Diophantine inequalities for the Weil height

1241, January 9, 2018

The Weil height:

The Weil height $h(\alpha)$ can be defined on algebraic numbers $\alpha \neq 0$ in two ways. Assume that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = d$, and let

$$m_{\alpha}(x) = a_0 x^d + a_1 x^{d-1} + \dots + a_d$$

be the minimal polynomial for α in $\mathbb{Z}[x]$. Then

$$h(\alpha) = d^{-1} \int_0^1 \log \left| m_\alpha \left(e^{2\pi i t} \right) \right| \, \mathrm{d}t.$$

Alternatively, let k be a number field containing α , and for each place v of k let | v > v be a normalized absolute value on k. Then we have

$$0 = \sum_{v} \log |\alpha|_{v},$$

and

$$h(\alpha) = \sum_{v} \log^{+} |\alpha|_{v} = \frac{1}{2} \sum_{v} \left| \log |\alpha|_{v} \right|.$$

An important early result:

Theorem 1. (Northcott, 1949) For positive dand T, the set of algebraic numbers

 $\{\alpha \in \overline{\mathbb{Q}} : [\mathbb{Q}(\alpha) : \mathbb{Q}] \leq d \text{ and } h(\alpha) \leq T\}$

is finite.

A more recent result:

Theorem 2. (V., M. Widmer, 2011) Let k be a number field of degree d and discriminant Δ_k . If k has a real embedding, then there exists $\alpha \neq 0$ in k such that $k = \mathbb{Q}(\alpha)$, and

$$h(\alpha) \leq \frac{\log |\Delta_k|}{2d}.$$

If k is totally complex a similar bound holds provided the Dedekind zeta-function $\zeta_l(s)$ satisfies GRH, where l is the Galois closure of k. **Units:** let k be an algebraic number field, O_k the ring of algebraic integers in k,

 $O_k^{\times} =$ multiplicative group of units in O_k , and

Tor
$$(O_k^{\times}) =$$
 torsion subgroup of O_k^{\times}
= roots of unity in O_k^{\times}
= a finite, cyclic group.

Dirichlet's unit theorem: there exists a finite collection of multiplicatively independent units $\eta_1, \eta_2, \ldots, \eta_r$, and a generator ζ of $\operatorname{Tor}(O_k^{\times})$, so that every unit α has a unique representation as

$$\alpha = \zeta^m \eta_1^{n_1} \eta_2^{n_2} \cdots \eta_r^{n_r},$$

where m, and n_1, n_2, \ldots, n_r , are integers. Here

$$r = \operatorname{rank}(O_k^{\times}).$$

Minkowski units: we now assume that k/\mathbb{Q} is a *Galois* extension of degree d. Then the Galois group

$$G = \operatorname{Aut}(k/\mathbb{Q})$$

has order d, and G acts on O_k^{\times} . If $\alpha \neq 1$ belongs to O_k^{\times} , then

$$\{\sigma(\alpha) : \sigma \in G\} \subseteq O_k^{\times}.$$

Minkowski proved: if k/\mathbb{Q} is a Galois extension and O_k^{\times} has positive rank r, then there exists a unit α in O_k^{\times} such that the subgroup

$$\langle \sigma(\alpha) : \sigma \in G \rangle \subseteq O_k^{\times}$$

generated by the conjugates of α has the maximum possible rank r. We call a unit α with this property a *Minkowski unit*. **Theorem 3** (S. Akhtari-V.). Let $\eta_1, \eta_2, \ldots, \eta_r$, be multiplicatively independent elements in O_k^{\times} , where $r = \operatorname{rank}(O_k^{\times})$. Let

$$\mathfrak{A} = \langle \eta_1, \eta_2, \dots, \eta_r \rangle \subseteq O_k^{\times}$$

be the subgroup they generate. Then there exists a Minkowski unit β in \mathfrak{A} such that

$$h(\beta) \leq 2\Big(h(\eta_1) + h(\eta_2) + \cdots + h(\eta_r)\Big).$$

Moreover, if

$$\mathfrak{B} = \langle \sigma(\beta) : \sigma \in G \rangle,$$

is the subgroup of O_k^{\times} generated by the conjugates of β , then

$$\operatorname{Reg}(k)[O_k^{\times}:\mathfrak{B}] \leq \left([k:\mathbb{Q}]h(\beta)\right)^r,$$

where $\operatorname{Reg}(k)$ is the regulator of k .

The following simple result about real matrices is a key lemma:

Lemma 1. Let $A = (a_{mn})$ be a real, nonsingular, $N \times N$ matrix. Then there exists a point

$$\boldsymbol{\xi} = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_N \end{pmatrix}$$

in \mathbb{Z}^N , such that

$$0 < \sum_{n=1}^{N} a_{mn} \xi_n \le \sum_{n=1}^{N} |a_{mn}|$$

for each m = 1, 2, ..., N.

Full modules and norm forms: Let l/k be an extension of degree e, and $\omega_1, \omega_2, \ldots, \omega_e$, a basis for l/k. We use the basis to define a full O_k -module

 $\mathfrak{M} = \left\{ \omega_1 \nu_1 + \omega_2 \nu_2 + \dots + \omega_e \nu_e : \nu_i \in O_k \right\}$ generated by the basis $\omega_1, \omega_2, \dots, \omega_e$. If

$$\boldsymbol{\nu} = (\nu_i)$$

belongs to $(O_k)^e$, then

$$\boldsymbol{\nu} \mapsto \operatorname{Norm}_{l/k}(\mu),$$

where

$$\mu = \omega_1 \nu_1 + \omega_2 \nu_2 + \dots + \omega_e \nu_e$$

belongs to \mathfrak{M} , is the associated norm form. For each $\beta \neq 0$ in k, we wish to describe

$$\left\{\mu \in \mathfrak{M} : \operatorname{Norm}_{l/k}(\mu) \in \operatorname{Tor}(O_k^{\times})\beta\right\}.$$

There is a natural equivalence relation in \mathfrak{M} such that solution set is either empty, or it is a disjoint union of finitely many equivalence classes.

The coefficient ring associated to \mathfrak{M} is

$$O_{\mathfrak{M}} = \Big\{ \alpha \in l : \alpha \mathfrak{M} \subseteq \mathfrak{M} \Big\}.$$

The coefficient ring $O_{\mathfrak{M}}$ is an order in l, so

 $O_{\mathfrak{M}} \subseteq O_l.$

The group of units in $O_{\mathfrak{M}}^{\times}$ is

$$O_{\mathfrak{M}}^{\times} = \Big\{ \alpha \in l : \alpha \mathfrak{M} = \mathfrak{M} \Big\},\$$

and by the extension of Dirichlet's unit theorem to orders

$$\operatorname{rank}(O_{\mathfrak{M}}^{\times}) = \operatorname{rank}(O_l^{\times}) = r(l).$$

Hence the group $O_{\mathfrak{M}}^{\times}$ acts on the module \mathfrak{M} by multiplication. Let

$$\mathcal{E}_{l/k}(\mathfrak{M}) = \left\{ \alpha \in O_{\mathfrak{M}}^{\times} : \operatorname{Norm}_{l/k}(\alpha) \in \operatorname{Tor}(O_{k}^{\times}) \right\}$$

be the subgroup of *relative units* in the coefficient ring $O_{\mathfrak{M}}$. The subgroup $\mathcal{E}_{l/k}(\mathfrak{M})$ has rank

$$r(l/k) = r(l) - r(k).$$

Now suppose that $\beta \neq 0$ belongs to O_k , and μ in $\mathfrak M$ satisfies

Norm_{l/k}(μ) = $\zeta\beta$, where $\zeta \in \text{Tor}(O_k^{\times})$. If γ belongs to the group $\mathcal{E}_{l/k}(\mathfrak{M})$, then $\gamma\mu$ belongs to \mathfrak{M} , and

Norm_{l/k}($\gamma\mu$) = $\zeta'\beta$, where $\zeta' \in \text{Tor}(O_k^{\times})$. We say that two nonzero elements μ_1 and μ_2

in \mathfrak{M} are *equivalent* if there exists an element γ in the group $\mathcal{E}_{l/k}(\mathfrak{M})$ such that $\gamma \mu_1 = \mu_2$. For $\beta \neq 0$ in O_k , the set

$$\left\{\mu \in \mathfrak{M} : \operatorname{Norm}_{l/k}(\mu) \in \operatorname{Tor}(O_k^{\times})\beta\right\}.$$

is a disjoint union of finitely many equivalence classes. A finiteness result of this sort also follows from Northcott's theorem and the following inequality. **Theorem 4** (S. Akhtari-V.). Let $\mathfrak{M} \subseteq O_l$ be a full O_k -module, and assume that the rank r(l/k) of the group $\mathcal{E}_{l/k}(\mathfrak{M})$ of relative units is positive. Let

 $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_{r(l/k)},$

be multiplicatively independent units in the subgroup $\mathcal{E}_{l/k}(\mathfrak{M})$. Assume that $\beta \neq 0$ is a point in O_k , and $\mu \neq 0$ is a point in \mathfrak{M} , such that

Norm_{l/k}(μ) = $\zeta\beta$, where $\zeta \in \text{Tor}(O_k^{\times})$.

Then there exists an element γ in $\mathcal{E}_{l/k}(\mathfrak{M})$, such that $\gamma \mu$ belongs to \mathfrak{M} ,

Norm_{l/k}($\gamma\mu$) = $\zeta'\beta$, where $\zeta' \in \operatorname{Tor}(O_k^{\times})$, and

$$h(\gamma\mu) \leq \frac{1}{2} \sum_{j=1}^{r(l/k)} h(\varepsilon_j) + [l:k]^{-1}h(\beta).$$

10

Relative Minkowski units: Assume that both l/\mathbb{Q} and k/\mathbb{Q} are Galois. An element $\gamma \neq 1$ in $E_{l/k}$ is a *relative Minkowski unit* if the group

 $\langle \tau(\gamma) : \tau \in \mathsf{Aut}(l/k) \rangle$

generated by the conjugates of γ over the field k has maximum rank in $E_{l/k}$. These exist.

Theorem 5 (S. Akhtari-V.). Let $\eta_1, \eta_2, \ldots, \eta_{r(l)}$, be a basis for O_l^{\times} .

(i) If l/\mathbb{Q} is totally real, there exists a relative Minkowski unit γ in $E_{l/k}$ such that

$$h(\gamma) \le 4[l:k] \sum_{j=1}^{r(l)} h(\eta_j).$$

(i) If l/\mathbb{Q} is totally complex, there exists a relative Minkowski unit γ in $E_{l/k}$ such that

$$h(\gamma) \leq 8[l:k] \sum_{j=1}^{r(l)} h(\eta_j).$$

11