1. Prove that the conjugate space of \(c_0 \) is \(\ell^1 \). That is \(c_0^* = \ell^1 \) where
\[
c_0 = \{ x = (x_n) : x_n \to 0 \text{ as } n \to \infty \}.
\]

2.
 a) Let \(X \) be a linear space and \(Y \subseteq X \) a linear subspace. Prove that each linear functional \(f : Y \to \mathbb{K} \) has a linear extension \(\hat{f} : X \to \mathbb{K} \).

 b) Let \(X \) be a normed space, \(n \in \mathbb{N} \) and \(\{x_1, \ldots, x_n\} \subseteq X \) a linearly independent system. Prove that for any \(\alpha_1, \ldots, \alpha_n \in \mathbb{K} \) there is \(x^* \in X^* \) such that \(x^*(x_i) = \alpha_i \) for all \(1 \leq i \leq n \).

3. Show that if \(X \) and \(Y \) are nontrivial normed spaces and \(\mathcal{B}(X,Y) \) is a Banach space, then \(Y \) is a Banach space.
 Hint: Let \(y_n \) be a Cauchy sequence in \(Y \). Pick \(f \in X^* \), consider the sequence of operators \(\{T_n\} \) of \(\mathcal{B}(X,Y) \) define \(T_n(x) = f(x)y_n \).

4. Show that a linear functional \(f \) on a normed space \(X \) is discontinuous if and only if for each \(a \in X \) and each \(r > 0 \), we have
\[
f(B(a; r)) = \{ f(x) : ||a - x|| < r \} = \mathbb{K}
\]
 Hint: Note that \(B(a; r) = a + rB(0; 1) \). Recall that \(f \) is continuous if and only if \(f \) is bounded.

5. Let \(M \) be a closed subspace of a normed linear space \(X \) and let \(x_0 \) be a vector not in \(M \). If \(d \) is the distance from \(x_0 \) to \(M \), then show that there exists a functional \(f_0 \) in \(X^* \) such that
\[
f_0(M) = 0, \quad f_0(x_0) = 1 \quad \text{and} \quad ||f_0|| = \frac{1}{d}
\]
 Hint: Define \(f \) on \(M_0 = M + [x_0] \) by \(f(y) = f(x + \alpha x_0) = \alpha \)
6. A subset A in a normed space is called **total** if the smallest subspace containing A is dense in X. Prove that A is total if and only if for $f \in X^*$ and $f(a) = 0$ for each $a \in A$ implies that $f = 0$.

7. Let H be a Hilbert space, and $G \subseteq H$ a closed linear subspace. Prove that any linear and continuous functional on G has a unique Hahn-Banach extension on H.

Hint: If $f : G \to \mathbb{K}$ a linear and continuous functional, then show that $\tilde{f} : H \to \mathbb{K}$ defined by $\tilde{f}(x) = f(P_G(x))$ is the unique Hahn-Banach of f. Here $f(P_G(x))$ is the orthogonal projection of x onto G. For uniqueness consider a bounded linear functional $g : H \to \mathbb{K}$ where g restricted to G is f and $\|f\| = \|g\|$. Apply Riesz Representation theorem to g and show $\tilde{f} = g$.
