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The Weil height:

The Weil height h(α) can be defined on alge-

braic numbers α 6= 0 in two ways. Assume that

[Q(α) : Q] = d, and let

mα(x) = a0x
d + a1x

d−1 + · · ·+ ad

be the minimal polynomial for α in Z[x]. Then

h(α) = d−1
∫ 1

0
log

∣∣∣mα

(
e2πit

)∣∣∣ dt.

Alternatively, let k be a number field contain-

ing α, and for each place v of k let | |v be a

normalized absolute value on k. Then we have

0 =
∑
v

log |α|v,

and

h(α) =
∑
v

log+ |α|v = 1
2

∑
v

∣∣∣log |α|v
∣∣∣.



An important early result:

Theorem 1. (Northcott, 1949) For positive d

and T , the set of algebraic numbers

{α ∈ Q : [Q(α) : Q] ≤ d and h(α) ≤ T}

is finite.

A more recent result:

Theorem 2. (V., M. Widmer, 2011) Let k be a

number field of degree d and discriminant ∆k.

If k has a real embedding, then there exists

α 6= 0 in k such that k = Q(α), and

h(α) ≤
log |∆k|

2d
.

If k is totally complex a similar bound holds

provided the Dedekind zeta-function ζl(s) sat-

isfies GRH, where l is the Galois closure of k.
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Units: let k be an algebraic number field, Ok
the ring of algebraic integers in k,

O×k = multiplicative group of units in Ok,

and

Tor
(
O×k

)
= torsion subgroup of O×k
= roots of unity in O×k
= a finite, cyclic group.

Dirichlet’s unit theorem: there exists a finite

collection of multiplicatively independent units

η1, η2, . . . , ηr, and a generator ζ of Tor
(
O×k

)
, so

that every unit α has a unique representation

as

α = ζmη
n1
1 η

n2
2 · · · η

nr
r ,

where m, and n1, n2, . . . , nr, are integers. Here

r = rank
(
O×k

)
.
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Minkowski units: we now assume that k/Q
is a Galois extension of degree d. Then the

Galois group

G = Aut(k/Q)

has order d, and G acts on O×k . If α 6= 1 belongs

to O×k , then

{σ(α) : σ ∈ G} ⊆ O×k .

Minkowski proved: if k/Q is a Galois extension

and O×k has positive rank r, then there exists

a unit α in O×k such that the subgroup

〈σ(α) : σ ∈ G〉 ⊆ O×k
generated by the conjugates of α has the max-

imum possible rank r. We call a unit α with

this property a Minkowski unit.
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Theorem 3 (S. Akhtari-V.). Let η1, η2, . . . , ηr,

be multiplicatively independent elements in O×k ,

where r = rank
(
O×k

)
. Let

A = 〈η1, η2, . . . , ηr〉 ⊆ O×k
be the subgroup they generate. Then there

exists a Minkowski unit β in A such that

h(β) ≤ 2
(
h(η1) + h(η2) + · · ·+ h(ηr)

)
.

Moreover, if

B = 〈σ(β) : σ ∈ G〉,

is the subgroup of O×k generated by the conju-

gates of β, then

Reg(k)[O×k : B] ≤
(
[k : Q]h(β)

)r
,

where Reg(k) is the regulator of k.
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The following simple result about real matrices

is a key lemma:

Lemma 1. Let A = (amn) be a real, nonsingu-

lar, N ×N matrix. Then there exists a point

ξ =


ξ1
ξ2
...
ξN


in ZN , such that

0 <
N∑
n=1

amnξn ≤
N∑
n=1

|amn|

for each m = 1,2, . . . , N .
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Full modules and norm forms: Let l/k be
an extension of degree e, and ω1, ω2, . . . , ωe, a
basis for l/k. We use the basis to define a full
Ok-module

M =
{
ω1ν1 + ω2ν2 + · · ·+ ωeνe : νi ∈ Ok

}
generated by the basis ω1, ω2, . . . , ωe. If

ν = (νi)

belongs to (Ok)e, then

ν 7→ Norml/k(µ),

where

µ = ω1ν1 + ω2ν2 + · · ·+ ωeνe

belongs to M, is the associated norm form.
For each β 6= 0 in k, we wish to describe{

µ ∈M : Norml/k(µ) ∈ Tor
(
O×k

)
β
}
.

There is a natural equivalence relation in M

such that solution set is either empty, or it is
a disjoint union of finitely many equivalence
classes.
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The coefficient ring associated to M is

OM =
{
α ∈ l : αM ⊆M

}
.

The coefficient ring OM is an order in l, so

OM ⊆ Ol.

The group of units in O×M is

O×M =
{
α ∈ l : αM = M

}
,

and by the extension of Dirichlet’s unit theo-

rem to orders

rank
(
O×M

)
= rank

(
O×l

)
= r(l).

Hence the group O×M acts on the module M by

multiplication. Let

El/k(M) =
{
α ∈ O×M : Norml/k(α) ∈ Tor

(
O×k

)}
be the subgroup of relative units in the coeffi-

cient ring OM. The subgroup El/k(M) has rank

r(l/k) = r(l)− r(k).
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Now suppose that β 6= 0 belongs to Ok, and µ

in M satisfies

Norml/k(µ) = ζβ, where ζ ∈ Tor
(
O×k

)
.

If γ belongs to the group El/k(M), then γµ be-

longs to M, and

Norml/k(γµ) = ζ′β, where ζ′ ∈ Tor
(
O×k

)
.

We say that two nonzero elements µ1 and µ2

in M are equivalent if there exists an element γ

in the group El/k(M) such that γµ1 = µ2. For

β 6= 0 in Ok, the set{
µ ∈M : Norml/k(µ) ∈ Tor

(
O×k

)
β
}
.

is a disjoint union of finitely many equivalence

classes. A finiteness result of this sort also

follows from Northcott’s theorem and the fol-

lowing inequality.
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Theorem 4 (S. Akhtari-V.). Let M ⊆ Ol be

a full Ok-module, and assume that the rank

r(l/k) of the group El/k(M) of relative units is

positive. Let

ε1, ε2, . . . , εr(l/k),

be multiplicatively independent units in the sub-

group El/k(M). Assume that β 6= 0 is a point

in Ok, and µ 6= 0 is a point in M, such that

Norml/k(µ) = ζβ, where ζ ∈ Tor
(
O×k

)
.

Then there exists an element γ in El/k(M), such

that γµ belongs to M,

Norml/k(γµ) = ζ′β, where ζ′ ∈ Tor
(
O×k

)
,

and

h(γµ) ≤ 1
2

r(l/k)∑
j=1

h(εj) + [l : k]−1h(β).
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Relative Minkowski units: Assume that both
l/Q and k/Q are Galois. An element γ 6= 1 in
El/k is a relative Minkowski unit if the group

〈τ(γ) : τ ∈ Aut(l/k)〉
generated by the conjugates of γ over the field
k has maximum rank in El/k. These exist.

Theorem 5 (S. Akhtari-V.). Let η1, η2, . . . , ηr(l),
be a basis for O×l .

(i) If l/Q is totally real, there exists a relative
Minkowski unit γ in El/k such that

h(γ) ≤ 4[l : k]
r(l)∑
j=1

h(ηj).

(i) If l/Q is totally complex, there exists a rel-
ative Minkowski unit γ in El/k such that

h(γ) ≤ 8[l : k]
r(l)∑
j=1

h(ηj).
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