identity in S in case of rings. Prove
that Ker(f) is a subgroup or subring of R, respectively, and that f
is injective if and only if Ker(f) = {eR}. If R is a field, prove that
Ker(f) = {0R} or R.

Our main goal in this section is to define the exponential function
fa : C→ C given by fa(x) = ax for each base a ∈ C and outline some
of its basic properties. We will do this in multiples steps. First assume
that 0 6= a ∈ C and b ∈ N, then

ab := a · · · · · a taken b times, a0 := 1, 0b := 0, a−b := (a−1)b.

If b = m
n
∈ Q>0 with gcd(m,n) = 1 (a fraction can always be reduced)

and a is a positive real number, then ab is defined as the unique positive
real root of the polynomial

xn − am ∈ R[x].

Exercise 2.6. Let p(x) = xn − am for n,m ∈ N with gcd(m,n) = 1
and a ∈ R>0, as above. Prove that p(x) has precisely one positive real
root.

Remark 2.1. One important instance of a fractional power of a real
number is the extension of the absolute value function to the field
of complex numbers. Given a complex number a = a1 + ia2, where
a1, a2 ∈ R, notice that

aa = (a1 + ia2)(a1 − ia2) = a21 + a22 ∈ R.

Then |a| is defined as the unique positive real root of the equation
x2 − aa = 0, which can be denoted by writing

|a| =
√
a21 + a22.

In case a is real, i.e. a2 = 0, this definition coincides with our previous
definition of absolute value on real numbers.

We also define a−b := (a−1)b, same as for integer exponents. Now, if
b ∈ R, then there exists a rational Cauchy sequence {cn}∞n=1 converging
to b, and so we define

(1) ab := lim
n→∞

acn .

Remark 2.2. Equation (1) above needs some clarification. Consider the
sequence (an) = {acn}∞n=1. Each element an of this sequence is a real
number, and it can be shown that this sequence is a Cauchy sequence
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of real number, meaning that for every positive real number ε there
exists a positive integer N such that for all integers m,n > N ,

|am − an| < ε.

A famous result in analysis (can be found in most standard analysis
books) is that a Cauchy sequence of real numbers converges to a real
number. In the language of our Section 1 above, this means that every
Cauchy sequence of real numbers is equivalent to some Cauchy sequence
of rational numbers. A field with this property is called complete, and
R is the most common example of a complete field. Hence ab in (1) is
precisely the equivalence class of the Cauchy sequence {acn}∞n=1.

Exercise 2.7. Let a, b ∈ R>0, c, d ∈ R. Prove that

(2) ac+d = acad, (ab)c = acbc, acd = (ac)d.

Conclude that for each a ∈ R>0, a 6= 1, the exponential map x 7→
ax is an injective group homomorphism from Z, Q, or R (viewed as
additive groups) to R+ = R>0 (viewed as a multiplicative group).

In fact, the exponential map is an isomorphism of abelian groups (R,+)
and (R+, ·) (we do not prove it here, but a proof can be found in many
standard algebra and analysis books). The inverse of this isomorphism
is called the logarithmic function with base a, denoted loga x.

Next, let us recall a definition of e. Let a ∈ R>0 and consider the
exponential function with base a, fa(x) = ax for x ∈ R. Notice that
the derivative of this function at x is

f ′a(x) = lim
h→0

ax+h − ax

h
= ax lim

h→0

ah − 1

h
,

and so

f ′a(0) = lim
h→0

ah − 1

h
.

This limit depends only on a, and there exists a unique value of a for
which this limit is equal to 1. This value is called e. Hence e is the
unique value of the base a for which the graph of fa(x) has slope = 1
at x = 0, as well as fa(x) = f ′a(x) for all x. It is also possible to define
e in terms of its well-known properties:

e =
∞∑
n=0

1

n!
= lim

n→∞

(
1 +

1

n

)n
= 2.71828 . . . ,

as well as ∫ e

1

1

x
dx = 1.
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This number is denoted by e in honor of Leonard Euler, who was first
to prove its irrationality in 1737, although the number itself was first
introduced by Jacob Bernoulli in 1683.

Recall from calculus the following power series expansions:

(3) ex =
∞∑
n=0

xn

n!
, cosx =

∞∑
n=0

(−1)nx2n

(2n)!
, sinx =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
.

Exercise 2.8. Prove that the power series in (3) above converge for
all x ∈ C.

Notice that one can treat these convergent power series expansions as
definitions of ex, cosx, and sinx for any complex number x. In case of
ex, we choose to derive a formula that is easier to use.

Exercise 2.9. Use expansions (3) to prove Euler’s formula, established
by him in 1740:

(4) eix = cosx+ i sinx

for all x ∈ C. Furthermore, using Euler’s formula, prove that any
complex number a+ bi can be written as

a+ bi = |a+ bi|eiθ =
√
a2 + b2 eiθ

for some θ ∈ R. Here
√
a2 + b2 is called the modulus and θ the

argument of a+ bi, denoted arg(a+ bi). It is not hard to notice that
modulus and argument identify the complex number uniquely.

Remark 2.3. Notice that the argument of a complex number is not
uniquely defined: it is easy to see from Euler’s formula that if θ is
equal to arg(a) then so is θ + 2πn for any n ∈ Z. This problem leads
to the general logarithmic function not actually being a function in the
usual meaning of this word, but a multivalued function instead. We
avoid this complication by restricting the argument: from here on, we
will assume that

−π ≤ arg(a) < π ∀ a ∈ C
whenever it matters. Placing this restriction is usually called selecting
the principal branch.

Now let a ∈ C and b ∈ R. We can define

ab =
(
|a|ei arg(a)

)b
:= |a|beib arg(a) = |a|b (cos(b arg(a)) + i sin(b arg(a))) ,

by Euler’s formula. In other words, ab is the complex number with
modulus |a|b and argument b arg(a). It is easy to notice that the prop-
erties (2) of Exercise 2.7 apply to this situation as well.
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We can now define the exponential for any base and exponent. We
want our general definition to be consistent with all previous cases,
which in particular means that me must have

(ab)c = acbc, ab+c = abac, abc = (ab)c

for all a, b, c ∈ C. Let a, b ∈ C. It will be convenient to write a =
|a|ei arg(a), b = b1 + b2i. Then

ab = ab1aib2 .

We already know what ab1 is, so it only remains to define

aib2 = |a|ib2
(
ei arg(a)

)ib2
= |a|ib2ei2b2 arg(a) = |a|ib2e−b2 arg(a).

Now, |a| ∈ R×, and hence by our discussion above

|a| = eln |a|,

where ln := loge. Then

|a|ib2 =
(
eln |a|

)ib2
= eib2 ln |a|.

Thus we have
(5)

ab := |a|b1e−b2 arg(a)ei(b1 arg(a)+b2 ln |a|)) = |a|b1−
b2 arg(a)

ln |a| ei(b1 arg(a)+b2 ln |a|))

for any a = |a|ei arg(a) and b = b1 + ib2 in C.
Now for every a ∈ C, we have the exponential function with base

a, fa : C → C given by fa(x) = ax. It is a homomorphism of groups
(C,+) and (C×, ·), which is surjective whenever a 6= 0,±1, however is
not injective: its kernel is equal to {2nπi : n ∈ Z} as can be seen from
Euler’s formula. Restricting the argument of x to the interval [−π, π),
as discussed above, we can define the inverse of fa, the logarithmic
function, denoted by loga: since fa is surjective, for each y ∈ C there
exists the unique x ∈ C with arg(x) ∈ [−π, π) such that ax = y; define
loga(y) to be this x.

Remark 2.4. Unfortunately, our restriction of argument causes the log-
arithmic function not to be continuous. This difficulty can be overcome
by introduction of a Riemann surface for the logarithm function, which
is usually done in complex analysis (see, for instance, [5]). We choose
not to do this here, since it would take us in a rather different direction
from where we plan to go.

Exercise 2.10. Derive a power series expansion for the exponential
function fa(x) = ax with base a ∈ C, a 6= 0,±1, which converges for
all x ∈ C.
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3. Basic properties of algebraic and transcendental
numbers

We will start out with basic definitions and properties of algebraic
and transcendental numbers.

Definition 3.1. A complex number α is called algebraic if there exists
a nonzero polynomial p(x) with integer coefficients such that p(α) = 0.
If α is not algebraic, it is called transcendental.

Remark 3.1. More generally, we will say that α is algebraic over K
for some field K if there exists a polynomial p(x) ∈ K[x] such that
p(α) = 0.

In other words, transcendental numbers are complex numbers that do
not satisfy any polynomial equation with integer coefficients. We will
write A for the set of all algebraic numbers and T := C \A for the set
of all transcendental numbers.

Examples of algebraic numbers are easy to construct. In fact, it is
easily seen that every rational number m

n
is algebraic: it is the root of

polynomial p(x) = nx − m. More generally, any number of the form(
m
n

)1/k
, where m,n are integers, n 6= 0, and k a positive integer is also

algebraic: it is a root of the polynomial p(x) = nxk −m. Notice that
this example includes such instances as

√
2, i =

√
−1, and many others.

These examples and the ease with which they can be constructed may
give an impression that most complex numbers are algebraic. In fact,
this is not true. Our first goal is to make this idea rigorous.

First let us introduce some additional notation. Recall that we write
Z[x] for the ring of all polynomials with integer coefficients. We think
of constants as polynomials of degree 0, and hence Z ⊂ Z[x].
The degree of an algebraic number α is defined as

deg(α) := min{deg(f(x)) : f(x) ∈ Z[x], f(α) = 0}.

Exercise 3.1. Let α ∈ A and let f(x), g(x) ∈ Z[x] be two polynomials
of degree deg(α) such that f(α) = g(α) = 0. Prove that f(x) = cg(x)
for some constant c.

Let d = deg(α) and let f(x) =
∑d

m=0 amx
m ∈ Z[x] be a polynomial of

degree d such that f(α) = 0, gcd(a0, . . . , ad) = 1, and ad > 0. By the
exercise above, this polynomial is unique for each α ∈ A: it is called
the minimal polynomial of α, denoted by mα(x). A polynomial
p(x) ∈ Z[x] is called irreducible if whenever p(x) = f(x)g(x) for
some f(x), g(x) ∈ Z[x] then either f(x) or g(x) is equal to ±1.
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Exercise 3.2. Prove that mα(x) is irreducible for each α ∈ A. Further-
more, prove that if p(x) ∈ Z[x] is such that p(α) = 0, then mα(x) | p(x),
i.e. there exists some g(x) ∈ Z[x] such that p(x) = mα(x)g(x).

Remark 3.2. Minimal polynomial of a complex number can be defined
over any subfield of C, not only over Q or Z. Specifically, if α ∈ C and
K is a subfield of C, we define the minimal polynomial of α over K
to be a polynomial p(x) with coefficients in K and leading coefficient
1 of minimal degree such that p(α) = 0, if such a polynomial exists. It
is then not hard to see (the proofs are left to the reader) that p(x) is
irreducible over K and is unique. Furthermore, p(x) divides (over K)
any other polynomial with coefficients in K which has α as its root,
analogously to the properties over Z described in Exercise 3.2 above.

A polynomial p(x) ∈ Z[x] is called separable if all of its roots are
distinct. We will use the following fact without proof.

Fact 3.1. Irreducible polynomials in Z[x] are separable.

Definition 3.2. A set S is called countable if there exists a bijective
(i.e., one-to-one and onto) map f : N→ S.

Lemma 3.2. Let S1, S2, . . . be a collection of finite sets. Then their
union

S =
∞⋃
n=1

Sn

is countable.

Proof. For each n ≥ 1, let an be the cardinality of Sn, and write

Sn = {xn1, . . . , xnan}.

Then we can write

S = {x11, . . . , x1a1 , x21, . . . , x2a2 , . . . }.

Let ym be the m-th element of S with respect to the above ordering,
i.e. ym = xnj for some n and j such that

a1 + · · ·+ an−1 + j = m.

Then define f : N→ S by f(m) = ym. This map is clearly a bijection,
and hence S is countable. �

Lemma 3.3. The set N× N is countable.
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Proof. Notice that

N× N = {(m,n) : m,n ∈ N}
= {(m,n) : m,n ∈ N, m ≤ n} ∪ {(m,n) : m,n ∈ N, m > n}

=

(
∞⋃
n=1

{(m,n) : m ≤ n}

)
∪

(
∞⋃
m=1

{(m,n) : n < m}

)
,

which is a (countable) union of finite sets, and hence it is countable by
Lemma 3.2 above. �

Lemma 3.4. A countable union of countable sets is countable.

Proof. Let S1, S2, . . . be countable sets, say

Sn = {xn1, xn2, . . . },
and let

S =
∞⋃
n=1

Sn.

Then notice that there is a bijection f : N×N→ S, given by f(n,m) =
xnm. By Lemma 3.3, N × N is countable, i.e. there exists a bijection
g : N→ N× N. Since a composition of two bijections f ◦ g : N→ S is
again a bijection, we conclude that S is countable. �

Exercise 3.3. Prove that any infinite subset of a countable set is count-
able. Use this fact to conclude that a superset of an uncountable set is
uncountable.

Lemma 3.5. Let m ≥ 1. The set

Zm := {a = (a1, . . . , am) : a1, . . . , am ∈ Z}
is countable.

Proof. We argue by induction on m. First suppose that m = 1, then
the set

Z = N ∪ −N ∪ {0},
where −N = {−x : x ∈ N}. This is a union of two countable sets and
one finite set, hence it is countable. Now suppose that the statement
of the lemma is true for m = d−1. We prove it for m = d. Notice that

Zd =

(⋃
a∈N0

{(x, a) : x ∈ Zd−1}

)
∪

(⋃
a∈N

{(x,−a) : x ∈ Zd−1}

)
,

Each set like {(x, a) : x ∈ Zd−1} or {(x,−a) : x ∈ Zd−1} for a ∈ N
is in bijective correspondence with Zd−1, and hence is countable by
induction hypothesis. Therefore Zd is a countable union of countable
sets, and hence is countable by Lemma 3.4. �
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Remark 3.3. One can use Lemma 3.5 along with Exercise 1.7 to deduce
that Q is a countable set. Indeed, Exercise 1.7 constructs rational
numbers as the set of equivalence classes of the subset Z2

∗ of Z2 under
the specified equivalence relation. Identifying these equivalence classes
with some choice of their representatives, we can view Q as a subset
of Z2. Lemma 3.5 implies that Z2 is countable, and then Exercise 3.3
guarantees that Q is countable.

We will now prove a much stronger fact, namely countability of the
set of all algebraic numbers, from which countability of Q follows yet
again by Exercise 3.3.

Theorem 3.6. The set A of algebraic numbers is countable.

Proof. Notice that each α ∈ A is a root of some polynomial in Z[x].
Furthermore, each polynomial p(x) ∈ Z[x] has finitely many roots. For
each p(x) ∈ Z[x], let Rp be the set of all roots of p(x). Then

A =
⋃

p(x)∈Z[x]

Rp.

This union is not disjoint, i.e. roots may be repeated. Hence, if we
just think of this union as a list of elements with repetition, then A is
formally a subset of

⋃
p(x)∈Z[x]Rp. Now notice that each polynomial

p(x) =
d∑

n=0

anx
n ∈ Z[x]

can be identified with its vector of coefficients (a0, . . . , ad) ∈ Zd+1,
where d = deg(p(x)). This defines a bijection between Z[x] and the
set
⋃
d∈N0

Zd+1, which is a countable union of countable sets, hence is
countable. Therefore

⋃
p(x)∈Z[x]Rp is a countable union of finite sets,

hence is countable, and so its subset A is also countable. �

Remark 3.4. In fact, we could rephrase the proof Theorem 3.6 in terms
of just irreducible polynomials. In other words, there is a bijection
between A and the disjoint union of sets of roots of all irreducible
polynomials in Z[x]. Since the set of irreducible polynomials is an
infinite subset of the countable set Z[x], it is itself countable, hence we
are done.

In contrast, let us consider the set of all real numbers.

Exercise 3.4. Let a < b be real numbers and let I = [a, b] be a closed
interval. Prove that I contains infinitely many real numbers.

Theorem 3.7. The set R of all real numbers is uncountable.



MATH 195, SPRING 2015: LECTURE NOTES 19

Proof. Assume that R is countable. Then there exists some bijection
f : N→ R. Let us write xn := f(n) for each n ∈ N, so the image of f is
the sequence (xn)n∈N of distinct real numbers, which is supposed to be
equal to all of R. We will reach a contradiction by showing that every
sequence (xn)n∈N of distinct real numbers misses at least one x ∈ R.

Indeed, let (xn)n∈N be such a sequence. We define a nested family
of intervals as follows. Let a1 = min{x1, x2} and b1 = max{x1, x2}.
Since the elements of our sequence are all distinct, a1 < b1, and hence
I1 := [a1, b1] is an interval, not a singleton. If I1 contains only finitely
many xn’s, then pick some x ∈ I1 which is not one of these numbers
(by Exercise 3.4 above, such x must exist), and we are done. Then
assume I1 contains infinitely many xn’s. Let y and z be the first two
such elements, with respect to index, in the interior of I1 and let a2 =
min{y, z}, b2 = max{y, z} so a2 < b2 and I2 := [a2, b2] is again an
interval with non-empty interior such that I2 ( I1. Continue in the
same manner to obtain a nested sequence of intervals:

· · · ( In ( In−1 ( · · · ( I2 ( I1,

where each In = [an, bn] with an < bn. Then notice that

a1 < a2 < · · · < an−1 < an < · · · < bn < bn−1 < · · · < b2 < b1.

Therefore (an)n∈N (respectively, (bn)n∈N) is a monotone increasing (re-
spectively, decreasing) sequence, which is bounded from above (respec-
tively, below). By the Monotone Convergence Theorem (recall from
Calculus), these sequences have limits, let us write

A := lim
n→∞

an, B := lim
n→∞

bn.

It is clear that A ≤ B, so the closed interval I = [A,B] is not empty.
Let h ∈ I, then h 6= an, bn for any n ∈ N. In fact, we will show that
h 6= xn for any n ∈ N.

Suppose that h = xk for some k ∈ N, so there are finitely many
points in the sequence (xn)n∈N before h occurs, and hence only finitely
many an’s preceding h. Let ad be the last element in the sequence
(an)n∈N preceding h. Since h cannot be equal to ad, ad < h, i.e. h is
in the interior of Id. Since it is contained in the limiting interval I,
it must be contained in Id+1 = [ad+1, bd+1] by our construction of the
intervals. But this means that ad < ad+1 < h, which contradicts our
choice of ad.

This shows that h is not an element of the sequence (xn)n∈N, and
hence at least one real number is not in this sequence. This means that
R cannot be countable. �
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Remark 3.5. The fact of uncountability of reals was first established by
Georg Cantor in 1874. In fact, Cantor presented at least three different
proofs of this fact, including his famous diagonal argument (1891). Our
proof of Theorem 3.7 above follows Cantor’s first argument (1874).

Since R ⊂ C, we conclude that C is also uncountable, by Exercise 3.3.
Now recall that C = A∪T, and A is countable. This means that T, the
set of transcendental numbers, is uncountable. Loosely speaking this
means, that most complex numbers are in fact transcendental. Ironi-
cally, while constructing algebraic numbers is quite straightforward, as
seen above, it is not at all easy to construct a transcendental number.
Indeed, suppose we take a complex number α. To prove that it is alge-
braic, we can find its minimal polynomial mα(x) ∈ Z[x]. Although this
may be somewhat laborious, there are standard techniques in algebraic
number theory that allow for such a construction. On the other hand,
to prove that α is transcendental we would need to establish that α is
not a root of any polynomial in Z[x]. This kind of fact clearly requires
some sort of indirect argument, which is the reason why it took math-
ematicians until mid-19th century to construct the first transcendental
number. This construction, by Joseph Liouville, used the recently de-
veloped tools in the area of Diophantine Approximation. It is our next
goal to develop the necessary tools and to present Liouville’s construc-
tion.

4. Introduction to Diophantine Approximation:
Dirichlet, Liouville, Roth

In Section 1 we constructed real numbers from rationals. Then with
Theorem 3.7 we established that the set of real numbers R is uncount-
able. An implication of Theorem 3.6 together with Exercise 3.3 is that
the set of rational numbers Q is a countable subset of R. In other
words, in a certain sense rational numbers appear to be sparse among
the reals. On the other hand, it is always possible to find a rational
number as close as we want to a given real number.

Theorem 4.1. The set of rational numbers Q is dense inside of the
set of real number R, i.e. if x < y ∈ R, then there exists z ∈ Q such
that

x < z < y.

Proof. Since y − x > 0, there must exist n ∈ Z such that

n(y − x) = ny − nx > 1,
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so nx+ 1 < ny. Let m ∈ Z be such that

m ≤ nx+ 1 < m+ 1,

then we have

nx < m ≤ nx+ 1 < ny,

and hence

x <
m

n
< y.

Let z = m
n
∈ Q, and this finishes the proof. �

Theorem 4.1 implies that, given a real number, we can approximate
it arbitrarily well by rational numbers. For many purposes we may
want to control how “complicated” the rational numbers we use for
such approximations are, i.e. we may want to bound the size of their
denominators. This is the starting point of the theory of Diophantine
Approximation. The first result in this direction dates back to Dirich-
let, and is proved with the use of Dirichlet’s box principle; in fact, this
is most likely the theorem to which this principle owes its name. For
the rest of this section we follow [7].

Theorem 4.2 (Dirichlet, (1842)). Let α ∈ R, and let Q ∈ Z>0. There
exist relatively prime integers p, q with 1 ≤ q ≤ Q such that

(6)

∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q(Q+ 1)
.

Moreover, if α is irrational, then there are infinitely many rational
numbers p

q
such that

(7)

∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q2
.

Proof. If α is a rational number with denominator≤ Q, there is nothing
to prove. Hence we will assume that either α is irrational, or it is
rational with denominator > Q. Notice that

[0, 1) =

Q+1⋃
i=1

[
i− 1

Q+ 1
,

i

Q+ 1

)
.

Consider the numbers {lα}, 1 ≤ l ≤ Q + 1, where { } denotes the
fractional part function, i.e. {x} = x − [x]. These numbers lie in the
interval [0, 1) and are distinct. Indeed, suppose that {lα} = {mα} for
some 1 ≤ l < m ≤ Q+ 1, then mα− lα is an integer, say

mα− lα = α(m− l) = k ∈ Z,
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and so α = k/(m−l), where m−l ≤ (Q+1)−1 = Q, which contradicts
our assumption.

Case 1. Suppose that each subinterval
[
i−1
Q+1

, i
Q+1

)
contains one of

the numbers {lα}, 1 ≤ l ≤ Q+ 1. In particular, subintervals
[
0, 1

Q+1

)
and

[
Q
Q+1

, 1
)

contain such points, so at least one of them must contain

some {lα} with 1 ≤ l ≤ Q. Therefore, either

(8) |lα− [lα]| ≤ 1

Q+ 1
,

or

(9) |lα− [lα]− 1| ≤ 1

Q+ 1
.

This means that there exists an integer 1 ≤ l ≤ Q and an integer m
equal to either [lα] or [lα]− 1, depending on whether (8) or (9) holds,
such that

|lα−m| ≤ 1

Q+ 1
.

Let d = gcd(l,m), and let p = m
d

and q = l
d
, then

|qdα− pd| ≤ 1

Q+ 1
,

meaning that ∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

qd(Q+ 1)
≤ 1

q(Q+ 1)
,

proving (6) in this case.

Case 2. Now assume that one of the subintervals
[
i−1
Q+1

, i
Q+1

)
for

some 1 ≤ i ≤ Q+ 1 does not contain any of the numbers {lα}, 1 ≤ l ≤
Q+ 1. Since there are Q+ 1 such numbers and Q+ 1 subintervals, one

of the subintervals must contain two such numbers, say
[
j−1
Q+1

, j
Q+1

)
for

some 1 ≤ j ≤ Q + 1 contains {lα} and {mα} for some 1 ≤ l < m ≤
Q+ 1. Therefore

|(mα− [mα])− (lα− [lα])| = |(m− l)α− ([mα]− [lα])| ≤ 1

Q+ 1
.

Once again, let d = gcd((m − l), ([mα] − [lα])), and let p = [mα]−[lα]
d

and q = m−l
d

, and so in the same way as above we obtain (6).
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Exercise 4.1. Prove that if α = a
Q+1

for some integer a with

gcd(a,Q+ 1) = 1,

then there is equality in (6).

We can now derive (7) from (6): since q ≤ Q,

(10)

∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q(Q+ 1)
<

1

q2
.

Now suppose that there are only finitely many rationals that satisfy
(7), call them

p1
q1
, . . . ,

pk
qk
.

Let

δ = min
1≤i≤k

∣∣∣∣α− pi
qi

∣∣∣∣ ,
then δ > 0, since α is irrational. Let Q ∈ Z>0 be such that

1

Q
< δ.

By (10), there must exist p
q

with 1 ≤ q ≤ Q such that∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q(Q+ 1)
< δ,

hence p
q
/∈
{
p1
q1
, . . . , pk

qk

}
, which is a contradiciton. Thus there must be

infinitely many such rationals. �

Remark 4.1. Notice that the argument that derives (7) from (6) is very
similar to Euclid’s proof of the infinitude of primes.

Hurwitz (1891) improved Dirichlet’s bound (7) slightly by showing
that for any irrational α ∈ R there exist infinitely many distinct ratio-
nal numbers p

q
such that

(11)

∣∣∣∣α− p

q

∣∣∣∣ ≤ 1√
5 q2

.

We will now show that in a certain sense (11) is best possible.

Lemma 4.3. Let α ∈ R be a quadratic irrational satisfying f(α) = 0,
where

f(x) = ax2 + bx+ c
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with a, b, c ∈ Z and a > 0. Write D = b2 − 4ac for the discriminant
of f . Then for any real number A >

√
D, there are only finitely many

rationals p
q

such that

(12)

∣∣∣∣α− p

q

∣∣∣∣ < 1

Aq2
.

Proof. We know that α is one of the roots of f(x), then let β be the
other one, i.e.

f(x) = a(x− α)(x− β) = ax2 − a(α + β)x+ aαβ,

meaning that b = a(α + β) and c = aαβ. Therefore

D = b2 − 4ac = a2(α− β)2.

Now suppose that for some p
q
∈ Q (12) holds. Notice that since f(x)

is a quadratic polynomial with irrational roots, then

0 6=
∣∣∣∣f (pq

)∣∣∣∣ =
|ap2 + bpq + cq2|

q2
≥ 1

q2
,

since 0 6= ap2 + bpq + cq2 ∈ Z, hence |ap2 + bpq + cq2| ≥ 1. Therefore

1

q2
≤

∣∣∣∣f (pq
)∣∣∣∣ = a

∣∣∣∣α− p

q

∣∣∣∣ ∣∣∣∣β − p

q

∣∣∣∣
<

a

Aq2

∣∣∣∣β − p

q

∣∣∣∣ =
a

Aq2

∣∣∣∣(α− p

q

)
+ (β − α)

∣∣∣∣
≤ a

Aq2

∣∣∣∣α− p

q

∣∣∣∣+
a

Aq2
|β − α| < a

A2q4
+

√
D

Aq2
,

and subtracting
√
D

Aq2
from both sides of the above inequality implies

1

q2

(
1−
√
D

A

)
<

a

A2q4
.

The left hand side of this inequality is not 0 since A >
√
D, and hence

q2 <
a

A(A−
√
D)

.

This implies that there are only finitely many possibilities for the de-
nominator q, but for each such q there can be only finitely many p so
that (12) holds. This completes the proof. �

Remark 4.2. Let α = 1+
√
5

2
, then the corresponding polynomial

f(x) = x2 − x− 1,
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and its discriminant is D = 5. By Lemma 4.3, if A >
√

5 then there
are only finitely many p

q
∈ Q such that∣∣∣∣α− p

q

∣∣∣∣ < 1

Aq2
,

which proves that Hurwitz’s bound (11) is best possible.

More generally, for every quadratic irrational α there exists a con-
stant C(α) > 0 such that for any p

q
∈ Q

(13)

∣∣∣∣α− p

q

∣∣∣∣ ≥ C(α)

q2
.

In other words, quadratic irrationals are badly approximable.

Definition 4.1. An irrational number α is called badly approx-
imable if there exists a positive real constant C(α) such that (13)
holds for any p

q
∈ Q.

As can be expected after the above discussion, algebraic numbers
although are not necessarilly badly approximable, are certainly “worth”
approximable than transcendental. This principle was first observed by
Liouville in 1844.

Theorem 4.4 (Liouville). Let α ∈ R be an algebraic number of degree
d = deg(f) ≥ 2, where f(x) ∈ Z[x] is the minimal polynomial of α
over Q. Then there exists a positive real constant C(α) such that for
any p

q
∈ Q

(14)

∣∣∣∣α− p

q

∣∣∣∣ ≥ C(α)

qd
.

Proof. Let

f(x) =
d∑
i=0

aix
i ∈ Z[x].

Then, since d ≥ 2 means that α is irrational, for each p
q
∈ Q we have

0 6= qdf

(
p

q

)
=

d∑
i=0

aip
iqd−i ∈ Z.
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We can assume of course that
∣∣∣α− p

q

∣∣∣ ≤ 1. Then, since f(α) = 0,

1 ≤ qd
∣∣∣∣f (pq

)∣∣∣∣ = qd
∣∣∣∣f(α)− f

(
p

q

)∣∣∣∣ = qd
∣∣∣∣∫ α

p/q

f ′(u) du

∣∣∣∣
≤ qd

∣∣∣∣α− p

q

∣∣∣∣max{f ′(u) : |α− u| ≤ 1}.

Then pick C(α) = (max{f ′(u) : |α− u| ≤ 1})−1, and the theorem fol-
lows. �

Liouville used his theorem to construct the first known example of a
transcendental number.

Corollary 4.5 (Liouville). The number

α =
∞∑
n=1

1

an!

is transcendental for any integer a ≥ 2.

Proof. Let a > 1. For every k ∈ Z>0, let

pk = ak!
k∑

n=1

1

an!
, qk = ak! ∈ Z.

Then∣∣∣∣α− pk
qk

∣∣∣∣ =
∞∑

n=k+1

1

an!
=

1

a(k+1)!

∞∑
n=k+1

a(k+1)!

an!
<

1

a(k+1)!

∞∑
n=0

1

an
.

Clearly
∑∞

n=0
1
an

is a convergent series, so let

C =
∞∑
n=0

1

an
,

and then we have

(15)

∣∣∣∣α− pk
qk

∣∣∣∣ < C
a(k+1)!

=
C

q
(k+1)
k

<
C
qkk
.

Suppose that α is rational, say α = c/d for some c, d,∈ Z. Then (15)
implies that

|cqk − dpk| <
Cd
qk−1k

for infinitely many pk/qk as above. The expression Cd
qk−1
k

is < 1 for all

large enough qk. On the other hand, |cqk−dpk| is a nonnegative integer,
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which can be 0 for at most one pk/qk; hence |cqk−dpk| ≥ 1 for infinitely
many pk/qk. This is a contradiction, and so α cannot be rational.

Now suppose that α is algebraic of degree d. Then, by Theorem 4.4,
there exists a constant C(α) such that∣∣∣∣α− pk

qk

∣∣∣∣ ≥ C(α)

qdk
,

for every k ∈ Z>0. However, if we take k large enough so that

C
qkk

<
C(α)

qdk
,

then (15) implies a contradiction; more specifically, we just need to
take k large enough so that

k!(k − d) >
ln C − lnC(α)

ln a
.

This completes the proof. �

Remark 4.3. Numbers that can be proved to be transcendental using
Liouville’s theorem are called Liouville numbers; they form a rather
small set. In particular, e and π (which are transcendental, as we prove
later in these notes) are not Liouville numbers, and neither are most
transcendental numbers.

Theorem 4.4 implies that if α is an algebraic number of degree d ≥ 2
and µ > d, then there are only finitely many p

q
∈ Q with gcd(p, q) = 1

such that

(16)

∣∣∣∣α− p

q

∣∣∣∣ < 1

qµ
.

Indeed, suppose there were infinitely many rational numbers for which
(16) holds. Let C(α) be the constant guranteed by Theorem 4.4. Let
Q be an integer so that C(α) > 1

Qµ−d
. Clearly there can be only finitely

many p
q

with gcd(p, q) = 1 for which (16) holds with q ≤ Q, hence there

must be infinitely many such rationals with q > Q. Suppose p
q

is one

of them, then ∣∣∣∣α− p

q

∣∣∣∣ < 1

qµ
<

1

Qµ−dqd
<
C(α)

qd
,

which contradicts (14). This proves finiteness of the number of solu-
tions for (16).

For an algebraic number α of degree d ≥ 2, what is the smallest
possible µ for which (16) will have only finitely many solutions? Com-
bining the discussion above with Dirichlet’s theorem (Theorem 4.2),
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we see that
2 ≤ µ ≤ d+ δ,

for any δ > 0. In 1908 Thue proved that µ ≤ d+2
2

+ δ; in 1921 Siegel

proved that µ ≤ 2
√
d + δ. Dyson (1947) and Gelfond (1952) proved

that µ ≤
√

2d + δ. The major breakthrough came with the famous
theorem of Roth (1955) [4], for which he received a Fields medal in
1958.

Theorem 4.6 (Roth). Let α be an algebraic number. For any δ > 0,
there are only finitely many rationals p

q
with gcd(p, q) = 1 such that∣∣∣∣α− p

q

∣∣∣∣ < 1

q2+δ
.

Remark 4.4. Dirichlet’s theorem shows that Roth’s theorem is best
possible, i.e. the exponent on q in the upper bound cannot be improved.
Notice also that in case α has degree 2, Lemma 4.3 gives a better result.
An outline of the proof of Roth’s theorem can be found in [7]; complete
versions of the proof can be found in [6], [2], and [4].

In other words, Roth’s theorem implies that if α is algebraic, then
the number of sufficiently good rational approximations to α is finite,
so perhaps one can actually count them, although we are not quite
ready to do this. If α is real, but not necessarily algebraic, there may
be infinitely many good rational approximations to α, however we will
now show that there are only finitely many of them within a finite
interval. To prove a result of this sort, we will first need a certain “gap
principle”.

Definition 4.2. A set S ⊆ R is called a C-set for a real number C > 1
if for any two numbers m,n in S, m ≤ Cn and n ≤ Cm.

Notice for instance that a C-set consisting of integers must be finite,
although unless we know at least one of its elements, we cannot say
anything about its cardinality.

Definition 4.3. A set S ⊆ R is called a γ-set for a real number γ > 1
if whenever m,n ∈ S and m < n, then γm ≤ n.

Notice that a γ-set can be infinite, but it has a gap principle: its ele-
ments cannot be too close together, i.e., there is always a gap between
them. A set S ⊆ Z>0 that is both a C-set and a γ-set will be called
a (C, γ)-set. Notice that a (C, γ)-set is always finite. It is possible
to estimate the cardinality of a (C, γ)-set without knowing anything
about its elements.
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Lemma 4.7. Let C > 1 and γ > 1, and suppose that S ⊆ R>0 is a
(C, γ)-set. Then

(17) |S| ≤ 1 +
lnC

ln γ
.

Proof. Clearly S is a finite set, so assume

S = {m0 < m1 < · · · < mk},

i.e. |S| = k + 1. Then for each 0 ≤ i ≤ k,

mi ≥ m0γ
i,

and

Cm0 ≥ mk ≥ m0γ
k.

Hence

k ≤ lnC

ln γ
,

and (17) follows. �

Definition 4.4. Given C > 1, a window of exponential width C
is an interval of real numbers x of type

w ≤ x < wC ,

for some w > 1.

We can now use Lemma 4.7 to prove a bound on the number of good
rational approximations to a real number α in a window of exponential
width C for any C > 1. We will say that a rational number p

q
is reduced

if gcd(p, q) = 1.

Lemma 4.8. Let α ∈ R, δ > 0, and C > 1. Let NC(α) be the number
of reduced rational numbers p

q
such that

(18)

∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2+δ

and q is in a window of exponential width C. Then

(19) NC(α) ≤ 1 +
lnC

ln(1 + δ)
.

Proof. Notice that if x, y are in a window of exponential width C, then

w ≤ x < wC ≤ xC , w ≤ y < wC ≤ yC ,
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for some w > 1, hence x ≤ yC and y ≤ xC . Now suppose that p1
q1
6= p2

q2

are reduced fractions that satisfy (18) with 1 ≤ q1 ≤ q2 in a window of
exponential width C. Then

1

q1q2
≤

∣∣∣∣p1q1 − p2
q2

∣∣∣∣ =

∣∣∣∣(p1q1 − α
)

+

(
α− p2

q2

)∣∣∣∣
≤

∣∣∣∣α− p1
q1

∣∣∣∣+

∣∣∣∣α− p2
q2

∣∣∣∣ < 1

2q2+δ1

+
1

2q2+δ2

≤ 1

q2+δ1

,

and so
q2 > q1+δ1 .

In other words, if q1 ≤ q2 are denominators of the rational approxima-
tions p1

q1
, p2
q2

satisfying the hypotheses of the lemma, then

γ ln q1 < ln q2,

where γ = 1 + δ, i.e. logarithms of these denominators form a γ-set.
On the other hand, if q1, q2 are in a window of exponential width C,
then

ln q1 ≤ C ln q2, ln q2 ≤ C ln q1,

that is these logarithms also form a C-set, hence they form a (C, γ)-set,
and by Lemma 4.7 the cardinality of this set is

≤ 1 +
lnC

ln γ
= 1 +

lnC

ln(1 + δ)
,

but this is precisely the number NC(α). This completes the proof. �

Remark 4.5. Suppose that 1 < A < B are given, and suppose that we
want to know the number of reduced rational approximations p

q
to the

real number α with ∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2+δ
,

and A ≤ q ≤ B. Notice that denominators q lie in a window of
exponential width C = lnB

lnA
, since

A = elnA ≤ q ≤ B =
(
elnA

) lnB
lnA ,

and so by Lemma 4.8, the number of such approximations is

≤ 1 +
ln
(
lnB
lnA

)
ln(1 + δ)

.

Definition 4.5. Let α ∈ R and let δ > 0. We will call p
q
∈ Q a

δ-approximation to α if q > 0, gcd(p, q) = 1, and∣∣∣∣α− p

q

∣∣∣∣ < 1

q2+δ
.
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A method similar to the proof of Lemma 4.8 yields the following
result; a proof of this can be found on p. 59 of [7].

Lemma 4.9. Let α ∈ R, δ > 0. The number of δ-approximations p
q

to

α in a window w ≤ q ≤ wC, where w ≥ 41/δ is

≤ 1 +
ln 2C

ln(1 + δ)
.

5. Some field theory

Our next goal is to develop some further properties of algebraic and
transcendental numbers. For this we need to introduce some elements
of field theory.

Definition 5.1. Let K and L be fields with the same addition and
multiplication operations such that K ⊆ L. Then L is called a field
extension of K, and K is called a subfield of L.

Exercise 5.1. Suppose that L is a field extension of K. Prove that
L is K-vector space. Its dimension is called the degree of this field
extension, denoted by [L : K].

A classical example of field extensions comes from extending a sub-
field of C (often Q) by some collection of complex numbers. Let K ⊆ C
be a subfield, α1, . . . , αn ∈ C, and define K(α1, . . . , αn) to be the
smallest subfield of C with respect to inclusion that contains K and
α1, . . . , αn.

Exercise 5.2. Let K and L be subfields of a field M . Prove that their
intersection K ∩ L is also a subfield of M . Use this fact to conclude
uniqueness of K(α1, . . . , αn) as defined above.

Exercise 5.3. Let K ⊆ C be a subfield, α, β ∈ C, and let K1 = K(α),
K2 = K(β), L = K(α, β). Prove that L = K1(β) = K2(α). Conclude
that

[L : K] = [L : K1][K1 : K] = [L : K2][K2 : K].

Definition 5.2. Let K ⊆ C and α ∈ C. We define

K[α] := spanK
{

1, α, α2, . . .
}

=

{
n∑

m=0

amα
m : a0, . . . , an ∈ K, n ∈ N0

}
,

i.e., the set of all finite linear combinations of powers of α with coeffi-
cients from K. Then K[α] is a vector space over K, whose dimension
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dimK K[α] is equal to the number of powers of α which are linearly
independent over K.

Exercise 5.4. Prove that dimQQ[
√

2] = 2.

Exercise 5.5. Prove that K[α] ⊆ K(α) for any subfield K ⊆ C and
α ∈ C.

We now establish some important properties of algebraic numbers.

Theorem 5.1. Let α ∈ C.

(1) If α is transcendental, then dimQQ[α] =∞.
(2) If α is algebraic of degree n, then Q[α] = spanQ{1, α, . . . , αn−1},

and 1, α, . . . , αn−1 are linearly independent over Q. Hence

dimQQ[α] = n.

(3) Q[α] is a field if and only if α is algebraic.
(4) If α is algebraic, then Q(α) = Q[α].

Proof. To establish part (1), assume that dimQQ[α] = n < ∞. Then
the collection of n+1 elements 1, α, . . . , αn must be linearly dependent,
i.e. there exist c0, . . . , cn ∈ Q such that

c0 + c1α + · · ·+ cnα
n = 0.

Clearing the denominators, if necessary, we can assume that c0, . . . , cn ∈
Z, and hence α is a root of

∑n
m=0 cmx

m ∈ Z[x], which means that it is
algebraic.

To prove part (2), assume that α is algebraic of degree n and let

mα(x) =
n∑

m=0

amx
m ∈ Z[x],

where an 6= 0 and a0 6= 0, since mα(x) is irreducible. Since mα(α) = 0,
we have

(20) αn =
n−1∑
m=0

(
−am
an

)
αm.

Therefore any Q-linear combination of powers of α can be expressed as
a Q-linear combination of 1, α, . . . , αn−1. Now suppose 1, α, . . . , αn−1

are linearly dependent, then there exist c0, . . . , cn−1 ∈ Q such that

c0 + c1α + . . . cn−1α
n−1 = 0.
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In fact, clearing the denominators if necessary, we can assume that
c0, . . . , cn−1 ∈ Z. But this means that α is a root of the polynomial

p(x) =
n−1∑
m=0

cmx
m ∈ Z[x],

which has degree n−1. This contradicts the assumption that deg(α) =
n, hence 1, α, . . . , αn−1 must be linearly independent, and so they form
a basis for Q[α] over Q.

For part (3), assume first that α ∈ C is algebraic. It is clear that
Q[α] is closed under addition and multiplication. We only need to
prove that for any β ∈ Q[α] \ {0}, there exists β−1 ∈ Q[α]. By part
(2), there exist b0, . . . , bn−1 ∈ Q such that

β =
n−1∑
m=0

bmα
m.

We want to prove the existence of

(21) γ =
n−1∑
m=0

cmα
m ∈ Q[α]

such that βγ = 1. Let γ be as in (21) with coefficients c0, . . . , cn−1 to
be specified, then:

βγ =
n−1∑
m=0

n−1∑
k=0

bmckα
m+k =

2n−2∑
l=0

( ∑
m+k=l

bmck

)
αl.

For each l ≥ n, we can substitute (20) for αn, lowering the power. After
a finite number of such substitutions, we will obtain an expression

βγ =
n−1∑
l=0

fl(c0, . . . , cn−1)α
l,

where fl(c0, . . . , cn−1) is a homogeneous linear polynomial in the vari-
ables c0, . . . , cn−1 with coefficients depending on bi’s and ai’s, for each
0 ≤ l ≤ n− 1. Since we want βγ = 1, we set

f0(c0, . . . , cn−1) = 1

f1(c0, . . . , cn−1) = 0

... . . .
... . . .

... . . .
...

fn−1(c0, . . . , cn−1) = 0.(22)

This is a linear system of n equations in n variables, which can be
written as Fc = e1, where F is the n × n coefficient matrix of linear
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polynomials f0, . . . , fn−1, e1 = (1, 0, . . . , 0)t ∈ Rn is the first standard
basis vector in Rn, and c = (c0, . . . , cn−1)

t. One can work out the
explicit form of (22) to prove that F is a non-singular matrix, and
hence (22) has a unique solution c. Let γ be as in (21) with this choice
of c, then γ = β−1 ∈ Q[α], and so Q[α] is a field.

Now suppose α is not algebraic, i.e. it is transcendental. We show
that Q[α] is not a field. Assume it is, then α−1 ∈ Q[α], which means
that

α−1 =
n∑

m=0

amα
m

for some n ∈ N0 and a0, . . . , an ∈ Q. Hence

1 = αα−1 =
n∑

m=0

amα
m+1,

and so
n∑

m=0

amα
m+1 − 1 = 0.

This is a polynomial equation over Q satisfied by α, and multiplying
through by the product of denominators of its coefficients we can obtain
a polynomial equation over Z satisfied by α. This contradicts the
assumption that α is transcendental. Hence Q[α] cannot be a field.

Finally we establish part (4) by proving that Q[α] = Q(α). First
notice that Q[α] ⊆ Q(α), since every Q-linear combination of powers
of α must be contained in any field containing Q and α. To show
containment the other way, notice that, by part (3), Q[α] is a field
containing Q and α, and so it must contain Q(α). �

Example 5.2. We give an example of finding the inverse of an element
of Q[α] when α is algebraic. Consider

β = 32/3 + 2× 31/3 − 2 ∈ Q[31/3].

We look for

β−1 = a32/3 + b31/3 − c ∈ Q[31/3].

Then we need

1 = ββ−1 = a34/3 + b33/3 − c32/3 + 2a33/3 + 2b32/3 − 2c31/3

−2a32/3 − 2b31/3 + 2c

= (2b− 2a− c)32/3 + (3a− 2c− 2b)31/3 + (2c+ 6a+ 3b),

in other words we are looking for a, b, c ∈ Q such that

2b− 2a− c = 0, 3a− 2c− 2b = 0, 2c+ 6a+ 3b = 1.
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This system has a unique solution:

a =
6

61
, b =

7

61
, c =

2

61
,

hence

β−1 =
6

61
32/3 +

7

61
31/3 − 2

61
.

An immediate consequence of Theorem 5.1 is an algebraic criterion
for transcendence.

Corollary 5.3. Let α ∈ C. Then α is transcendental if and only if
[Q(α) : Q] =∞.

Proof. If α is transcendental, then dimQQ[α] =∞ by part (1) of Theo-
rem 5.1. On the other hand, Q[α] ⊆ Q(α) by Exercise 5.5. Hence Q(α)
must be an infinite-dimensional Q-vector space, hence [Q(α) : Q] =∞.

Conversely, suppose that [Q(α) : Q] = ∞. Assume, towards a con-
tradiction, that α is algebraic of degree n. By part (4) of Theorem 5.1,
we have Q(α) = Q[α], but by part (2) of Theorem 5.1

∞ > n = dimQQ[α] = [Q(α) : Q].

This is a contradiction, and hence α must be transcendental. �

Another important consequence is the following.

Theorem 5.4. The set A of algebraic numbers is a field under the
usual addition and multiplication of complex numbers.

Proof. By Theorem 3.6, we know that A is countable, and so we can
write

A = {α1, α2, α3, . . . },
choosing an ordering on A. For each n ∈ N, define

Kn := Q(α1, . . . , αn).

Let n ∈ N and let β ∈ Kn, then Q(β) ⊆ Kn, which means that

[Q(β) : Q] ≤ [Kn : Q] <∞,
and so β is algebraic, by Theorem 5.1. Therefore any element of any
field Kn is in A, and hence we have

Q ⊆ K1 ⊆ K2 ⊆ · · · ⊆ A.
Now let 0 6= β, γ ∈ A, then there exist some integers 1 ≤ k ≤ n such
that β = αk, γ = αn, and so β, γ ∈ Kn. Since Kn is a field, we have

β−1, γ−1, β ± γ, βγ ∈ Kn ⊆ A.
Therefore A is a field. �
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An immediate implication of Theorem 5.4 is that a sum, a difference,
a product, or a quotient of two algebraic numbers is again an algebraic
number. This not always true for transcendental numbers, which is
what we show next.

Lemma 5.5. A sum or product of an algebraic number and a tran-
scendental number is transcendental.

Proof. Let α ∈ C be algebraic and β ∈ C transcendental. Then −α
and α−1 are algebraic. Suppose that α+β and αβ are algebraic. Since
sum and product of algebraic numbers are algebraic, we must have

β = (α + β) + (−α) = (αβ)α−1 ∈ A,
which is a contradiction. Hence α+ β and αβ must be transcendental.

�

Remark 5.1. A consequence of Lemma 5.5 is that, given one transcen-
dental number β, we can produce infinitely many (but countably many)
transcendental numbers:

α± β, αβ, α−1β ∀ 0 6= α ∈ A.
Take, for instance, β to be a Liouville number.

Example 5.6. Let α ∈ C be algebraic and β ∈ C transcendental. Then
αβ, α + β are transcendental by Lemma 5.5. On the other hand,

α = (α + β)− β =
αβ

β

is algebraic. Hence T is not a field.

To conclude this section, we introduce the notion of algebraic inde-
pendence, which will be important later in the notes.

Definition 5.3. Let α, β ∈ C be transcendental numbers. Then, as
we know from Corollary 5.3,

[Q(α) : Q] = [Q(β) : Q] =∞.
These numbers are called algebraically independent if

[Q(α, β) : Q(α)] = [Q(α, β) : Q(β)] =∞.
More generally, a collection of transcendental numbers α1, . . . , αn is
algebraically independent if the degree of Q(α1, . . . , αn) over Q(S),
where S is any proper subcollection of α1, . . . , αn, is equal to infinity.
If K is a subfield of C, then its transcendence degree, denoted
trdegK, is the cardinality of a maximal (with respect to size) collection
of algebraically independent elements in K.
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Notice that no subcollection of each infinite collection of transcen-
dental numbers mentioned in Remark 5.1 is algebraically independent.
In other words, while we can construct infinitely many transcendental
numbers given one, it is not so easy to construct algebraically indepen-
dent transcendental numbers.

6. Number fields

We now need to introduce some further language of algebraic number
theory.

Definition 6.1. Let α ∈ A, then the algebraic conjugates of α
(also often called just conjugates) are all the roots of its minimal poly-
nomial mα(x). Since mα(x) is irreducible, it must be separable by
Fact 3.1, and hence α and its conjugates are all distinct.

Definition 6.2. A field extension K of Q is called algebraic if every
element α ∈ K is algebraic. Further, K/Q is called a finite extension
if [K : Q] < ∞. A finite algebraic extension of Q is called a number
field.

It is clear from the above definition that every number field K is con-
tained in A. Furthermore, if α ∈ A, then Q(α) is an algebraic extension
of Q, and [Q(α) : Q] = deg(α) < ∞, hence Q(α) is a number field.
An element α in a number field K is called a primitive element if
K = Q(α), i.e. if α generates K over Q. In fact, all number fields
contain a primitive element.

Theorem 6.1 (Primitive Element Theorem). Let K be a number field.
Then there exists α ∈ K such that K = Q(α).

Proof. Since K is a finite algebraic extension of C, there must exist a
finite collection of algebraic numbers α1, . . . , αn ∈ K such that K =
Q(α1, . . . , αn). Let K1 = Q(α1), K2 = Q(α1, α2) = K1(α2), . . . , K =
Kn = Q(α1, . . . , αn−1, αn) = Kn−1(αn). We can assume that no Km

equal to Km+1, since otherwise we do not need αm+1 in the generating
set. Hence we have

Q ( K1 ( K2 ( · · · ( Kn−1 ( Kn = K.

Notice that it is sufficient for us to show that there exists β1 ∈ K such
that K2 = Q(α1, α2) = Q(β1): if this the case, then applying the same
reasoning, we establish that

K3 = K2(α3) = Q(β1, α3) = Q(β2)
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for some β2 ∈ K, and continuing in the same manner confirm that
K = Kn = Q(βn−1) for some βn−1 ∈ K.

Let deg(α1) = d, deg(α2) = e, and let

α1 = α11, α12, . . . , α1d and α2 = α21, α22, . . . , α2e

be algebraic conjugates of α1 and α2, respectively. Since mα1(x) and
mα2(x) in Z[x] are irreducible, they must be separable by Fact 3.1
above, and hence all α1n’s and all α2m’s are distinct. This means that
for each 1 ≤ n ≤ d, 1 < m ≤ e the equation

(23) α1n + tα2m = α11 + tα21

has at most one solution t in Q (a solution t in C always exists, but it
may not be in Q). There are only finitely many equations (23), each
having at most one solution, and hence we can choose 0 6= c ∈ Q which
is not one of these solutions, then

α1n + cα2m 6= α11 + cα21

for any 1 ≤ n ≤ d, 1 < m ≤ e. Let

β1 = α1 + cα2,

then β1 6= α1n + cα2m for any 1 ≤ n ≤ d, 1 < m ≤ e. We will now
prove that Q(β1) = Q(α1, α2). It is clear that Q(β1) ⊆ Q(α1, α2), so
we only need to show that Q(α1, α2) ⊆ Q(β1). For this, it is sufficient
to prove that α2 ∈ Q(β1), since then α1 = β1− cα2 ∈ Q(β1), and hence
Q(α1, α2) ⊆ Q(β1). Notice that

mα1(β1 − cα2) = mα1(α1) = 0.

In other words, α2 is a zero of the polynomial

p(x) := mα1(β1 − cx),

which has coefficients in Q(β1). On the other hand, α2 is also a root of
its minimal polynomial mα2(x). The two polynomials p(x) and mα2(x)
have only one common root. Indeed, if ξ ∈ C is such that

p(ξ) = mα1(β1 − cξ) = mα2(ξ) = 0,

then ξ must be one of α21, . . . , α2e and β1 − cξ one of α11, . . . , α1d, i.e.,
for some 1 ≤ n ≤ d, 1 ≤ m ≤ e,

ξ = α2m and β1 − cξ = β1 − cα2m = α1n,

which means that

β1 = α1n + cα2m = α11 + cα21.

This contradicts our choice of c unless n = m = 1.
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Now let h(x) be a minimal polynomial of α2 over Q(β1), as described
in Remark 3.2. Since p(x) and mα2(x) have coefficients in Q(β1) and
vanish at α2, they must both be divisible by h(x) over Q(β1). This
means that every root of h(x) would be a common root of p(x) and
mα2(x), but we know that they have precisely one root in common.
This means that h(x) can have only one root, and hence is of degree 1.
Thus

h(x) = x− α2,

which means that α2 ∈ Q(β1). This completes the proof. �

An algebraic number α is called an algebraic integer if its minimal
polynomial mα(x) ∈ Z[x] is monic, i.e. its leading coefficient is equal
to 1. The set of all algebraic integers in a number field K is usually
denoted by OK .

Exercise 6.1. Prove that OQ = Z. Due to this property, elements of Z
are often called rational integers. Prove also that Z ⊆ OK for any
number field K.

Let us define the set of all algebraic integers

I = {α ∈ A : mα(x) is monic}.

Let α ∈ I and let deg(α) = d. Define

Z[α] :=

{
d−1∑
n=0

anα
n : a0, . . . , ad−1 ∈ Z

}
.

Lemma 6.2. Let α ∈ I have degree d. Then Z[α] is a commutative ring
with identity under the usual addition and multiplication operations on
complex numbers, which contains Z. Rings like this are called ring
extensions of Z.

Proof. The argument here bears some similarity with the proof of The-
orem 5.1 above. It is clear that Z ⊆ Z[α], and hence 0, 1 ∈ Z[α]. Also,

if β =
∑d−1

n=0 bnα
n ∈ Z[α], then −β =

∑d−1
n=0(−bn)αn ∈ Z[α]. Hence we

only need to prove that for every β, γ ∈ Z[α], β + γ, βγ ∈ Z[α]. Let

β =
d−1∑
n=0

bnα
n, γ =

d−1∑
n=0

cnα
n.

Then

β + γ =
d−1∑
n=0

(bn + cn)αn ∈ Z[α].
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Since α ∈ I of degree d, its minimal polynomial is monic of degree d,
say

mα(x) = αd +
d−1∑
n=0

anx
n,

and mα(α) = 0, meaning that

(24) αd = −
d−1∑
n=0

anα
n.

Now we have:

βγ =
d−1∑
n=0

d−1∑
m=0

bncmα
n+m,

and (24) can be used to express powers of α higher than (d − 1)-
st as linear combinations of lower powers of α with rational integer
coefficients, hence ensuring that βγ is a linear combination of the terms
1, α, . . . , αd−1 with coefficients in Z. This means that βγ ∈ Z[α] and
completes the proof of the lemma. �

Exercise 6.2. Let α ∈ I have degree d and let n ∈ N0. Use (24) above
to prove that the elements

1, α, . . . , αn

are linearly independent over Z if and only if n < d.

Exercise 6.2 guarantees that 1, α, . . . , αd−1 is a maximal linearly inde-
pendent collection of powers of α over d, and we know that it spans
Z[α]. Hence we call it a basis for Z[α], which is an example of a free
Z-module or a lattice, that is an analogue of a vector space with co-
efficients in linear combinations of basis vectors coming from the ring
Z instead of a field. The cardinality of such a basis, d in our case, is
called the rank of the lattice Z[α].

Lemma 6.3. Let α ∈ C be such that the additive abelian group gener-
ated by all powers of α is in fact finitely generated. Then α ∈ I.

Proof. Let G be the additive abelian group generated by all powers of
α, i.e.

G =

{
k∑

n=0

anα
n : k ∈ N0, a0, . . . , ak ∈ Z

}
.

Assume that G is finitely generated and let v1, . . . , vm be a generating
set for G. Since each vn is a polynomial in α, there exists a positive
integer ` which is the maximal power of α present in the representations
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of v1, . . . , vm. Then G is generated by 1, α, . . . , α`. Since α`+1 ∈ G,
there must exist a0, . . . , a` ∈ Z such that

α`+1 =
∑̀
n=0

anα
n,

which means that α is a root of the polynomial

p(x) = x`+1 −
∑̀
n=0

anx
n ∈ Z[x].

By Exercise 3.2, we know that mα(x) | p(x). Since p(x) is a monic
polynomial, it must be true that mα(x) is also monic. Hence α ∈ I. �

Theorem 6.4. I is a commutative ring with identity under the usual
addition and multiplication of complex numbers.

Proof. We only need to prove that for any α, β ∈ I, α + β and αβ are
in I. Notice that α+β and αβ can be expressed as integral linear com-
binations of elements of the form αmβn for some nonnegative integers
m,n, which means that

α + β, αβ ∈ G := Z[α]Z[β] ⊂ C.

Exercise 6.3. Prove that this G is a subgroup of C under the usual
addition of complex numbers, and hence is an additive abelian group.

Since α and β are algebraic integers, we know that Z[α] and Z[β] are
generated by only finitely many powers of α and β, respectively, say,
it is 1, α, . . . , αk and 1, β, . . . , β`. Then

G =

{(
k∑

n=0

anα
n

)(∑̀
m=0

bmβ
m

)
: a0, . . . , ak, b0, . . . , b` ∈ Z

}
,

and hence G is generated by all expressions of the form αnβm as an
additive abelian group. Therefore G must also be finitely generated.

Fact 6.5. Let G be a finitely generated additive abelian group, i.e.,
there exist v1, . . . , vk ∈ G such that for every x ∈ G,

x =
k∑

n=1

anvn

for some a1, . . . , ak ∈ Z. Let H be a subgroup of G. Then H is also
finitely generated. This fact is established in Theorem A.4 in Appen-
dix A below.
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Since additive groups generated by all powers of α+β and αβ, respec-
tively, are subgroups of G, the exercise above implies that they are also
finitely generated. Now Lemma 6.3 guarantees that α+β and αβ must
be in I. �

Exercise 6.4. Let A and B be subrings of the same ring R. Prove
that A ∩ B is also a ring. Use this fact to prove that for any number
field K, the set OK of all algebraic integers in K is a commutative ring
with identity.

We now further study some properties of the ring of algebraic integers
OK of a number field K. First we observe that every element of K can
be expressed as a fraction α/c, where α is an algebraic integer and c is
a rational integer.

Lemma 6.6. Let K be a number field and β ∈ K. Then there exists
some c ∈ N such that cβ ∈ OK. In fact, we can take c to be the leading
coefficient of mβ(x).

Proof. Let d = deg(β) and let

mβ(x) =
d∑

n=0

anx
n ∈ Z[x]

with ad > 0. Notice that

p(x) := ad−1d mβ(x) =
d∑

n=0

ana
d−1
d xn =

d∑
n=0

ana
d−n−1
d (adx)n

has β as its root. Now

f(x) =
d∑

n=0

ana
d−n−1
d xn = xd +

d−1∑
n=0

ana
d−n−1
d xn ∈ Z[x]

is a monic polynomial, and f(adβ) = p(β) = 0. This means that
adβ ∈ OK . Taking c = ad completes the proof of the lemma. �

This lemma has some important corollaries.

Corollary 6.7. A number field K can be described as

K =

{
α

β
: α, β ∈ OK , β 6= 0

}
.

Hence we can refer to K as the field of fractions or quotient field
of OK.
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Proof. Let

E :=

{
α

β
: α, β ∈ OK , β 6= 0

}
.

We need to prove that E = K. Lemma 6.6 implies that every β ∈ K
can be written as β = α

c
for some α ∈ OK and c ∈ Z. Since Z ⊆ OK ,

we see that β ∈ E, hence K ⊆ E. Now suppose α/β = αβ−1 ∈ E.
Since α, β ∈ OK ⊂ K, we must have β−1 ∈ K and hence αβ−1 ∈ K,
since K is a field. Therefore E ⊆ K, and thus E = K. �

Theorem 6.1 guarantees that a number field always has a primitive
element. In fact, it always has a primitive element, which is an algebraic
integer.

Corollary 6.8. Let K be a number field. Then there exists α ∈ OK
such that K = Q(α).

Proof. Let β ∈ K be a primitive element. By Lemma 6.6, there exists
an element c ∈ Z such that α := cβ ∈ OK . Since clearly Q(cβ) = Q(β),
we are done. �

We can now define embeddings of a number field K into C. Let
K = Q(α), then

d := deg(α) = [K : Q].

Recall that

K = Q(α) = Q[α] = spanQ{1, α, . . . , αd−1},

and 1, α, . . . , αd−1 are linearly independent over Q. Let

α = α1, α2, . . . , αd

be the algebraic conjugates of α. For each 1 ≤ n ≤ d, define a map
σn : K → C, given by

(25) σn

(
d−1∑
m=0

amα
m

)
=

d−1∑
m=0

amα
m
n ,

for each
∑d−1

m=0 amα
m ∈ K.

Exercise 6.5. Prove that each σn as defined above is an injective field
homomorphism, and hence K ∼= σn(K) for each 1 ≤ n ≤ d. Prove also
that

Q = {β ∈ K : σn(β) = β ∀ 1 ≤ n ≤ d} .

The embeddings σ1, . . . , σd described above are, in fact, the only pos-
sible embeddings of K into C.
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Lemma 6.9. Let K = Q(α) be a number field of degree d over Q. Let
τ : K → C be an embedding, i.e. an injective field homomorphism.
Then τ is one of the embeddings σ1, . . . , σd as defined in (25).

Proof. First we will prove that τ(c) = c for each c ∈ Q. Since τ is a
field homomorphism, we must have τ(1) = 1, and for each a/b ∈ Q,

τ(a/b) = τ(a)τ(b)−1 = aτ(1)(bτ(1))−1 = a/b.

Since [K : Q] = d, we know that deg(α) = d, and so

K = Q[α] = spanQ{1, α, . . . , αd−1}.
Let α = α1, α2, . . . , αd be the algebraic conjugates of α. Let β =∑d−1

n=0 cnα
n ∈ K. Since τ is a field homomorphism,

τ(β) =
d−1∑
n=0

τ(cn)τ(α)n =
d−1∑
n=0

cnτ(α)n.

Hence we only need to show that τ(α) = αn for some 1 ≤ n ≤ d. Let

mα(x) =
d∑

m=0

bmx
m ∈ Z[x],

be the minimal polynomial of α. Then

mα(α) =
d∑

m=0

bmα
m = 0,

and so

0 =
d∑

m=0

bmτ(α)m = mα(τ(α)).

Hence τ(α) is a root of mα(x), which means that τ(α) = αn for some
1 ≤ n ≤ d. Therefore τ = σn for some σn as in (25). This completes
the proof. �

Exercise 6.6. If K = σn(K) for each 1 ≤ n ≤ d, then the number
field K is called Galois. In this case, prove that the set

G := {σ1, . . . , σd}
is a group under the operation of function composition. It is called the
Galois group of K over Q, where Q is precisely the fixed field of
G, as you just proved above. In this case, elements of G are called
automorphisms of K over Q.
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7. Function fields and transcendence

In this section, we briefly give another characterization of transcen-
dental numbers. We start by defining polynomial rings in several vari-
ables. A monomial in the variables x1, . . . , xk, k ≥ 1, is an expression
of the form

(26) xm1
1 xm2

2 · · ·x
mk
k ,

where m1, . . . ,mk ∈ N0 with m1 + · · · + mk > 0. Let R be a com-
mutative ring with 1. Define R[x1, . . . , xk] to be the set of all finite
linear combinations of 1 and all possible monomials as in (26) with
coefficients from R.

Exercise 7.1. Prove that R[x1, . . . , xk] is a commutative ring with
identity under the standard operations of addition and multiplication
on these multivariable polynomials.

Let K be a field and K[x1, . . . , xk] be the polynomial ring in k ≥ 1
variables with coefficients in K. Define

K(x1, . . . , xk) =

{
p(x1, . . . , xk)

q(x1, . . . , xk)
: p, q ∈ K[x1, . . . , xk], q 6= 0

}
,

where we say that

p(x1, . . . , xk)/q(x1, . . . , xk) = f(x1, . . . , xk)/g(x1, . . . , xk)

if and only if p(x1, . . . , xk)g(x1, . . . , xk) = f(x1, . . . , xk)q(x1, . . . , xk);
this can be viewed as an equivalence relation on the set of pairs of
polynomials and then K(x1, . . . , xk) is the set of equivalence classes,
analogously to construction of Q from Z.

Exercise 7.2. Write x for the variable vector (x1, . . . , xk), and prove
that K(x) is a field under the standard operations of addition and mul-
tiplication of rational functions:

p(x)

q(x)
+
f(x)

g(x)
=
p(x)g(x) + f(x)q(x)

q(x)g(x)
,
p(x)

q(x)
· f(x)

g(x)
=
p(x)f(x)

q(x)g(x)
.

K(x1, . . . , xk) is called the function field or field of rational func-
tions in k variables over K, and is precisely the quotient field of the
polynomial ring K[x1, . . . , xk].

We can now give an alternative definition of algebraic independence.

Lemma 7.1. A collection of numbers α1, . . . , αk ∈ C is algebraically
independent if and only if there does not exist any nonzero polynomial
p(x1, . . . , xk) ∈ Q[x1, . . . , xk] such that

(27) p(α1, . . . , αk) = 0.
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Proof. Suppose that there exists some nonzero polynomial p satisfying
(27). Define

f(x) = p(α1, . . . , αk−1, x).

Then f(x) ∈ Q(α1, . . . , αk−1)[x] and f(αk) = 0. Let d = deg(f(x)),
then 1, αk, . . . , α

d
k are linearly dependent over Q(α1, . . . , αk−1). This

means that

[Q(α1, . . . , αk) : Q(α1, . . . , αk−1)] ≤ d <∞,
and hence α1, . . . , αk are not algebraically independent. Thus, if the
numbers α1, . . . , αk are algebraically independent, then no nonzero
polynomial p satisfying (27) can exist.

Conversely, suppose now that no nonzero polynomial p satisfying
(27) exists. Suppose, towards a contradiction, that α1, . . . , αk are alge-
braically dependent. Then, without loss of generality, we can assume
that

[Q(α1, . . . , αk) : Q(α1, . . . , αk−1)] <∞.
Hence 1, αk, . . . , α

d
k are linearly dependent over Q(α1, . . . , αk−1) for

some d. In other words, there exist a0, . . . , ad ∈ Q(α1, . . . , αk−1) such
that

(28)
d∑

n=0

anα
n
k = 0.

Notice that a0, . . . , ad are rational functions in α1, . . . , αk−1, say

an =
pn(α1, . . . , αk−1)

qn(α1, . . . , αk−1)
,

where pn(x1, . . . , xk−1), qn(x1, . . . , xk−1) ∈ Q[x1, . . . , xk−1]. Write x for
(x1, . . . , xk−1), α for (α1, . . . , αk−1), and notice by (28) we have:

d∑
n=0

pn(α)

(
d∏

m=0,m 6=n

qm(α)

)
αnk = 0.

Then define

p(x1, . . . , xk) =
d∑

n=0

pn(x)

(
d∏

m=0,m6=n

qm(x)

)
xnk ∈ Q[x1, . . . , xk],

and notice that p(α1, . . . , αk) = 0. This contradicts our assumption,
and hence α1, . . . , αk must be algebraically independent. �

Let α1, . . . , αk ∈ C, and consider a subfield Q(α1, . . . , αk) ⊆ C gen-
erated by these elements. Let us write α for the k-tuple (α1, . . . , αk),
and define the evaluation map ϕα : Q(x1, . . . , xk) → Q(α1, . . . , αk)
given by sending xn 7→ αn and extending to the rest of Q(x1, . . . , xk),
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i.e., a rational function in x1, . . . , xk will map to its value at the point
with x1 = α1, . . . , xk = αk.

Theorem 7.2. The following statements are equivalent:

(1) The map ϕα is well-defined for all f ∈ Q(x1, . . . , xk).
(2) The map ϕα is an isomorphism of fields.
(3) The numbers α1, . . . , αk are algebraically independent.

Proof. (1)⇒ (2): Let f, g ∈ Q(x1, . . . , xk), then

ϕα(f + g) = (f + g)(α) = f(α) + g(α) = ϕα(f) + ϕα(g),

ϕα(fg) = (fg)(α) = f(α)g(α) = ϕα(f)ϕα(g).

Hence ϕα is a ring homomorphism. Suppose that f ∈ Ker(ϕα), then
ϕα(f) = f(α) = 0. We can write f = g/h, where g, h ∈ Q[x1, . . . , xk]
are polynomials in k variables with coefficients in Q. Since f(α) = 0,
we must have

g(α1, . . . , αk) = 0.

Assume g 6= 0, then 1/g ∈ Q(x1, . . . , xk), however ϕα is not defined
at 1/g. Hence we must have g = 0, meaning that f = 0. Therefore
Ker(ϕα) = {0}, and so ϕα is injective. Finally, every element β of
Q(α1, . . . , αk) is a rational function in α1, . . . , αk, which means that β
is the value of some f ∈ Q(x1, . . . , xk) at α. This proves surjectivity,
and hence ϕα is a field isomorphism.

(2) ⇒ (3): If ϕα is a field isomorphism, it must be well-defined as
a function for each f = g/h ∈ Q(x1, . . . , xk), where g, h ∈ Q[x1, . . . , xk].
This means that cannot exist a polynomial p(x1, . . . , xk) ∈ Q[x1, . . . , xk]
such that p(α) = 0. Hence α1, . . . , αk are algebraically independent by
Lemma 7.1.

(3)⇒ (1): Since α1, . . . , αk are algebraically independent, Lemma 7.1
implies that for any 0 6= p ∈ Q[x1, . . . , xk], p(α) 6= 0. Then for any f =
g/h ∈ Q(x1, . . . , xk), where g, h ∈ Q[x1, . . . , xk], ϕα(f) = g(α)/h(α) is
well-defined. �

Hence we have the following immediate characterization of transcen-
dence and algebraic independence.

Corollary 7.3. A collection of complex numbers α1, . . . , αk is alge-
braically independent if and only if Q(α1, . . . , αk) ∼= Q(x1, . . . , xk). In
particular, α ∈ C is transcendental if and only if Q(α) ∼= Q(x).
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8. Hermite, Lindemann, Weierstrass

Arguably the two most famous transcendental numbers are e and π.
Transcendence of e was originally established by Charles Hermite in
1873, and transcendence of π established in 1882 by Ferdinand von
Lindemann by an extension of Hermite’s technique. The much more
general statement, from which these two results follow, was obtained
by Karl Weierstrass in 1885. The most general form of the Hermite-
Lindemann-Weierstrass Theorem is as follows.

Theorem 8.1. Let s ∈ N, α1, . . . , αs be distinct algebraic numbers,
and d1, . . . , ds nonzero algebraic numbers. Then

s∑
k=1

dke
αk 6= 0.

In this section we will establish the famous results of Hermite, Linde-
mann, and Weierstrass. The general idea of the method used is similar
in all three cases, however it will be easier to follow the development of
this technique starting with transcendence of e, then π, and only then
the general Theorem 8.1. Our exposition here closely follows [3]. We
start with some preliminary observations.

Let f(x) be a polynomial with complex coefficients, and let F (x) be
the polynomial obtained from f(x) by replacing each coefficient of f
with its absolute value. For a complex number t, define

(29) I(t, f) :=

∫ t

0

et−uf(u) du.

Then it is easy to see that

(30) |I(t, f)| ≤ |t|e|t|F (|t|).

On the other hand, integrating by parts, we see that

I(t, f) = etf(0)− f(t) + I(t, f ′).

If degree of f(x) is equal to m, then iterating the above procedure m
times, we obtain:

(31) I(t, f) = et
m∑
j=0

f (j)(0)−
m∑
j=0

f (j)(t).

Theorem 8.2 (Hermite, 1873). The number e is transcendental.
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Proof. Working towards a contradiction, suppose that e is algebraic.
Then there exist some integers a0, . . . , an, n ≥ 1, such that

(32)
n∑
k=0

ake
k = 0,

where a0, an 6= 0. Let p > |a0| be a prime, and define a polynomial

f(x) = xp−1(x− 1)p · · · (x− n)p.

Then degree of f(x) is m = (n + 1)p − 1 and each of the roots x =
1, . . . , n of f(x) has multiplicity p and the root x = 0 has multiplicity
p− 1, which implies that

(33) f (j)(k) = 0 ∀ 1 ≤ k ≤ n, 0 ≤ j ≤ p, f (j)(0) = 0 ∀ 0 ≤ j ≤ p− 1.

With this notation, define

J :=
n∑
k=0

akI(k, f),

where I(k, f) is as in (29). Then, by (31) above, we have

J =
n∑
k=0

(
ake

k

m∑
j=0

f (j)(0)− ak
m∑
j=0

f (j)(k)

)

=
m∑
j=0

(
f (j)(0)

n∑
k=0

ake
k

)
−

m∑
j=0

n∑
k=0

akf
(j)(k)

= −
m∑
j=0

n∑
k=0

akf
(j)(k) = −

m∑
j=p−1

n∑
k=0

akf
(j)(k),

where the last line follows by (32) and (33). For j = p− 1, the contri-
bution from f is

f (p−1)(0) = (p− 1)!(−1)np(n!)p,

hence, if n < p, then f (p−1)(0) is divisible by (p − 1)!, but not by p.
Now, for every j ≥ p, then f (j)(0) and f (j)(k) for every 1 ≤ k ≤ n
are divisible by p!. In other words, J is a nonzero integer divisible by
(p− 1)!, and so

(34) |J | ≥ (p− 1)!

On the other hand, let A = max0≤k≤n |ak|, then (30) implies that

|J | ≤ (n+ 1)A|I(k, f)| ≤ n(n+ 1)Aen max
1≤k≤n

F (k).
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Notice that

max
1≤k≤n

F (k) = (2n)p−1 (2(n− 1)!)p =
1

n
((2n)!)p,

and so

(35) |J | ≤ A(n+ 1)en((2n)!)p.

Combining (34) and (35), we obtain:

(p− 1)! ≤ A(n+ 1)en((2n)!)p,

which is certainly not true for sufficiently large p, and so we have a
contradiction. �

To attempt the proof of transcendence of π, we need the notion of
symmetric polynomials. Let n ≥ 1 and define Sn to be the set of all
permutations of the set of n elements {1, . . . , n}.

Exercise 8.1. Prove that Sn is a group under the operation of function
composition.

The group Sn is called the symmetric group on n letters. A poly-
nomial f(x1, . . . , xn) ∈ Q[x1, . . . , xn] is called symmetric if for every
τ ∈ Sn,

f(x1, . . . , xn) = f(xτ(1), . . . , xτ(n)).

Fact 8.3. Let α ∈ A be of degree n and let α = α1, . . . , αn be algebraic
conjugates of α. Let f(x1, . . . , xn) ∈ Q[x1, . . . , xn] be a symmetric poly-
nomial. Then

f(α1, . . . , αn) ∈ Q.
Moreover, if α ∈ I and f(x1, . . . , xn) ∈ Z[x1, . . . , xn], then

f(α1, . . . , αn) ∈ Z.

Let us also recall that π is half the circumference of a circle of ra-
dius 1, which is precisely the angle that the ray emanating from the
origin through the point (−1, 0) on the unit circle makes with the ray
indicating the positive direction along the x-axis in the Cartesian plane.
Hence

cos π = −1, sin π = 0.

Theorem 8.4 (Lindemann, 1882). The number π is transcendental.

Proof. As in the proof of Theorem 8.2, suppose π is algebraic. Since
we know that i ∈ A and A is a field, α = πi must also be algebraic.
Let d = deg(α) and let α = α1, . . . , αd be conjugates of α. Let N be
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the leading coefficient of mα(x), then Lemma 6.6 implies that Nα is
an algebraic integer. By Euler’s formula,

eπi = −1,

and hence

(36) (1 + eα1) · · · (1 + eαd) = 0.

This product can be written as a sum of 2d terms of the form eθ, where

θ = ε1α1 + · · ·+ εdαd, εk = 0, 1 ∀ 1 ≤ k ≤ d.

Suppose that exactly n of these numbers are nonzero, denote them
β1, . . . , βn. Let

h(x) =
1∏

ε1=0

· · ·
1∏

εd=0

(x− (ε1α1 + · · ·+ εdαd))

and notice that h(x) is symmetric in α1, . . . , αd. Then Fact 8.3 implies
that h(x) ∈ Q[x]. Notice that the roots of h(x) are β1, . . . , βd and 0,
which has multiplicity a = 2d − n. Clearing the denominators, this
means that for some C ∈ Z, h(x) = Cxag(x), where g(x) ∈ Z[x] is the
polynomial of degree n with roots β1, . . . , βn. Now (36) implies that

(37) (2d − n)e0 + eβ1 + · · ·+ eβn = 0.

Let

f(x) = Nnpxp−1
n∏
k=1

(x− βk)p

for some large prime p, and let I(t, f) for this choice of f(x) be as
in (29) above. Notice that degree of f(x) is m = (n+ 1)p− 1. Define

J :=
n∑
k=1

I(βk, f).

Then, by (31),

J =
n∑
k=1

(
eβk

m∑
j=0

f (j)(0)−
m∑
j=0

f (j)(βk)

)

=

(
n∑
k=1

eβk

)(
m∑
j=0

f (j)(0)

)
−

m∑
j=0

n∑
k=1

f (j)(βk)

= −(2d − n)

(
m∑
j=0

f (j)(0)

)
−

m∑
j=0

n∑
k=1

f (j)(βk),
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where the last equality follows by (37). Notice that
∑n

k=1 f
(j)(βk) is a

symmetric polynomial in Nβ1, . . . , Nβn for each j. Furthermore, each
Nβk is a linear combination of algebraic integers α1, . . . , αd, and hence
is an algebraic integer. Therefore, by Fact 8.3, for each 1 ≤ j ≤ m,∑n

k=1 f
(j)(βk) ∈ Z. Further, each βk is a root of f(x) of multiplicity p,

which means that each derivative f (j)(βk) vanishes for all j < p. For
each j ≥ p,

∑n
k=1 f

(j)(βk) is divisible by p!. Also,

f (p−1)(0) = (p− 1)!(−N)np(β1 · · · βn)p,

which is not divisible by p provided that p is large (specifically, when
p > Nβ1 · · · βn). In addition, f (j)(0) is divisible by p! for all j ≥ p.
Therefore K is divisible by (p− 1)!, and hence

|J | ≥ (p− 1)!

On the other hand,

|J | ≤
n∑
k=1

|I(βk, f)| ≤
n∑
k=1

|βk|e|βk|F (|βk|)

by (30) and F (x) related to f(x) is as above. Then we have

(p− 1)! ≤ |J | ≤ ACp

for some constants A and C. Taking p sufficiently large, we reach a
contradiction. �

We are now ready to prove the Lindemann-Weierstrass Theorem.

Proof of Theorem 8.1. Towards a contradiction, suppose that there ex-
ist some algebraic numbers d1, . . . , ds, not all zero, such that

(38)
s∑

k=1

dke
αk = 0.

Multiplying both sides by some N , by Lemma 6.6 we can assume that
d1, . . . , ds are algebraic integers. Let K = Q(d1, . . . , ds), n = [K : Q],
and let σk : K → C for 1 ≤ k ≤ n be embeddings of K. Notice
that (38) implies that

(39)
n∏
l=1

(
s∑

k=1

σl(dk)e
αk

)
= 0.

The equation (39) can be written as

(40) a1e
γ1 + · · ·+ ame

γm = 0,

where each coefficient al is a sum of terms of the form σm(dk), which is
invariant under each of the embeddings σm. Then Exercise 6.5 above
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implies that a1, . . . , am ∈ Q, and clearing the denominators, if neces-
sary, we can assume that a1, . . . , am ∈ Z. Further, we can assume that
the set γ1, . . . , γm contains all the conjugates of each of the γj’s: if
some of them are not there, they can always be included by choosing
the corresponding al coefficient to be 0. Notice also that the exponents
γ1, . . . , γm are distinct algebraic numbers.

Let us write γ
(l)
j for the l-th conjugate of γj. Let t be a real variable

and for each l define the conjugate function

Al(t) :=
m∑
k=1

ake
γ
(l)
k t.

We will use the fact that when the γk’s are all distinct, the functions
Al(t) are not identically zero. Define

B(t) =
∏
l

Al(t) =
M∑
k=1

bke
βkt,

where the product is over all the conjugate functions Al(t). Notice
that B(1) = 0 by our original assumption. Since a1, . . . , am ∈ Z,
the coefficients b1, . . . , bM are also rational integers, not all equal to
zero. Since β1, . . . , βM are algebraic numbers, let N ∈ Z be such that
Nβ1, . . . , NβM are algebraic integers. For each 1 ≤ r ≤ M , define a
polynomial

fr(x) =
NMp

x− βr

M∏
k=1

(x− βk)p,

where p ∈ Z is a prime. Let

f(x) =
M∑
r=1

fr(x),

then coefficients of f(x) are symmetric polynomials in the algebraic
integers Nβ1, . . . , NβM . On the other hand, this set of numbers con-
tains all of their algebraic conjugates, since β1, . . . , βM were generated
by γ1, . . . , γm, which included all the algebraic conjugates. Hence coef-
ficients of f(x) must be in Z by Fact 8.3.

Define

Jr :=
M∑
k=1

bkI(βk, fr)
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for each 1 ≤ r ≤M and let J := J1 · · · JM . Let m := deg(fr) = Mp−1,
and notice that by (31),

Jr =
M∑
k=1

bk

(
eβk

m∑
j=0

f (j)
r (0)−

m∑
j=0

f (j)
r (βk)

)

= −
M∑
k=1

bk

m∑
j=0

f (j)
r (βk),

where the last equality follows from the assumption that B(1) = 0.
Arguing analogously to our proofs of Theorems 8.2 and 8.4, we conclude
that J is an algebraic integer which is fixed by all the embeddings of
the number field Q(β1, . . . , βM), hence it must be in Z. Further, J
is divisible by (p − 1)!, but not by p for a sufficiently large p. In
the opposite direction, each |Jr| can be bounded by cpr for a suitable
positive real cr, and hence |J | can be bounded by Cp for some constant
C. Therefore,

(p− 1)! ≤ |J | ≤ Cp,

which leads to a contradiction for a large enough p. This completes the
proof. �

9. Corollaries of the Lindemann-Weierstrass Theorem
and some further results and conjectures

In this section we discuss some consequences of Theorem 8.1. First
notice that transcendence of e and π follow easily from the Lindemann-
Weierstrass Theorem. Although we have already proved these facts
separately, it is still worthwhile to see them derived as consequences
of the Lindemann-Weierstrass Theorem. We present these derivations
here.

Corollary 9.1. e is transcendental.

Proof. Suppose e ∈ A. Then there exists some nonzero polynomial

p(x) =
n∑
k=0

akx
k ∈ Z[x]

such that

p(e) =
n∑
k=0

ake
k = 0.

This, however, clearly contradicts Theorem 8.1. �

Corollary 9.2. π is transcendental.
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Proof. Suppose π is algebraic. We know also that i ∈ A, and hence
iπ ∈ A since A is a field. By Euler’s formula,

eiπ = cosπ + i sin π = −1,

and hence we have

eiπ + 1 = 0,

which clearly contradicts Theorem 8.1. �

Theorem 8.1 has many other important consequences. Here are some
of them.

Corollary 9.3. Let 0 6= α ∈ A. Then the numbers eα, lnα, sinα and
cosα are transcendental.

Proof. Suppose eα is algebraic, say γ = eα ∈ A. Then

eα − γe0 = 0,

which contradicts Theorem 8.1. Hence eα is transcendental. Now as-
sume that lnα is algebraic, then elnα = α would have to be tran-
scendental, which is a contradiction. Furthermore, Euler’s formula (4)
implies that

sinα =
1

2i

(
eiα − e−iα

)
, cosα =

1

2

(
eiα + e−iα

)
,

and so

e0 sinα− 1

2i
eiα +

1

2i
e−iα = 0,

e0 cosα− 1

2
eiα − 1

2
e−iα = 0.

Now Theorem 8.1 implies that sinα, cosα cannot be algebraic. �

Corollary 9.4. Let α1, . . . , αn ∈ A be linearly independent over Q.
Then the numbers

eα1 , . . . , eαn

are algebraically independent.

Proof. Suppose that eα1 , . . . , eαn are algebraically dependent, then there
exists some non-constant polynomial

p(x1, . . . , xn) ∈ Q[x1, . . . , xn]

such that

p(eα1 , . . . , eαn) =
∑
i1,...,in

ai1,...,ine
i1α1+···+inαn = 0,
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where the coefficients ai1,...,in are rational numbers, not all zero. Then
Theorem 8.1 implies that the exponents

i1α1 + · · ·+ inαn

cannot be all distinct. Hence there exist some two distinct families of
indices i1, . . . , in and j1, . . . , jn such that

i1α1 + · · ·+ inαn = j1α1 + · · ·+ jnαn,

in other words
n∑
k=1

ckαk = 0,

where not all of ck := ik − jk ∈ Z are equal to zero. This contradicts
the assumption that α1, . . . , αn are linearly independent over Q. �

In fact, it is easy to see that Corollary 9.4 is equivalent to the
Lindemann-Weierstrass Theorem, i.e. it is a convenient reformulation
of the famous result. A substantial strengthening of Corollary 9.4 is
arguably the most important open problem in transcendental number
theory.

Conjecture 9.1 (Schanuel’s Conjecture). Let α1, . . . , αn ∈ C be lin-
early independent over Q. Then

trdeg(Q(α1, . . . , αn, e
α1 , . . . , eαn)) ≥ n.

We now discuss some of the many remarkable implications of this
conjecture. First we mention (a weak form of) the famous theorem of
Alan Baker (1966) on linear independence of logarithms of algebraic
numbers, for which he received a Fields Medal in 1970.

Theorem 9.5 (Baker’s Theorem, 1966). Let

Λ =
{
` ∈ C : e` ∈ A

}
.

If `1, . . . , `n ∈ Λ are linearly independent over Q, then they are alge-
braically independent (and hence linearly independent over A).

Proof. Baker’s theorem has been proved unconditionally, however the
proof is quite complicated. Here we will only show how this result
follows from Schanuel’s Conjecture. Indeed, Schanuel’s Conjecture im-
plies that

trdeg(Q(`1, . . . , `n, e
`1 , . . . , e`n)) ≥ n.

Since `1, . . . , `n ∈ Λ, we know that e`1 , . . . , e`n ∈ A, which implies that

trdeg(Q(`1, . . . , `n)) = trdeg(Q(`1, . . . , `n, e
`1 , . . . , e`n)) ≥ n.

Hence `1, . . . , `n are algebraically independent. �
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In fact, a strong version of Baker’s Theorem establishes transcendence
of any nonzero linear combination of `1, . . . , `n with algebraic coeffi-
cients, which, in its turn, is a generalization and strengthening of the
celebrated Gelfond-Schneider Theorem, established independently in
1934 by Alexander Gelfond and Theodor Schneider. Their theorem
presented a solution to Hilbert’s 7th Problem.

Theorem 9.6 (Gelfond-Schneider Theorem, 1934). Let a, b ∈ A be
such that a 6= 0, 1 and b /∈ Q. Then ab ∈ T.

Furthermore, Schanuel’s Conjecture implies algebraic independence
of e and π, which is currently an open problem, as well as a wide variety
of other known results and open problems in transcendental number
theory. We conclude with yet another famous open problem, which
would follow from Schanuel’s Conjecture.

Conjecture 9.2 (Schneider’s Four Exponentials Conjecture). Let x1, x2
and y1, y2 be pairs of complex numbers linearly independent over Q.
Then at least one of the four numbers exjyk where 1 ≤ j, k ≤ 2 is
transcendental.

If the linearly independent pair y1, y2 in the conjecture above is replaced
with the linearly independent triple y1, y2, y3, then the conjecture be-
comes a theorem, known as the Six Exponentials Theorem. It is our
next big goal to prove this result.

10. Siegel’s Lemma

We now develop an important tool, which will be used to prove an-
other celebrated transcendence result, the Six Exponentials Theorem.
This tool is Siegel’s Lemma, the simplest version of which was orig-
inally observed by Axel Thue in 1909 and then formally proved by
Carl Ludwig Siegel in 1929. Our presentation here partially follows [7]
and [3]. Let

A =

 a11 . . . a1N
...

. . .
...

aM1 . . . aMN


be an M × N matrix with integer entries and rank equal to M < N .
Define

Λ = {x ∈ ZN : Ax = 0}.
Theorem 10.1 (Siegel’s Lemma, version 1). With notation as above,
there exists 0 6= x ∈ Λ with

(41) |x| < 2 + (N |A|)
M

N−M ,
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where |x| = max{|xn| : 1 ≤ n ≤ N}, |A| = max{|amn| : 1 ≤ m ≤
M, 1 ≤ n ≤ N}.

Proof. Let H ∈ Z>0, and let

CN
H = {x ∈ RN : |x| ≤ H}

be the cube centered at the origin in RN with sidelength 2H. Then

|CN
H ∩ ZN | = (2H + 1)N .

Let TA : RN → RM be a linear map, given by TA(x) = Ax for each
x ∈ RN . Notice that for every x ∈ CN

H ,

|TA(x)| ≤ N |A|H,
i.e. TA maps CN

H into CM
N |A|H ⊆ RM , since rk(A) = M . Now

|CM
N |A|H ∩ ZM | = (2N |A|H + 1)M .

Now let us choose H to be a positive integer satisfying

(N |A|)
M

N−M ≤ 2H < (N |A|)
M

N−M + 2.

Then

|CN
H ∩ ZN | = (2H + 1)N = (2H + 1)M(2H + 1)N−M

≥ (2H + 1)M(N |A|)M > (2N |A|H + 1)M

= |CM
N |A|H ∩ ZM |.

This means that TA cannot be mapping CN
H ∩ZN into CM

N |A|H ∩ZM in

a one-to-one manner. Hence, there must exist x 6= y ∈ CN
H ∩ ZN such

that TA(x) = TA(y), i.e.

TA(x− y) = 0,

and so x− y ∈ Λ. On the other hand,

|x− y| ≤ |x|+ |y| ≤ 2H < (N |A|)
M

N−M + 2,

and this finishes the proof. �

Notice that the main underlying idea in the proof of Siegel’s Lemma
was the pigeon hole principle. It is remarkable that the exponent M

N−M
in the upper bound of (41) cannot be improved. To see this, let for
instanceM = N−1 and for a positive integer R consider the (N−1)×N
matrix

A =


R −1 0 . . . 0 0
0 R −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . R −1

 .
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Then |A| = R, and every nonzero integer solution of the system of
linear equations Ax = 0 must have xN = RN−1x1. Therefore, if

Λ = {x ∈ ZN : Ax = 0},

and 0 6= x ∈ Λ, then

|x| ≥ RN−1 = |A|
M

N−M .

Siegel’s Lemma-type results have been proved in a variety of consid-
erably more general settings by a number of authors, employing quite
sophisticated machinery from number theory and arithmetic geome-
try. However, the original motivation for Siegel’s Lemma came from
Diophantine approximation and transcendental number theory.

For our use, we will also need a basic version of Siegel’s Lemma over
number fields. We start with some additional algebraic notation. Let
K be a number field of degree d with embeddings σ1, . . . , σd. For each
α ∈ K, define its height

H(α) := max{|σk(α)| : 1 ≤ k ≤ d}.

An important fact about the ring of integers OK is that it is a free
Z-module of rank d. In other words, OK has a Z-basis: there exists a
linearly independent collection ω1, . . . , ωd ∈ OK such that

OK =

{
d∑

k=1

akωk : a1, . . . , ad ∈ Z

}
.

Define the corresponding d × d basis matrix W := (σ`(ωk))1≤`,k≤d. It
is a standard fact in algebraic number theory that W is nonsingular.
With this notation and information in mind, we can now prove our
next result.

Theorem 10.2 (Siegel’s Lemma, version 2). Let K be a number field
of degree d, and let A = (αij) be an M × N matrix of rank M < N
with entries αij ∈ OK. Define

H(A) := max{H(αij) : 1 ≤ i ≤M, 1 ≤ j ≤ N}.

There exists a solution 0 6= x = (x1, . . . , xN) ∈ ONK to the homogeneous
linear system Ax = 0 with

(42) max
1≤j≤N

H(xj) < BK(M,N)H(A)
M

N−M ,

where BK(M,N) is some constant depending only on M,N and the
number field K.
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Proof. Let ω1, . . . , ωd ∈ OK be a Z-basis for OK , as described above,
and let W be the corresponding basis matrix. Then for each entry αij
of our matrix A, there exist aijk ∈ Z, 1 ≤ k ≤ d, such that

αij =
d∑

k=1

aijkωk.

Applying embeddings σ1, . . . , σd to the above equation, we obtain

σ`(αij) =
d∑

k=1

aijkσ`(ωk)

for each 1 ≤ ` ≤ d, and hence

αij := (σ1(αij), . . . , σd(αij))
t = W (aij1, . . . , aijd)

t.

Since W is invertible, we have

aij := (aij1, . . . , aijd)
t = W−1αij.

If we write vk` for the entries of W−1, then

aijk =
d∑
`=1

vk`σ`(αij),

and so

(43) |aijk| ≤ d max
1≤`≤d

|vk`σ`(αij)| ≤ dCKH(A),

where CK is a constant depending only on the number field K such
that CK ≥ max1≤k,`≤d |vk`|.

Now suppose x ∈ ONK is a nontrivial solution of the system Ax = 0,
and write

(44) x =

(
d∑
`=1

b1`ω`, . . . ,

d∑
`=1

bN`ω`

)
for some bj` ∈ Z for 1 ≤ j ≤ N , 1 ≤ ` ≤ d. Then i-th entry of the
vector Ax is

N∑
j=1

d∑
`=1

d∑
k=1

aijkbj`ωkω` = 0.

Since ωkω` ∈ OK , it can also be expressed as a linear combination of
ωm’s with Z-coefficients:

ωkω` =
d∑

m=1

ck`mωm
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for each 1 ≤ k, ` ≤ d, and hence we have

d∑
m=1

N∑
j=1

d∑
`=1

d∑
k=1

aijkbj`ck`mωm = 0.

Since ω1, . . . , ωd are linearly independent over Z, all the coefficients
in the above equations must be zero, and hence we have a system of
Md homogeneous linear equations with integer coefficients in the Nd
variables bj`:

N∑
j=1

d∑
`=1

d∑
m=1

aijkbj`ck`m = 0,

for all 1 ≤ i ≤M , 1 ≤ m ≤ d. Applying Theorem 10.1 along with (43),
we see that there exists a solution with

max
j,`
|bj`| ≤ 2 + (Nd2CKH(A))

Md
Nd−Md ,

and hence, by (44),

max
1≤j≤N

H(xj) ≤ d
(

2 + (Nd2CKH(A))
M

N−M

)
max
1≤`≤d

H(ω`).

Since the choice of ω1, . . . , ω` depends only on K, the conclusion of the
theorem follows. �

Recall that for any β ∈ K, there exists c ∈ N such that cβ ∈ OK .
In fact, for any collection β1, . . . , βn ∈ K, let us define their common
denominator to be

D(β1, . . . , βn) = min{c ∈ N : cβk ∈ OK ∀ 1 ≤ k ≤ n}.
For an M ×N matrix A with entries in K, we will write D(A) for the
common denominator of all of its entries, i.e.,

D(A) = D(αij : 1 ≤ i ≤M, 1 ≤ j ≤ N).

With this notation in mind, we have one more version of Siegel’s lemma.

Corollary 10.3 (Siegel’s Lemma, version 3). Let K be a number field
of degree d, and let A = (αij) be an M×N matrix of rank M < N with
entries αij ∈ K. There exists a solution 0 6= x = (x1, . . . , xN) ∈ ONK
to the homogeneous linear system Ax = 0 with

(45) max
1≤j≤N

H(xj) < BK(M,N)(D(A)H(A))
M

N−M ,

where BK(M,N) is the same constant as in Theorem 10.2 above.

Proof. Let A′ = D(A)A, then A′ is an M × N matrix with entries in
OK , and Ax = 0 if and only A′x = 0. Then apply Theorem 10.2 to the
system A′x = 0 while keeping in mind that H(A′) = D(A)H(A). �
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11. The Six Exponentials Theorem

In this section we use Siegel’s Lemma and Maximum Modulus Prin-
ciple to prove the Six Exponentials Theorem. Our presentation here
follows [3]. We start with another necessary piece of algebraic notation.
Let K be a number field of degree d over Q, and let σ1, . . . , σd be the
embeddings of K into C. For every α ∈ K, define the norm of α over
K to be

NK(α) =
d∏

k=1

σk(α),

and we write N(α) for NQ(α)(α). It is not difficult to observe that

NK(α) = N(α)[K:Q(α)].

Notice also that N(α) is precisely the free coefficient of the minimal
polynomial of α over Q, and hence is a rational number. If α ∈ OK ,
then the minimal polynomial of α over Q is equal to mα(x), and hence
N(α) ∈ Z. This in particular implies that for every α ∈ OK ,

(46) 1 ≤ |NK(α)| = |N(α)|[K:Q(α)] ≤ |N(α)|d ≤ H(α)d−1|α|,
since one of the embeddings σ1, . . . , σd is the identity map.

Theorem 11.1 (The Six Exponentials Theorem). Let x1, x2 ∈ C be
linearly independent over Q. Let y1, y2, y3 ∈ C also be linearly indepen-
dent over Q. Then at least one of the six numbers exiyj where 1 ≤ i ≤ 2,
1 ≤ j ≤ 3 is transcendental.

Proof. Suppose that exjyk ∈ A for all 1 ≤ j ≤ 2, 1 ≤ k ≤ 3, and let K
be a number field containing all of these numbers. Let r ∈ N, aij ∈ OK
for all 1 ≤ i, j ≤ r, and define

(47) F (z) =
r∑
i=1

r∑
j=1

aije
(ix1+jx2)z

for a variable z ∈ C. Let n ∈ N and let k1, k2, k3 ∈ N range between 1
and n. Then

F

(
3∑

m=1

kmym

)
=

r∑
i=1

r∑
j=1

aij exp ((ix1 + jx2)(k1y1 + k2y2 + k3y3)) .

Since each exp ((ix1 + jx2)(k1y1 + k2y2 + k3y3)) is algebraic, setting
each

(48) F

(
3∑

m=1

kmym

)
= 0
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yields a system of n3 equations with algebraic coefficients in the r2

variables aij. We want to apply Siegel’s Lemma to this system to
obtain a small-height solution vector; for this we need r2 > n3. Let D
be the common denominator of the six exponentials

{exiyj : 1 ≤ i ≤ 2, 1 ≤ j ≤ 3},
then the common denominator of the coefficients of the system (48) is
bounded above by D6rn, and heights of these coefficients are bounded
above by ec0rn for some constant c0. Now Theorem 10.3 guarantees
that (48) has a solution vector with coordinates aij ∈ OK , not all zero,
such that

max
i,j

H(aij) ≤ BK(n3, r2)
(
D6rnec0rn

) n3

r2−n3 .

Then, choosing r = 8n3/2, we ensure that

(49) max
i,j

H(aij) ≤ BK(n3, 8n3/2)
(
D48n5/2

e8c0n
5/2
) 1

63 ≤ ec1n
5/2

for some appropriately chosen constant c1. Then let aij ∈ OK be a
solution to (48) with r = 8n3/2 satisfying (49), and let F (z) be as
in (47) for this choice of aij’s. Notice that F (z) is not identically zero,
since x1, x2 are linearly independent over Q. Also notice that the set

S = {k1y1 + k2y2 + k3y3 : k1, k2, k3 ∈ N}
is not discrete, since the numbers y1, y2, y3 are linearly independent
over Q. Since F (z) is not identically zero, it cannot vanish on a non-
discrete set, and hence there must exist elements of S on which F is
not zero. Let

s = max {t ∈ N : F (k1y1 + k2y2 + k3y3) = 0 ∀ 1 ≤ ki ≤ t} .
Clearly, s ≥ n. Define

w = k1y1 + k2y2 + k3y3

with some ki = s + 1 and all 1 ≤ ki ≤ s + 1 be such that F (w) 6= 0.
Using (49), we can obtain an estimate on the height of F (w):

H(F (w)) ≤ C
n5/2+(s+1)r
0 ≤ Cs5/2

1

for some positive constants C0, C1. Observe also that D6r(s+1)F (w) is
an algebraic integer. Then, by (46) we have:

1 ≤ NK(D6r(s+1)F (w)) ≤ H(D6r(s+1)F (w))[K:Q]−1|D6r(s+1)F (w)|,
and so

(50) |F (w)| ≥ D−6r(s+1)[K:Q]H(F (w))−([K:Q]−1) ≥ C−s
5/2

2 ,
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where C2 is another constant independent of s.
Our next goal will be to arrive at a contradiction with (50) by ob-

taining an incompatible estimate for |F (w)| from above. Notice that

(51) F (w) = lim
z→w

{
F (z)

∏
1≤k1,k2,k3≤s

(
w − (k1y1 + k2y2 + k3y3)

z − (k1y1 + k2y2 + k3y3)

)}
.

The right hand side of the above identity is a holomorphic function
that has s3 factors in the product. Let R be a real number such that
|w| < R and

|z − (k1y1 + k2y2 + k3y3)| ≥ R/2

for all z on the circle of radius R. Applying the Maximum Modulus
Principle (specifically, Corollary B.2) to the right hand side of (51) on
the disk of radius R, we conclude that it assumes its maximum value
on the boundary, i.e. on the circle of radius R, and hence

|F (w)| ≤ |F |R(C3s/R)s
3

,

for some constant C3, where |F |R, the maximum of F (z) on the circle
of radius R, can be estimated as follows:

|F |R ≤ C4e
c1n5/2+c2rRr2,

for some constants C4, c2, and with c1 as above. Taking R = s3/2,
recalling that r2 = 64n3, and combining these inequalities yields:

|F (w)| ≤ 64n3C4e
c1n5/2+c28(ns)3/2

(
C3√
s

)s3
.

Since s ≥ n, taking n large will cause a contradiction with (50), hence
completing the proof. �

Appendix A. Some properties of abelian groups

Here we briefly discuss some properties of abelian groups, in par-
ticular outlining a proof of the fact that any subgroup of a finitely
generated abelian group is finitely generated. Throughout this section,
we will mostly deal with a finitely generated abelian group G, written
additively with 0 denoting the identity element and nx, for n ∈ Z
and x ∈ G, denoting the n-th power of the element x. A collection of
elements x1, . . . ,xk in an abelian group G is called linearly indepen-
dent if whenever

n1x1 + · · ·+ nkxk = 0
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for some n1, . . . , nk ∈ Z, then n1 = · · · = nk = 0. A linearly inde-
pendent generating set for an abelian group G is called a basis. An
abelian group G is called free if it has a basis.

Exercise A.1. Suppose that G is a free abelian group. Prove that the
following property holds: whenever nx = 0 for some n ∈ Z and x ∈ G,
then either n = 0 or x = 0.

The most common example of a finitely generated free abelian group
is the group

Zk = {x = (x1, . . . , xk) : x1, . . . , xk ∈ Z}

under component-wise addition, where k ∈ N. It is easy to notice that
the set of vectors e1, . . . , ek, where ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zk with
1 in i-th position forms a basis for Zk: it is called the standard basis
for Zk and these vectors are called the standard basis vectors. In
fact, it turns out that Zk is the only example of a finitely generated
free abelian group, up to isomorphism.

Lemma A.1. Let G be a finitely generated free abelian group. Then
G ∼= Zk for some k ∈ N.

Proof. Let x1, . . . ,xk be a basis for G, then

G =

{
k∑
i=1

nixi : n1, . . . , nk ∈ Z

}
.

Define a map ϕ : G→ Zk, given by

ϕ

(
k∑
i=1

nixi

)
=

k∑
i=1

niei.

We leave it to the reader to check that this is a group isomorphism. �

Exercise A.2. Suppose that 1 ≤ k < m. Prove that Zk � Zm.

Corollary A.2. Let G be a finitely generated free abelian group. Then
every basis in G has the same cardinality. This common cardinality is
called the rank of G.

Proof. Let x1, . . . ,xk and y1, . . . ,ym be two different bases forG. Then
by the argument in the proof of Lemma A.1, G ∼= Zk and G ∼= Zm.
Now Exercise A.2 implies that Zk � Zm unless k = m. Recall from
Exercise 2.4 that isomorphism is an equivalence relation on groups.
Thus, since G ∼= Zk and G ∼= Zm, we must have Zk ∼= Zm. Hence
k = m. �
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Fact A.3. Let H be a subgroup of a finitely generated free abelian group
G of rank k. The H is also free abelian of rank ≤ k.

We do not present the proof of this fact here. A standard proof is along
the lines of linear algebra, using Smith normal form for matrices, which
constructs a basis for a subgroup starting with a basis for the group.

We now give some additional basic algebraic notation without proofs.
We refer the reader to [1] for details. If G is an abelian group and H is
a subgroup of G, then a coset of H in G is a set x+H where x ∈ G.
The group G can be represented as a disjoint union of all cosets of H
in G. We write G/H for the set of such cosets, which is a group under
the operation of addition of cosets:

(x+H) + (y +H) = (x+ y) +H.

G/H is called the quotient group of G modulo H. The identity
element in this group is the trivial coset 0 +H = H = x+H for every
x ∈ H, and inverse of y + H is −y + H for every y ∈ G. The order
of G/H, i.e. its cardinality as a set (could be infinite) is called the
index of H in G, and denoted by |G : H|. Suppose that G and E are
two abelian groups and ϕ : G→ E is a group homomorphism between
them. Recall that Ker(ϕ) is a subgroup of G and ϕ(G) is a subgroup
of E. The First Isomorphism Theorem states that

(52) G/Ker(ϕ) ∼= ϕ(G).

Finally, notice that a finitely generated group can only be isomorphic
to another finitely generated group. We are now ready for the main
result of this section.

Theorem A.4. Let G be a finitely generated abelian group, and let H
be a subgroup of G. Then H is finitely generated.

Proof. Let x1, . . . ,xk be a generating set for G, then every element
y ∈ G is expressible as

y =
k∑
i=1

nixi

for some n1, . . . , nk ∈ Z. Define a map ϕ : Zk → G, given by

ϕ

(
k∑
i=1

niei

)
=

k∑
i=1

nixi.

We leave it to the reader to check that this is a group homomorphism.
Let K = Ker(ϕ), then K is a subgroup of Zk, hence it is free abelian of
rank ` ≤ k. Now H be a subgroup of G, then there exists a subgroup
M of Zk such that ϕ(M) = H; in other words, M is the pre-image
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of H in Zk under ϕ. Then M is also free abelian of rank m ≤ k.
Furthermore, M contains K: indeed, for every x ∈ K, ϕ(x) = 0 ∈ H,
hence x ∈M . Therefore ` ≤ m, and by (52),

H ∼= M/K,

hence we only need to show that M/K is finitely generated.
By Lemma A.1 we know that M ∼= Zm and K ∼= Z`. By viewing

vectors in Z` as m-tuples with last m − ` coordinates equal to 0, we
can think of Z` being contained in Zm. Hence we only need to show
that Zm/Z` is finitely generated. If m = `, then Zm = Z` and so
Zm/Z` ∼= {0}, the trivial group. Then assume that m > `. Considering
the standard basis e1, . . . , em for Zm, we can view e1, . . . , e` as the
standard basis for Z` under its embedding into Zm. Then Zm/Z` is
isomorphic to Zm−` via the map sending an element

∑m
i=1 niei + Z`

in Zm/Z` to
∑m

i=m−`+1 niei in Zm−` (this is easily checked to be a

group isomorphism). Now, Zm−` is finitely generated, and hence we
are done. �

Appendix B. Maximum Modulus Principle and
Fundamental Theorem of Algebra

Our main goal here is to prove the Fundamental Theorem of Algebra.
For this, we will use the Maximum Modulus Principle. We first need
some basic notation from complex analysis. A region in C is a subset
R of C, which is open and connected. A function f(z) on a region R
is called analytic if for any z0 ∈ R,

f(z) =
∞∑
n=0

an(z − z0)n,

where an ∈ C for every n ≥ 0 and the series is convergent to f(z)
in an an open neighborhood of z0. It is a well-known fact that every
holomorphic (i.e., complex-differentiable) function is analytic, and vice
versa.

Theorem B.1 (Maximum Modulus Principle). Suppose f(z) is a non-
constant analytic function in a region R. Then the real-valued function
|f(z)| does not attain its maximum in R. In other words, if for some
z0 ∈ R, |f(z)| ≤ |f(z0)| for all points z ∈ R, then f(z) is constant
on R.

A proof of this theorem can be found in any book on complex analy-
sis, for instance [5]. Here is an immediate consequence of Theorem B.1,
which is very useful in applications.
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Corollary B.2. Let

Dr = {z ∈ C : |z| ≤ r}
be the closed disk of radius r and let f(z) be a continuous function on
Dr, which is analytic on the open disk

Do
r = {z ∈ C : |z| < r} .

Then f(z) assumes its maximum value on Dr on its boundary

∂Dr = {z ∈ C : |z| = r} = Dr \Do
r .

Proof. Since f(z) is continuous and Dr is closed and bounded, f(z)
must have a maximum on Dr. On the other hand, since the open disk
Do
r is a region in C, by Theorem B.1 f(z) cannot have a maximum on

Do
r . Thus it must be assumed on the boundary. �

We will now derive an important consequence of this fundamental
principle.

Theorem B.3 (Fundamental Theorem of Algebra, stated as Theo-
rem 1.1 above). Any polynomial p(x) ∈ C[x] of degree n has precisely
n roots in C, counted with multiplicity. In other words, the field of
complex numbers C is algebraically closed.

Proof. Notice that it is sufficient to prove that any polynomial p(x) of
degree n ≥ 1 has at least one root in C. Suppose not, say p(x) ∈ C[x]
of degree n ≥ 1 has no complex roots. This means that 1/p(x) is an
analytic (holomorphic) function. Notice that 1/p(x) tends to zero as
|x| tends to infinity. This means that for any α ∈ C there exists an
r ∈ R such that

1/|p(x)| < 1/|p(α)|
for all x ∈ C with |x| ≥ r. Now pick r large enough so that |α| < r, and
let Dr be the closed disk of radius r, as in Corollary B.2 above. Then
α ∈ Dr and, since 1/|p(x)| is continuous, it assumes its maximum on
Dr, specifically on its boundary, by Corollary B.2. Then there exists
β ∈ ∂Dr such that

1/|p(x)| ≤ 1/|p(β)| ∀ x ∈ Dr.

Now pick t > r and Do
t be the open disk of radius t. Then Dr ( Do

t ,
and for all x ∈ Do

t \Dr,

1/|p(x)| < 1/|p(α)| ≤ 1/|p(β)|.
Hence 1/|p(x)| assumes its maximum on Do

t at x = β. Since 1/p(x) is
not a constant function (degree of p(x) is > 0) and Do

t is a region (it is
open and connected), this violates the Maximum Modulus Principle.
Hence p(x) must have a zero in C. �
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