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Abstract. We present an overview of some results about characterization of compact-
ness in which the concept of approximation scheme has had a role. In particular, we
present several results that were proved by the second author, jointly with Luther, a
decade ago, when these authors were working on a very general theory of approximation
spaces. We then introduce and show the basic properties of a new concept of compact-
ness, which was studied by the first author in the eighties, by using a generalized concept
of approximation scheme and its associated Kolmogorov numbers, which generalizes the
classical concept of compactness.

1. Motivation

One of the basic notions in functional analysis is compactness. Its utility has become
of fundamental importance after the appearance of Arzelà-Ascoli’s Theorem [13], [14]
especially pointing its use for the proof of existence results when investigating the solu-
tions of differential equations. Indeed, a key step for the proof of convergence in many
algorithms is precisely to show that a certain set is compact, and many theorems have
been produced to characterize compactness of subsets of the numerous function spaces
and operator spaces that appear in functional analysis. The compactness of operators
was also a main ingredient for the study of the solutions of integral equations, and was
indeed introduced by Hilbert in his studies of the equations of Mathematical Physics. In
particular, Hilbert and his student Schmidth proved a very nice decomposition formula
for all self-adjoint compact operator T : H → H, where H is any separable Hilbert space:
the spectral decomposition theorem. This theory was soon investigated and amplified to
a beautiful set of results which we call nowadays Riesz theory (or Riesz-Schauder Theory)
and is devoted to the study of operators S : X → X (where X denotes any complex Ba-
nach space) that can be expressed as S = λIX−T with λ 6= 0 (an scalar) and T : X → X,
a compact operator. In such study, the spectral properties of the operator T are essential
and, in connection with these properties, it was soon discovered that some entropy and
approximation quantities were of great importance (see, e.g., [21] for a detailed study of
this connection). Compactness has also been a fundamental concept for the development
of other parts of Mathematical Analysis, such as Fixed Point Theory or Approximation
Theory. Concretely, Brouwer’s fixed point theorem [18] asserts that every compact convex
set K in Rn is a fixed point space, that is, if f : K → K is continuous, then f(x) = x
for some x ∈ K (see [38, p. 25] for a nice easy demonstration). On the other hand,
Schauder’s fixed point theorem [51], which has numerous applications in Mathematical
Analysis, asserts that every convex set in a normed linear space is a fixed point space
for compact maps (see also [16]). Among the results equivalent to Brouwer’s fixed point
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theorem, the theorem of Knaster, Kuratowski and Mazurkiewicz (in short, KKM) [36] oc-
cupies a special place. Ky Fan, using KKM maps, was able to prove a best approximation
theorem [29]. Later on, this concept was generalized by Khamsi to metric space setting
by demonstrating a result which can be seen as an extension of Brouwer and Schauder’s
fixed point theorems (see [35]). Finally, just to include in this section some results re-
lated to Approximation Theory, we would like to stand up that compactness of natural
embeddings Y ↪→ X is, in fact, the main reason because, in many classical contexts, we
can prove that approximation errors (with respect to arbitrary approximation schemes)
and Fourier coefficients of functions that belong to the space Y , decay to zero with a
certain prescribed behavior. This was recently proved by Almira and Oikhberg [12] and
by Almira [8].

In this paper, we survey some results about the characterization of compactness in
which the concept of approximation scheme has had a role. Concretely, in Section 2
we present several results that were proved by the second author, jointly with Luther, a
decade ago, when these authors were working on a very general theory of approximation
spaces [9], [10] (see also [31]) and, in Section 3, we introduce and show the basic properties
of a new concept of compactness, which was studied by the first author in the eighties
[1], [2], [3], [6], by using a generalized concept of approximation scheme and its associated
Kolmogorov numbers, which generalizes the classical concept of compactness.

2. Approximation schemes, approximation spaces and compactness

2.1. Preliminaries.

Definition 2.1. Given (X, ‖ · ‖) a quasi-Banach space, and A0 ⊂ A1 ⊂ . . . ⊂ An ⊂ . . . ⊂
X an infinite chain of subsets of X, where all inclusions are strict, we say that (X, {An})
is an approximation scheme (or that (An) is an approximation scheme in X) if:

(A1) there exists a map K : N → N such that K(n) ≥ n and An + An ⊆ AK(n) for all
n ∈ N,

(A2) λAn ⊂ An for all n ∈ N and all scalars λ,
(A3)

⋃
n∈NAn is a dense subset of X.

We say that the approximation scheme (X, {An}) is nontrivial if An = An
X ( An+1 for

all n, and we say that it is linear if An is a vector subspace of X for all n.

Approximation schemes were introduced in Banach space theory by Butzer and Scherer
in 1968 [20] and, independently, by Y. Brudnyi and N. Kruglyak under the name of
“approximation families” in 1978 [19]. They were popularized by Pietsch in his 1981
seminal paper [41], in which he introduced the approximation spaces

Arp(X,An) = {x ∈ X : ‖x‖Arp = ‖{E(x,An)}∞n=0‖`p,r <∞},
where

`p,r = {{an} ∈ `∞ : ‖{an}‖p,r =

[
∞∑
n=1

nrp−1(a∗n)p

] 1
p

<∞}

denotes the so-called Lorentz sequence space (in particular, {a∗n} is the non-increasing
rearrangement of {an}), (X, ‖ · ‖X) is a quasi-Banach space, and E(x,An) = infa∈An ‖x−
a‖X .
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There were two main motivations for Pietsch’s study of approximation spaces. On
the one hand, the spaces Arp(X,An) form a scale which allows a natural interpretation
of the so called central theorems in approximation theory as the appropriate tool for
the classification of functions and operators in terms of their smoothness (compactness,
respectively) properties, which crystallize with the property of membership to one of
these spaces (see, for example, [7], [25], [26], [42]). On the other hand, he also detected
a very nice parallelism between the theories of approximation spaces and interpolation
spaces. In particular, he proved embedding, reiteration and representation results for his
approximation spaces.

Simultaneously and also independently, Tiţa [60] studied, from 1971 on, for the case of
approximation of linear operators by finite rank operators, a similar concept, based on the
use of symmetric norming functions Φ and the sequence spaces defined by them, SΦ =
{{an} : ∃ limn→∞Φ(a∗1, a

∗
2, · · · , a∗n, 0, 0, · · · )} and, later on, Almira and Luther [9], [10]

developed a theory for generalized approximation spaces via the use of general sequence
spaces S (that they named “admissible sequence spaces”) and defined approximation
spaces as

A(X,S, {An}) = {x ∈ X : ‖x‖A(X,S) = ‖{E(x,An)}‖S <∞}.
Furthermore, this theory, which also includes the reiteration and representation theorems,
was developed by the authors without using any result from interpolation theory. Admis-
sibility of the sequence space S is just a technical imposition that allows to prove that
‖x‖A(X,S) = ‖{E(x,An)}‖S defines a quasi-norm. This property is automatically satis-
fied by the sequence spaces S which contain all finite null sequences and satisfy that, if
{bn} ∈ S and |an| ≤ |bn| for all n, then {an} ∈ S and ‖{an}‖S ≤ ‖{bn}‖S; if K(n) = n
(see [9, Definition 3.2]). Other papers with a similar spirit of generality have been written
by Aksoy [1], [2], [3], [6], Tiţa [56] and Pustylnik [46], [47]. Finally, a few other important
references for people interested on approximation spaces and/or approximation schemes
are [11], [12], [22], [23], [24], [30], [39], [40], [57], [59], [60] and [58]. It is important to re-
mark that, due to the centrality of the concept of approximation scheme in approximation
theory, the idea of defining approximation spaces is a quite natural one. Unfortunately,
this has had the negative effect that many unrelated people has thought on the same
things at different places and different times, and some papers on this subject partially
overlap.

Along this paper we will assume that all spaces appearing are normed, although many
of the results presented here also hold true in the quasi-normed setting.

2.2. Characterization of compactness with boundedly compact approximation
schemes and the Arzelà-Ascoli Theorem. A first characterization of compactness in
complete metric spaces was given by Hausdorff, who proved that M is relatively compact
in the complete metric space (X, d) if and only if for every ε > 0 there exists a finite

ε-net for M (i.e., a finite set of points {xk}sk=1 ⊆ X such that M ⊆
⋃N
k=1Bd(xk, ε), where

Bd(x, t) = {y ∈ X : d(x, y) ≤ t}). This result can be reformulated as a characterization
of compactness with the aid of approximation schemes as follows.

Theorem 2.2. Assume that (X, {An}) is an approximation scheme with An boundedly
compact for all n ∈ N, and let M ⊆ X. Then the following are equivalent claims:

(i) M is a relatively compact subset of X
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(ii) M is a bounded subset of X and limn→∞E(M,An) = 0.

Furthermore, the implication (i) ⇒ (ii) holds true for arbitrary approximation schemes
{An}.

Proof. (i) ⇒ (ii) Assume that M ⊆ X is relatively compact. Then M is bounded

in X since M
X

is bounded (compactness implies boundedness). We must show that
limn→∞E(M,An) = 0. Take ε > 0 and let {x1, · · · , xN} ⊆ X be an ε-net for M . Then,
given x ∈ M , E(x,An) ≤ E(x − xk, An) + E(xk, An) ≤ ε + maxk=1,··· ,N E(xk, An) ≤ 2ε
for n ≥ N0(ε), since limn→∞maxk=1,··· ,N E(xk, An) = 0. Note that we have used nothing
about {An} but the fact that

⋃
n∈NAn is a dense subset of X.

(ii) ⇒ (i) Let ε > 0 be an arbitrary positive constant. By hypothesis, there exists
N0 = N0(ε) > 0 such that E(M,AN0) < ε/4. In particular, every x ∈ M admits a
decomposition x = a(x) + y(x) with a(x) ∈ AN0 and ‖y(x)‖ = ‖x − a(x)‖ ≤ ε/2. Now,
boundedness of M implies that there exists a constant C > ε such that M ⊆ CUX , so
that ‖a(x)‖ ≤ ‖x‖+ ‖y(x)‖ ≤ C + ε/2 ≤ 2C.

Let {b1, b2, · · · , bs} be a ε/2-net in AN0 ∩ 2CUX , which is a compact set since AN0 is
boundedly compact. Given x ∈M there exists i ≤ s such that ‖a(x)− bi‖ ≤ ε/2, so that

‖x− bi‖ ≤ ‖x− a(x)‖+ ‖a(x)− bi‖ ≤ ε,

which proves that {b1, · · · , bs} is a finite ε-net for M . Hausdorff’s theorem guarantees
that M is relatively compact in X. �

Corollary 2.3. Assume that (X, {An}) is an approximation scheme with An boundedly
compact for all n ∈ N. A set M ⊆ X satisfies limn→∞E(M,An) = 0 if and only if
there exists M ′, a relatively compact subset of X, and a natural number N ∈ N such that
M ⊆ AN +M ′ is satisfied.

Proof. Assume that M ⊆ AN + M ′ with M ′ relatively compact in X. Then Theorem
2.2 implies that {E(M ′, An)} ↘ 0. Take x ∈ M and n ∈ N, n ≥ N . Then there exists
a ∈ AN , y ∈M ′ such that x = a+ y and

E(x,AK(n)) = E(a+ y, AK(n))

≤ E(a,An) + E(y, An)

= E(y, An) ≤ E(M ′, An),

so that E(M,AK(n)) ≤ E(M ′, An) for all n ≥ N , and {E(M,An)} ↘ 0.
Let us now assume that {E(M,An)} ↘ 0. If M is a bounded subset of X then Theorem

2.2 implies that M is relatively compact, so that we can take M ′ = M and N = 0. On the
other hand, if M is unbounded, then we can take N ∈ N such that E(M,AN) ≤ 1/2 and
define M ′ = {y ∈ UX : exists x ∈ M and a ∈ AN such that y = x− a}. M ′ is obviously
bounded and, if y = x− a ∈M ′ with a ∈ AN , x ∈M , then, for each n ≥ N ,

E(y, AK(n)) = E(x− a,AK(n))

≤ E(a,An) + E(x,An)

= E(x,An) ≤ E(M,An),

which proves that E(M ′, AK(n)) ≤ E(M,An) for all n ≥ N . Thus {E(M ′, An)} ↘ 0 and
Theorem 2.2 implies that M ′ is a relatively compact subset of X. �
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Corollary 2.4 (Arzelà-Ascoli). A set M ⊆ C[a, b] is relatively compact in C[a, b] if and
only if it is uniformly bounded and equicontinuous.

Proof. Let us consider the approximation scheme (C[a, b], {Πn}), where Πn denotes the
space of (algebraic) polynomials of degree ≤ n and let us assume that M is relatively
compact in C[a, b]. Then, Theorem 2.5 implies that M is a bounded subset of C[a, b]
(i.e., M is uniformly bounded, so that there exists C > 0 such that ‖f‖C[a,b] ≤ C for all
f ∈M) and {E(M,Πn)} ↘ 0. Let us show that M is equicontinuous.

Given ε > 0 (without loss of generality we assume ε < C), there exists N ∈ N such
that E(M,ΠN) < ε/8. Furthermore, for all t, s ∈ [a, b] and all f ∈M we have

|f(t)− f(s)| ≤ |f(t)− p(t)|+ |p(t)− p(s)|+ |p(s)− f(s)| for all p ∈ ΠN .

Hence, if we take p = p∗ ∈ ΠN such that ‖f − p∗‖C[a,b] ≤ 2E(f,ΠN), then

|f(t)− f(s)| ≤ 4E(f,ΠN)|+ |p∗(t)− p∗(s)| ≤ ε/2 + w(p∗, |t− s|),
where w(h, δ) = sup|t−s|≤δ |h(t)− h(s)| denotes the modulus of continuity of the function

h. Now, if p(t) = a0 + a1t + · · · + aN t
N ∈ ΠN , then both ‖p‖0 = max0≤k≤N |ak| and

‖p‖1 = ‖p‖C[a,b] define a norm over the finite dimensional space ΠN , so that they are
equivalent norms. On the other hand, M being bounded, the norm of p∗ must be controlled
by a constant K > 0 (since ‖p∗‖ ≤ ‖p∗ − f‖ + ‖f‖ ≤ ε/4 + C ≤ 2C = K). This implies
that we can assume max0≤k≤N |ak| ≤ K∗ for a certain constant K∗ > 0 and hence

w(p∗, |t− s|) ≤ K∗
N∑
k=0

w(φk, |t− s|); where φk(x) = xk, k = 0, 1, · · · , N.

(since w(ah1 + bh2, δ) ≤ max{|a|, |b|}(w(h1, δ) +w(h2, δ)) for all scalars a, b and functions

h1, h2, and p∗ =
∑N

k=0 αkφk). In particular, we can choose δ = δ(ε) > 0 such that
|t − s| ≤ δ implies max0≤k≤N w(φk, |t − s|) ≤ ε

2K∗(N+1)
. This shows that w(f, δ) ≤ ε for

all f ∈ M , which is what we wanted to prove. To prove the other implication we can
use Theorem 2.5 with An = Πn and the well known Jackson’s inequality for algebraic
approximation E(f,Πn) ≤ Cw(f, 1

n+1
), n = 0, 1, · · · . �

In this section of the paper, we will concentrate our attention most of the time on
linear approximation schemes defined over Banach spaces X, since they are enough for
the applications we mention explicitly here. In such a case it is known that all sequence

spaces `q(β) = {{an} ⊂ R : ‖{an}‖`q(β) = (
∑∞

n=0 bn|an|q)
1
q < ∞} are admissible, so that,

when dealing with these spaces we do not worry about the weights β = {bn} ⊂ [0,∞).
Of course, if the approximation scheme is nonlinear and the space `q(β) is not admissible
for this approximation scheme, we still can talk about the set A(X, {An}, `q(β)) and we
will say that M is bounded in A(X, {An}, `q(β)) whenever supf∈M ‖{E(f, An}‖`q(β) <∞.

Theorem 2.5. Assume that (X, {An}) is an approximation scheme with An boundedly
compact for all n ∈ N. If q ∈ [1,∞] and M ⊆ X, then the following are equivalent
statements:

(i) M is a relatively compact subset of X.
(ii) There exists β = {bn}∞n=0 a sequence of nonnegative real numbers such that ‖β‖`q =
∞ and M is a bounded subset of A(X, {An}, `q(β)).
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Proof. We first show (i) ⇒ (ii). If M is relatively compact, then Theorem 2.2 proves
that αn = E(M,An) satisfies {αn} ∈ c0 and E(x,An) ≤ αn for all x ∈ M and all n ∈ N.
Thus, if q = ∞, then supx∈M ‖{E(x,M)}‖`∞({ 1

αn
}) ≤ 1 and M is a bounded subset of

A(X, {An}, `∞({ 1
αn
})).

Let us now assume that q < ∞. Take {nk} a sequence of natural numbers such
that αnk ≤ 2−k, k = 1, 2, · · · and consider the sequence β = {bn} defined by bnk = 1,
k = 1, 2, · · · , and bn = 1

2nαn
for n ∈ N \ {nk}∞k=1. Then ‖β‖q`q ≥

∑∞
k=1 b

q
nk

= ∞ and, for
each x ∈M ,

‖x‖qA(X,{An},`q(β)) =
∞∑
k=1

E(x,Ank)
q +

∑
n∈N\{nk}∞k=1

E(x,An)q(
1

2nαn
)q

≤
∞∑
k=1

2−kq +
∑

n∈N\{nk}∞k=1

1

2qn
≤ 3,

so that M is a bounded subset of A(X, {An}, `q(β)).
Let us prove (ii)⇒ (i). Let β = {bn} be a sequence of nonnegative real numbers such

that b0 > 0 and ‖β‖`q = ∞. Assume that M is a bounded subset of A(X, {An}, `q(β)).
Then, b0 > 0 implies that M is also bounded in X. Furthermore, given x ∈ M , we have
that

E(x,An)‖{bk}nk=0}‖`q ≤ ‖{bkE(x,Ak)}nk=0‖`q
≤ ‖{bkE(x,Ak)}∞k=0‖`q = ‖x‖A(X,{An},`q(β)) ≤ C

for a certain constant C and all n ∈ N. This shows that {E(M,An)} ↘ 0, since ‖β‖`q =∞
and the estimation above holds for all x ∈M . Theorem 2.2 implies that M is a compact
subset of X. �

Corollary 2.6. Assume that ‖β‖`q = ∞, where β = {bn} is a sequence of nonnegative
real numbers and b0 > 0. If (X, {An}) is a linear approximation scheme with dimAn <∞
for all n, the embedding A(X, {An}, `q(β)) ↪→ X is compact.

Proof. The linearity of An guarantees that `q(β) is an admissible sequence space for all β,
so that A(X, {An}, `q(β)) is a Banach space and A(X, {An}, `q(β)) ↪→ X is an embedding.
Now the Corollary is just a restatement of the implication (ii)⇒ (i) in Theorem 2.5. �

Corollary 2.7. Assume that (Y, {An}) is a linear approximation scheme with dimAn <
∞ for all n ∈ N, X is a Banach space, q ∈ [1,∞] and T ∈ L(X, Y ). Then the following
are equivalent statements:

(i) T ∈ K(X, Y ) (i.e., T is a compact operator).
(ii) There exists a sequence of non-negative real numbers β = {bn}∞n=0 such that b0 > 0,
‖β‖`q =∞, and T ∈ L(X,A(Y, {An}, `q(β))).

Proof. (i) ⇒ (ii). By hypothesis, T (UX) is relatively compact in Y , so that there exists
β = {bn} is a sequence of nonnegative real numbers such that ‖β‖`q = ∞, b0 > 0, and
T (UX) is a bounded subset of A(Y, {An}, `q(β)). Hence T ∈ L(X,A(Y, {An}, `q(β))).

(ii) ⇒ (i). This implication follows directly from the compactness of the embedding
A(Y, {An}, `q(β)) ↪→ Y . �
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Theorem 2.5, in conjunction with the reiteration property of approximation spaces, was
used by Almira and Luther to prove a compactness criterium for subsets of generalized
approximation spaces and, as a corollary, a characterization of convergence in these spaces.

To state these results it is necessary to introduce a little bit more notation. Concretely,
given β = {bn}∞n=0 a sequence of positive real numbers, we define the sequence spaces

`q0(β) =

{
`q(β), whenever q <∞
c0(β) = {{an} : limn→∞ anbn = 0}, if q = +∞ .

These spaces appear here because, to use the reiteration property with an approxima-
tion space A(X, {An}, S), it is necessary that

⋃
nAn be dense in A(X, {An}, S) and,

if S = `q(β) with ‖β‖`q = +∞, then the closure of
⋃
nAn in A(X, {An}, `q(β)) is

A(X, {An}, `q0(β)).

Theorem 2.8. Assume that ‖β‖`q =∞, where β = {bn} is a sequence of nonnegative real
numbers and b0 > 0, and let (X, {An}) be a linear approximation scheme with dimAn <∞
for all n. The following assertions are equivalent:

(i) M is a relatively compact subset of A(X, {An}, `q0(β)).
(ii) There exists a sequence of nonnegative real numbers γ = {an} such that a0 > 0,

limn→∞ an =∞, and M is a bounded subset of A(X, {An}, `q0({anbn})).

Theorem 2.9. Let us assume the hypotheses of Theorem 2.8. The sequence {fn} ⊆
A(X, {An}, `q0(β)) is convergent in the norm of A(X, {An}, `q0(β)) if and only if it is con-
vergent in the norm of X and it forms a relatively compact subset of A(X, {An}, `q0(β)).

2.3. Characterization of compactness with arbitrary linear approximation sche-
mes and some applications. So far, we have imposed over An being boundedly compact
or, even more, being a finite dimensional linear space. Obviously, these impositions were
necessary for our proofs, but it is also true that they are strong assumptions. Is it possible,
for example, to give some compactness criterium by using linear approximation schemes
(X, {An}) if we allow dimAn = ∞? Obviously, in those cases the characterization of
compactness should be more complicated since being bounded in A(X, {An}, `q0(β)) will
not be a sufficient condition for a bounded subset of X in order to be relatively compact.
The reason is simple: the unit ball of An, which is not relatively compact since An is
infinite dimensional, is bounded in A(X, {An}, `q0(β)) for all β. Now, Almira and Luther
[10] proved that, if M is a bounded subset of A(X, {An}, `q0(β)), then compactness of M
as a subset of X will follow from some extra assumptions.

Theorem 2.10. Let (X, {Ak}) be a linear approximation scheme and assume that there
exist linear projections Pk : X → X with Pk(X) = Ak for all k ∈ N, and supk∈N ‖Pk‖ =
K <∞. Given M ⊆ X and q ∈ [1,∞], the following are equivalent statements:

(i) M is relatively compact in X.
(ii) Pk(M) is relatively compact in X for k = 1, 2 · · · and there exists β = {bk} ⊆

[0,∞) such that ‖β‖`q = +∞, b0 > 0 and M is bounded in A(X, {Ak}, `q(β)).

Proof. The implication (i)⇒ (ii) is trivial. Indeed, it follows from (i)⇒ (ii) in Theorem
2.2 -which holds true for arbitrary approximation schemes {Ak}- that, if M is relatively
compact in X then {E(M,Ak)} ↘ 0 and this is precisely what we need for the existence
of the sequence β with the desired properties. Furthermore, if {Pk(fs)}∞s=0 is an infinite
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sequence in Pk(M) then {fs} is also an infinite sequence in M , so that it admits a
convergent subsequence {fsi}∞i=0. Obviously, {Pk(fsi)} is also convergent since ‖Pk(fsi)−
Pk(fsj)‖ ≤ ‖Pk‖‖fsi − fsj‖, which implies that {Pk(fsi)} is a Cauchy sequence. This
proves that Pk(M) is relatively compact in X for all k.

Let us prove (ii)⇒ (i). Let {fm}∞m=0 ⊆M be an infinite sequence. We must show that
{fm} contains a convergent subsequence. Let us define, for each k ∈ N, fk,m = Pk(fm).
For each xk ∈ Ak we have that

‖fm − Pk(fm)‖ = ‖fm − xk − Pk(fm − xk)‖ ≤ ‖I − Pk‖‖fm − xk‖
≤ (1 + ‖Pk‖)‖fm − xk‖.

Thus, if we take the infimum between the elements xk ∈ Ak, we get

‖fm − Pk(fm)‖ ≤ (1 + ‖Pk‖)E(fm, Ak) for all m, k ∈ N.

If we set ak =
1 + ‖Pk‖
‖{bi}ki=0‖`q

and ck = ‖{bi}ki=0‖`q , this inequality implies that

(1) ‖fm − Pk(fm)‖ ≤ ak(E(fm, Ak)ck + 1) for all m, k ∈ N.
Now, fixed k ∈ N, every subsequence of {Pk(fm)}∞m=0 contains a convergent subsequence,
since Pk(M) is relatively compact in X, by hypothesis. In particular, the subsequence can
be assumed to be of the form {Pk(fm)}m∈M0 (M0 an infinite subset of N) and to satisfy
the inequality

(2) ‖Pk(fs)−Pk(ft)‖ ≤ ak[(E(fs, Ak)+E(ft, Ak))ck+1]+ε for all t, s ∈M0\ [0,m0(ε)),

where ε > 0 can be arbitrarily small and m0 = m0(ε) may depend on ε.
Using jointly the inequalities (1) and (2), and the triangle inequality,

‖ft − fs‖ ≤ ‖ft − Pk(ft)‖+ ‖Pk(ft)− Pk(fs)‖+ ‖fs − Pk(fs)‖,
we have that

(3) ‖ft − fs‖ ≤ ak[2(E(fs, Ak) + E(ft, Ak))ck + 3] + ε for all t, s ∈M0 \ [0,m0(ε)).

Obviously, ‖b‖`q = ∞ and supk∈N ‖Pk‖ = K < ∞ imply that {ak} ∈ c0. Furthermore,
the boudedness of M in A(X, {Ak}, `q(β)) implies that

(E(fm, Ak)ck)
q = E(fm, Ak)

q‖{bi}ki=0‖
q
`q ≤ ‖fm‖

q
A(X,{Ak},`q(β)) ≤ Cq

for all m, k and a certain constant C > 0. Let us take n1 < n2 < · · · < ni < · · · a
sequence of natural numbers such that ani(4C+ 3) ≤ 2−i for all i = 1, 2, · · · , and a nested
sequence of infinite sets Mi ⊆ N, Mi+1 ⊆Mi for all i, such that
(4)
‖ft−fs‖ ≤ ani [2(E(fs, Ani)+E(ft, Ani))cni +3]+2−i ≤ 2−i+2−i = 2−i+1 for all t, s ∈Mi.

Then, if we choose m0 < m1 < · · · natural numbers such that mi ∈ Mi for all i, the
sequence {fmi} satisfies ‖fmi−fmj‖ ≤ 2−i+1 for all j ≥ i, so that it is a Cauchy sequence.
This proves that M is relatively compact. �

Obviously, if dimAk < ∞ for all k and M is a bounded subset of X, then Pk(M)
is relatively compact for all k. In this sense, Theorem 2.10 is clearly a generalization
of Theorem 2.2. On the other hand, if X = H is a Hilbert space and Ak is a closed
subspace of H for all k, then the orthogonal projections Pk : H → H (Pk(H) = Ak)
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satisfy ‖Pk‖ = 1 for all k, so that Theorem 2.10 can be useful in this context for arbitrary
linear approximation schemes. In fact, in their paper [10, Theorem 7.2], the authors used
this result to give a new proof of Tjuriemskih’s lethargy theorem [61], [62] (see also [9],
[53]):

Theorem 2.11 (Tjuriemskih). Let (X, {An}) be a nontrivial linear approximation scheme.
Let {εn} ↘ 0 be a non-increasing sequence of positive numbers converging to zero, and
let us assume that at least one of the following two conditions is fulfilled:

(a) dimAk <∞ for all k ∈ N.
(b) X is a Hilbert space.

Then there exists f ∈ X such that E(f, Ak) = εk for all k ∈ N.

Furthermore, in [10, Theorem 7.11], Theorem 2.10 above were also used to prove a
compactness criterium, which generalizes Kolmogorov’s characterization of compactness
in Lp(Rd) [37] (see also [32, Theorem 5]) and Simon’s characterization of compactness for
Lp((0, T ), X) [52, Theorem 3.1], for the spaces

Lp(Rd, X) = {f : Rd → X : f is measurable and‖f‖Lp(Rd,X) =

(∫
Rd
‖f(x)‖pXdx

)p
<∞},

where X is (any) Banach space.

Theorem 2.12. A bounded set M ⊆ Lp(Rd, X) is relatively compact in Lp(Rd, X) if and
only if the following three conditions are satisfied:

(i) limk→∞
∫
‖x‖≥k ‖f(x)‖pXdx = 0 uniformly in f ∈M .

(ii) The set {
∫

[a,b]
f(x)dx : f ∈ M} ⊆ X is relatively compact for all a, b ∈ Rd with

a < b. (This means that a = (a1, · · · , ad), b = (b1, · · · , bd) satisfy ai < bi for all i,
and [a, b] = [a1, b1]× · · · × [ad, bd]).

(iii) lim‖h‖→0 ‖f(·+ h)− f(·)‖p = 0 uniformly in f ∈M .

A careful inspection of the proof of Theorem 2.10 reveals that the important steps
for its arguments are the inequalities (1) and (2). This directly leads to introduce the
following technical concept, and the reformulation of the result below it.

Definition 2.13 ((β, q)-condition). Let q ∈ [1,∞] and assume that β = {bk}∞k=0 is a
sequence of positive numbers such that b0 > 0 and ‖β‖`q =∞. Let (X, {An}) be a linear
approximation scheme and let us assume that M ⊂ X. We say that M satisfies the
(β, q)-condition with respect to (X, {An}), if for every sequence {fm} ⊆ M there exist
{ak} ⊆ [0,∞) and sequences {fk,m}∞m=1 ⊆ X, k ∈ N, such that

(i) {an} ∈ c0

(ii) ‖fm − fk,m‖X ≤ ak[E(fm, Ak)‖{bi}ki=0‖`q + 1] for all m, k ∈ N.
(iii) For all k ∈ N, every subsequence of {fk,m}∞m=0 contains a subsequence {fk,m}m∈M0

(M0 been an infinite subset of N) such that

‖fk,s − fk,t‖X ≤ ak[(E(fs, Ak) + E(ft, Ak))‖{bi}ki=0‖`q + 1] for all t, s ∈M0 \ [0,m0(ε)),

where ε0 > 0 is arbitrarily small and m0 = m0(ε) may depend on ε.

Theorem 2.14. Let (X, {Ak}) be a linear approximation scheme and let q ∈ [1,∞] be
fixed. The following are equivalent statements:
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(i) M is relatively compact in X.
(ii) There exists β = {bk} ⊆ [0,∞) such that ‖β‖`q = +∞, b0 > 0 and M is a

bounded subset of A(X, {Ak}, `q(β)) which satisfies the (β, q)-condition with respect
to (X, {An}).

3. Generalized approximation schemes and Q-compactness

3.1. Preliminaries. A few examples.

Definition 3.1 (Generalized Approximation Scheme). Let X be a Banach space. For each
n ∈ N, let Qn = Qn(X) be a family of subsets of X satisfying the following conditions:

(GA1) {0} = Q0 ⊂ Q1 ⊂ · · · ⊂ Qn ⊂ . . . .
(GA2) λQn ⊂ Qn for all n ∈ N and all scalars λ.
(GA3) Qn +Qm ⊆ Qn+m for every n,m ∈ N .

Then Q(X) = (Qn(X))n∈N is called a generalized approximation scheme on X. We shall
simply use Qn to denote Qn(X) if the context is clear.

Obviously, there are several important differences between this concept and Definition
2.1 and, in fact, no one of these concepts includes the other one. We use here the term
“generalized” because the elements of Qn may be subsets of X (and not just elements of
X, as it was the case in Definition 2.1).

Let us now consider a few important examples of generalized approximation schemes:

1) The classical approximation schemes introduced in Pietsch in his seminal paper [41].
2) Qn = the set of all at-most-n-dimensional subspaces of any given Banach space X.
3) Let E be a Banach space and X = L(E); let Qn = Nn(E), where Nn(E) = the set of

all n-nuclear maps on E. [42]

4) Let ak = (an)1+ 1
k , where (an) is a nuclear exponent sequence. Then Qn on X = L(E)

can be defined as the set of all Λ∞(ak)-nuclear maps on E.[27]

We are now able to introduce Q-compact sets and operators:

Definition 3.2 (Generalized Kolmogorov Number). Let UX be the closed unit ball of X,
Q(X) = (Qn(X))n∈N be a generalized approximation scheme on X, and D be a bounded
subset of X. Then the nth generalized Kolmogorov number δn(D;Q) of D with respect to
UX is defined by

(5) δn(D;Q) = inf{r > 0 : D ⊂ rUX + A for some A ∈ Qn(X)}.
Assume that Y is a Banach space and T ∈ L(Y,X). The nth Kolmogorov number δn(T ;Q)
of T is defined as δn(T (UY );Q).

It follows that δn(T ;Q) forms a non-increasing sequence on non-negative numbers:

(6) ‖T‖ = δ0(T ;Q) ≥ δ1(T ;Q) ≥ · · · ≥ δn(T ;Q) ≥ 0.

Definition 3.3 (Q-compact set). Let D be a bounded subset of X. We say that D is
Q-compact if lim

n
δn(D;Q) = 0.

Definition 3.4 (Q-Compact Operator). We say that T ∈ L(Y,X) is a Q-compact oper-
ator if lim

n
δn(T ;Q) = 0, i.e., T (UY ) is a Q-compact set.
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Remark 3.5. If Q = {An}∞n=0 is a classical approximation scheme, then A ∈ An means
that A = An, so that, for any set D ⊆ X, δn(D; {An}) = E(D,An), since

δn(D; {An}) = inf{r : D ⊆ rUX + An}
= inf{r : E(x,An) ≤ r for all x ∈ D}
= sup

x∈D
E(x,An) = E(D,An).

Hence, in this case D ⊆ X is {An}-compact if and only if {E(D,An)} ↘ 0 and Theorem
2.2 states that, if An is boundedly compact for all n, then D ⊆ X is relatively compact in
X if and only if it is bounded in X and {An}-compact. Indeed, all theorems in Section 2 of
the paper are also results about Q-compact sets or operators. For example, Corollary 2.3
characterizes {An}-compactness of subsets of X whenever {An} is a boundedly compact
approximation scheme on X.

Proposition 3.6. Let Q = {Qn(X)} be a generalized approximation scheme on X and
assume that all elements A ∈ Qn are cones (i.e., λA ⊆ A for all scalar λ), for n = 1, 2, · · · .
If X is separable and {δn({x};Q)} ↘ 0 for all x ∈ X, then all relatively compact subsets
of X are Q-compact sets.

Proof. Let {xn}∞n=0 be a countable dense subset of X. For each n,m ∈ N, we take
An,m ∈ Qm and an,m ∈ An,m such that

‖xn − an,m‖ ≤ 2E(xn, An,m) ≤ 3δm({xn}, Q).

Then {an,m}n,m∈N is dense in X since limm→∞ δm({xn}, Q) → 0 for all n ∈ N and {xn}
is dense in X. It follows that

⋃∞
N=0BN is dense in X, where BN = span{an,m}Nn,m=1

is a linear subspace of X for all N . This obviously implies that, taking B0 = {0}, the
family {Bn}∞n=0 is a linear approximation scheme of X. On the other hand, it follows

from (GA3) that, for each N , there exists K(N) ≥ N and ÃK(N) ∈ QK(N) such that

A1,1 + A1,2 + · · · + AN,N ⊆ ÃK(N). Furthermore, this implies that BN ⊆ ÃK(N) since the
sets An,m are cones. Hence

(7) δK(N)(M ;Q) ≤ E(M, ÃK(N)) ≤ E(M,BN), for all M ⊆ X and all N ∈ N.
We claim that if M is relatively compact in X, then {E(M,Bn)} ↘ 0. To prove this
result, let us assume that the contrary is true. Then there exist {yn}∞n=1 ⊂ M and c > 0
such that E(yn, Bn) > c for all n. The relative compactness of M implies that there exists
a subsequence {ynk}∞k=1 and y ∈ X such that limk→∞ ‖ynk − y‖ = 0. Hence

E(ynk , Bnk) ≤ E(ynk − y,Bnk) + E(y,Bnk) ≤ ‖ynk − y‖+ E(y,Bnk)→ 0( for k →∞),

which contradicts c < E(ynk , Bnk), k = 1, 2, · · · . It follows that {E(M,Bn)} ↘ 0 and the
inequalities (7) imply that M is Q-compact. �

3.2. Q-Compactness Does Not Imply Compactness. In this section we show that
in Lp[0, 1], 2 ≤ p ≤ ∞, with a suitably defined approximation scheme, we can find a
Q-compact map which is not compact.

Let [rn] be the space spanned by the Rademacher functions. It can be seen from the
Khinchin Inequality that

(8) `2 ≈ [rn] ⊂ Lp[0, 1] for all 1 ≤ p ≤ ∞.
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We define an approximation scheme An on Lp[0, 1] as follows:

(9) An = {f ∈ Lp[0, 1] : f ∈ Lp+ 1
n
} or simply An = Lp+ 1

n
.

Lp+ 1
n
⊂ Lp+ 1

n+1
gives us An ⊂ An+1. for n = 1, 2, . . . , and it is easily seen that An+Am ⊂

An+m for n,m = 1, 2, . . . , and that λAn ⊂ An. Thus {An} is an approximation scheme in
the sense of Pietsch.

Next we observe the existence of a projection

(10) P : Lp[0, 1]→ Rp for p ≥ 2,

where Rp denotes the closure of the span of {rn(t)} in Lp[0, 1]. We know that for p ≥ 2,
Lp[0, 1] ⊂ L2[0, 1]. Now R2 is a closed subspace of L2[0, 1] and P 2 : L2[0, 1] → R2 is an
orthogonal projection onto R2. Then P = j ◦ P 2 ◦ i, where i, j are isomorphisms shown
in the Figure

L2
i

P 2

R2
j

P

Rp

Lp

Proposition 3.7. For p ≥ 2 the projection P : Lp[0, 1] → Rp is Q-compact but not
compact.

Proof. Let URp , ULp denote the closed unit balls of Rp and Lp respectively. It is easily
seen that P (ULp) ⊂ ‖P‖URp . But URp ⊂ CUR

P+ 1
n

where C is a constant follows from the

Khinchin inequality. Therefore, P (ULp) ⊂ Lp+ 1
n
, which gives δn(P,Q)→ 0. To see that P

is not a compact operator, observe that dimRp =∞ and I − P is projection with kernel
Rp, so I − P is not a Fredholm operator. Therefore P is not a Riesz operator, but every
compact operator is a Riesz operator. So P cannot be a compact operator. �

Remark 3.8. Another example which proves that Q-compactness does not imply com-
pactness: Take X = H a Hilbert space, Y ⊂ H an infinite dimensional closed subspace
such that dimH/Y =∞, D = UY and T = PY : H → H the orthogonal projection of H
onto Y . Take {An} any nontrivial linear approximation scheme on H such that A0 = {0}
and A1 = Y . Then D = T (UX) = UY is not relatively compact in X (so that T is not a
compact operator) and δn(T, {An}) = δn(D; {An}) = E(D,An) = 0 for all n ≥ 1, so that
T and D are {An}-compact.

3.3. Properties of Q-Compact Maps. Let A be the ideal defined as

(11) A = {T ∈ L(X) : δn(T ;Q)→ 0 as n→∞},
and let As denote the surjective hull of A, which is defined by

(12) As = {T ∈ L(X) : δn(TQE1 ;Q)→ 0 as n→∞}.
where QE1 is a surjection of `1

I with QE1(U`1I ) = UX .
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Proposition 3.9.

i) Q-compact maps have separable range;
ii) the uniform limit of Q-compact maps is Q-compact;

iii) an ideal of Q-compact maps is equal to its surjective hull, i.e. A = As.

Proof. i) Follows from the definition. For ii) we first observe that δ0(T ;Q ≤ ‖T‖. Now
suppose (Tn) is a sequence of Q-compact maps, and let T = lim

n
Tn. Then

δn(T ;Q) = δn(T − Tn + Tn;Q) ≤ δ0(T − Tn;Q) + δn(Tn;Q)

≤ ‖T − Tn‖+ δn(Tn;Q)(13)

which gives that T is Q-compact too.
For iii), A ⊂ Ac follows from the fact that

(14) δn(TQE1 ;Q) ≤ δn(T ;Q)‖QE1‖ = δn(T ;Q);

on the other hand

(15) δn(TQE1 ;Q) ≤ δn(TQE1(U`1I );Q) = δn(T ;Q);

gives the equality readily. �

Remark 3.10. Let T be a linear mapping from a Banach space X into a Banach space
Y . According a classical theorem of Schauder ([28], p.485) an operator T ∈ L(X, Y ) is
compact if and only if its adjoint T ∗ ∈ L(Y ∗, X∗) is compact. Using Schauder theorem
Terziog̃lu [54] gave a representation theorem for compact maps. He proves that T ∈
L(X, Y ) is compact if and only if there is a sequence (un) of continuous linear functionals
on X with lim

n
||un|| = 0 such that the inequality

||Tx|| ≤ sup
n
| < un, x > |

holds for every x ∈ X. In general Schauder type of theorem need not be true for Q-
compact maps. However a result analogous to Terziog̃lu’s can be proved for Q-compact
maps if one assumes both T and T ∗ are Q-compact. For details see [1].

3.4. Q-Compact Sets. We assume each An ∈ Qn(n ∈ N) is separable. It is immedi-
ate from the definitions that Q-compact sets are separable and Q-compact maps have
separable range.

Definition 3.11 (Order-c0-sequence). A double sequence {xn,k}n,k∈N ⊂ X is said to be
an order-c0-sequence if the following hold:

(1) for every n ∈ N there exists an An ∈ Qn such that {xn,k}∞k=0 ⊂ An;
(2) ‖xn,k‖ → 0 as n→∞ uniformly in k.

Theorem 3.12. Suppose (X,Qn) is a generalized approximation scheme with sets An ∈
Qn assumed to be solid (i.e, tAn ⊂ An for all t ∈ [0, 1]). Then a bounded subset D of X
is Q-compact if and only if there exists an order-c0-sequence {xn,k}∞k=0 ⊂ X such that

(16) D ⊂

{
∞∑
n=1

λnxn,k(n) : {k(n)}∞n=0 ⊆ N and
∞∑
n=1

|λn| ≤ 1

}
.
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Proof. Let D be Q-compact. Then δn(2D,Q)→ 0 and so there exists n1 such that

(17) 2D ⊂ 1

4
UX + An1 .

Since An1 is separable let {x1,k}∞k=0 be a countable dense subset of An1 ; then it is easy
to see that B1 = (2D + 1

2
UX) ∩ {x1,k}∞k=0 6= ∅ (and is an infinite countable set) and

2D ⊂ B1 + 1
2
UX .

Let D1 = (2D−B1)∩ 1
2
UX , where 2D−B1 is the ordinary vector difference. Then D1

is a bounded set (since it is a subset of 1
2
U) and given ε > 0 we get, by the Q-compactness

of 2D, that 2D − B1 ⊂ εUX + Am + Ãn1 ⊂
˜̃Am+n1 + εUX for suitable m and suitable

Ãn1 ∈ Qn1 ,
˜̃Am+n1 ∈ Qm+n1 ; this is true because B1 ⊂ Ãn1 and λÃn1 ∈ Qn1 for each

λ. This shows that D1 is Q-compact and, as before, there exists An2 ∈ Qn2 such that
2D1 ⊂ 1

8
UX + An2 . Let {x2,k}∞k=0 be a dense subset of An2 . Then

B2 = (2D1 +
1

4
UX) ∩ {x2,k}∞k=0 is infinite countable;(18)

2D1 ⊂ B2 +
1

4
UX ;(19)

D2 = (2D1 −B2) ∩ 1

4
UX is Q-compact.(20)

Continuing this process we define

(21) Bm =

(
2Dm−1 +

1

2m
UX

)
∩ {xm,k}∞k=0, {xm,k}∞k=0 dense in Anm ;

then 2Dm−1 ⊂ Bm + 1
2m
UX and we define

(22) Dm = (2Dm−1 −Bm) ∩ 1

2m
UX .

Our construction gives for each d ∈ D, successively chosen bi ∈ Bi, i = 1, 2, . . . , k such
that

(23) d−
(

1

2
b1 +

1

22
b2 + · · ·+ 1

2k
bk

)
∈ 2−kDk,

and since Dk ⊂ 2−kUX , it follows that

(24) d =
∞∑
n=1

1

2n
bn.

Since each bn = xn,k(n) for a suitable k(n) and since

bn ∈ Bn ⊂ 2Dn−1 +
1

2n
UX ⊂ 2 · 1

2n−1
UX +

1

2n
UX ⊂

3

2n−2
UX ,

it follows that ‖bn‖ → 0.
In the reverse direction, suppose we have that for each n an An ∈ Qn and {xn,k}∞k=0 ⊂ An

with ‖xn,k‖ → 0 as n→∞ uniformly in k and

(25) D ⊂

{∑
n

λnxn,k(n) :
∞∑
n=0

|λn| ≤ 1 and {k(n)}∞n=0 ⊆ N

}
:= C.
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Since for each c ∈ C we can write

(26) c =
m∑
n=1

λnxn,k(n) +
∞∑

n=m+1

λnxn,k(n) = u+ v,

where u ∈ λ1A1 + · · · + λmAm, our assumption on Qn and solidness of the An’s give
that u ∈ Ãm2 . Furthermore, given ε > 0 we may choose m such that ‖xn,k‖ < ε for

each k > m. Thus C ⊂ εU + Ãm2 and so δn(C,Q) → 0 as n → ∞, and therefore, also
δn(D,Q)→ 0. �

Remark 3.13. Theorem 3.12 can be considered as an analogue of the Dieudonne-Schwartz
lemma on compact sets in terms of standard Kolmogorov diameter. If one chooses Qn to be
the at-most-n-dimensional subspaces of X one can show that Q-compactness of a bounded
subset D coincides with the usual definition of compactness of D

Remark 3.14. The first author and M.Nakamura have proven a similar theorem for
p-normed spaces, 0 ≤ p ≤ 1.

Next we give a characterization of Q-compact subsets of X via Q-compact maps into
X.

Theorem 3.15. Assume (X,Qn) is a generalized approximation scheme on the Banach
space X with each An ∈ Qn being a vector subspace of X. Then, a bounded subset D of X
is Q-compact if and only if D ⊂ T (UE) for a suitable Banach space E and a Q-compact
map T on E into X.

Proof. We need only prove the “only if” part. Let D be Q-compact and let C denote
the closed absolute convex hull of D. Then that C is Q-compact is easily seen as follows:

each c ∈ C is of the form c =
m∑
i=1

λidi with
m∑
i=1

|λi| ≤ 1 and di ∈ D for each i; give ε > 0,

there exists N such that for all n ≥ N, δn(D,Q) < ε and equivalently D ⊂ εUX +An and
obviously then C ⊂ εUX + An.

Let XC denote the linear subspace of X spanned by the elements of C endowed with the
norm given by the gauge ( = Minkowski functional) µ of C. Then (XC , µC) is a Banach
space (see, e.g., [48], [49]). Let E = (XC , µC). If T is the canonical injection of XC into
X, then T (UE) = C ⊃ D and T is Q-compact. �

Remark 3.16. Using order c0-sequences and associated sets Sm = {
m∑
n=1

λnxn, k(n) :

m∑
n=1

|λn| ≤ 1},one can define the ball measure of non-Q-compactness γ(D) of a bounded

set D in a Banach space X as γ(D,Q) = inf{r > 0 : D ⊂
⋃
x∈Sn B(x, r)}. It is shown in

[1] that

γ(D,Q) = lim
n
δ(D,Q).

Furthermore, if we denote by Qc the ideal of Q-compact maps, then the ideal variation
γQc(D) = inf{r > 0 : ∃E and T ∈ Qc(E,X) such that D ⊂ T (UE) + rUX} = γ(D).
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[13] C. Arzelà, Un’osservazione intorno alle serie di funzioni, Rend. Dell’ Accad. R. Delle Sci.

Dell’Istituto di Bologna (1882-1883) 142-159.
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[56] N. Tiţa, On a limit class of Lorentz-Zygmund ideals, Analysis, Functional Equations, Approxima-

tion and Convexity, 302–306, Cluj Napoca, 1999.
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