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ABSTRACT. We answer the question asked by McMillan in 1970 con-
cerning distortion at the boundary by conformal mappings of the disk

which was left open in our earlier paper [7].
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1. INTRODUCTION

Let A denote the set of ideal accessible boundary points of a simply
connected domain €2. Recall that these are the finite radial limit points of
the Riemann map from the unit disk onto €2 and that each radius along which
the limit exists gives a distinct ideal boundary point. In particular, distinct
ideal accessible boundary points may have the same complex coordinate. Fix
wy € 2 and for each a € A and r < |wy — a| let y(a,r) C {2z : |z —a|] =1}
be the circular crosscut of {2 separating a from wy which can be joined to a
by a Jordan arc contained in Q N {z: |z — a| < r}. Throughout this paper
we will refer to v(a,r) as the principle separating arc for a of radius r.

Let L(a,r) denote the Euclidean length of v(a,r) and let

r

Ala,r) = /L(a,p) dp.

0
In [4], McMillan showed that

A(a,r)

2

>

Do =

lim sup
r—0 wr

almost everywhere on 02 with respect to harmonic measure ( denoted by

a.e.-w hereafter).
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The purpose of this paper is to prove

Theorem A.

e

o a,r
lim inf (a,
r—0 Tr2

< a.e.-w

DO | —

answering a question raised at the end of [4]. In an earlier paper, [7], we

proved

Theorem B.

&~

1
lim inf (a, 1) < =
r—0 2mr 2

also in answer to the last paragraph of [4]. Theorem A implies Theorem B

but the basic idea of the proof is the same as in [7]. Let

Enmi={a€ AlA(a,r) > (% + %)m“z Vr < %}
and consider a Riemann map f : D — Q from the unit disk to {2 such that
f(0) = wy. We will show that f~!(E,, ;) has zero Lebesgue measure in the
unit circle T for each m and k. We do this by showing that if f~'(E,.x)
has a point of density for some m, k then the image of that point would be
surrounded by a closed curve contained in 2. Since the union of all such
sets then has measure zero, this completes the proof.

The details of the present argument are more complicated than in [7] so it
may be helpful to read [7] first to get the main idea with fewer technicalities.
It may also be helpful to take an early glance at figures 1 and 2 near the
end of the paper. For more detailed background on the problem, one can
also refer to [4], [5] and [6]. For the ideas from geometric function theory

used here we refer to [1], [8] and [3].

2. PROOF OF THEOREM A.

In order to construct a curve in €2 which will surround a boundary point

and thus give the contradiction which proves Theorem A, we will need to
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know that centered at almost every point of E, ; there is a wide angled an-

nular corridor whose thickness is bounded from below. That such corridors
exist will be a consequence of the accumulation of E,, ; near the image of a

point of density of f ' (E,,x). In fact, the abundance of points of E,, ; will
allow us to construct a chain of such corridors in 2 which will wrap around
a boundary point.

We will require the following lemma. Let w(z, E, 2) denote the harmonic

measure of the set £ C 02 from the point z € 2.

Lemma 2.1. Let Q) be a simply connected domain in C and let f be a
Riemann map f:D — Q. Let E C 02 be a Borel set such that f~'(FE) has
a point of density. Then given § > 0 there is a point w € §2 such that

w(w, E,00Q) >1—0.

Proof.  Let 1 be a point of density of f~'(E) C T. For any interval I C T
centered at 7 there is a unique r(I,4d), 0 < r(I,J) < 1 such that

w(r(,o)n, I,D) =1 — g

Let z; = r(1,9)n. Given any € > 0 there is an interval I centered at 1 such
that
I\ fHE)] < el

where |- | denotes linear measure. Integrating the Poisson kernel at z; over

I\ f~Y(F) then gives

w(z[,f\f_l(E),D) <

N S

if |I] is sufficiently small. Therefore
wzn INfHE),D) >1-§

and taking w = f(z;) finishes the proof of the lemma. O
Let ds(z;) denote the Euclidean distance from f(z;) to 0. Actually,

results of Beurling from [2] imply the existence of a constant K such that a
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disk of radius Kdy(zs) contains all the harmonic measure of the set E found
in the lemma. (See [8], pg.142.)

Let wy = f(0) and assume that € T is a point of density of f~'(FE,,x) C
T. The finite number of steps required to get a contradiction in the con-
struction to follow will only depend on the number m in the definition of
E,, ;. It will be clear from the construction that if 6 > 0 is sufficiently small
and w(wy, Ep g, Q) > 1 — 0 for some point w; then the required number
of steps can be completed. Moreover, the choice of § depends only on m.
We choose 0 to be this small and apply Lemma 2.1 with £ = Ej, thus
obtaining the desired point w;.

Let dy be the Euclidean distance from w; to 9€2 and let xy € 0N be a
point such that |zg —w;| = do. Since f(1) € A we can assume that dy << ¢
where £ is the integer in the definition of E,, .

We will introduce positive constants cg, ¢y, o, ... and Cy,Cs,.... Their
values will be determined in the discussion to follow and will either be purely
numerical or depend only on m (in the definition of E,, ). For any w € C

and r > 0, let D(w, ) denote the set
{zeC:|lz—w| <}

Let N be a large integer which will be determined later. We will see
that it can be chosen so that N < (const. mg). Since z, is a boundary
point nearest to w; we may choose Ry so that D(wy,dy) N D(xg, 2N Ry)

has area greater than (5 — g=)m(2VR)?. Choose ¢y so that if zf is any

point in D(z, cogRy) then the area of D(wy,dy) N D(zf, Ry) is greater than

(3 — 5)mRE. Later, we will also need ¢y << ﬁ It is clear that Ry is

proportional to dy in a ratio depending only on m.

If 6 > 0 is sufficiently small, there is a set of points of E,, of posi-
tive harmonic measure contained in D(xg, cgRy). In fact, the circular arc
0D (xg, coRy) N D(wy, dy) extends to a circular crosscut of € which deter-

mines a unique subdomain, Uy, of € not containing w;. The midpoint, w*,
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coRo

5

of the circular arc 9D (zg, 2™2) N D(wy, dy) is contained in Uy. By the com-

2

parison principle for harmonic measure and the Beurling projection theorem

there is a constant C; > 0 such that

w(w*, oUy N O N D(l‘o, COR()), Q) >C1 >0

and by repeated application of Harnack’s inequality in D(wy, dg) UUyp, there

is then a constant Cs such that

w(w1,8U0 No2N D(IL’O,C()RO),Q) 2 CQ > 0.

By lemma 2.1, if ¢ is sufficiently small then

Cy

(1) w(wl, 8U0 N 89 N D(IL’O, C()R()) N Em,ka Q) Z 7 > 0,

as claimed.

Let zf be an element of 0Uy N D(xg, coRy) N Epy k-

x5 € By, we have

Ry
1 1
L(z:, p)dp > (= + —)mr?
[ Latpydo= (4 5w
R
V2m

and by the choice of ¢y, the area of

Note that because

R
{z€C: = < |z—a}| < Ry} N D(wy,dy)

V2m
— S )mR2.If

is greater than (5 — 7=
Y(x§, ) N D(wy,dy) =0

for each r € [\/RTLm’ Ry| then the area of the annulus

R
{zeC: J%S |z — 5| < Ry}
is greater than
1 1 1 1
(= + )R+ (= — — )RS = R3.

2 2m 2 2m
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This contradiction shows that there exists r € [\/RTLm’ Ry] such that y(z§, )N

D(wy,dy) # 0. Simple topological considerations show that circular cross-
cuts of smaller radius centered at zf which intersect D(wy,dy) must be
principle separating arcs for xj. Let ¢ = ﬁ Thus by shrinking Ry by
a factor no smaller than %, we may assume that for each r < 3Ry we
have v(xg, r) N D(wy,dy) # 0. Tt follows that for each r < 2R, we have
(o, 7) N D(wy, dy) # 0.

By a slight strengthening of the above argument it is clear that there are

constants ¢ > 0,c3 > 0 such that if 0 < R < % and a € E,, ), then
c
(2) [{r € iR, R] : L(a,r) > (1+ i)ﬁr}‘z 3R,
We will now assume without loss of generality that z( is the origin and
that w; is on the positive imaginary axis. Let

AUZ{23R0< |Z|<2R0}

Let
0, = inf{0 € (—g,w) L Jy N 00 £ 0}
where
Jop={z:arg(z) = —0,Ry < |z| < 2Ry}.
Let
Sg = {Z Ry < |Z| < 2R0, —90 < arg(z) < g}
See figure 2.

Choose z; € Jp, N 0S). Let Ry = |“;—1| and consider the annulus A; = {z :

c1Ry < |z — x| < Ri}. Any circular arc K centered at z; in A; with an

angle of at least (1 4 )7 is divided into two or three subarcs by the ray

coT

{z :argz = —fy}. At least two of the arcs have an angle larger than £27.

If @ > 0 is sufficiently small then the ray L; = {7z : argz = —(6p + )}

also divides K into two or three subarcs, at least two of which have an

angle larger than 22%. The same angle a will be used in each step of the
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construction. It is determined so that in each new step, newly constructed
annular corridors centered at points ;1 with argx;,; = —0; will cross the
ray {z : argz = —(0; + «)}. The angle a does not depend on the size of
Ry (or R; for later j) but only on ¢; and c,. Specifically, choose o < o*
where o is found by solving the triangle with sides A =1, B = % and C
and angles ZAB =7 — 2% /CA = o and ZBC. The choice a = 227 is

2m’ 32m

sufficient for our purposes.

We can further choose a sufficiently small constant ¢, > 0 so that any
circular arc centered at a € D(x1,c4R1) with an angle of at least (14 2)7
and with radius between ¢; Ry and R, will also be divided by the ray L; into
at least two subarcs with angle larger than 2%. Notice that ¢4 depends only
on ¢; and ¢y and not on R;. We will use the same constant ¢, in subsequent
similar steps of the construction with different radii R;.

The circular arc 0D(z1, c4Ry) NSy extends to a crosscut of € which deter-
mines a subdomain U; not containing w;. Because the width of S is greater
than (const.)dy, we may argue as before using Harnack’s inequality and the
Beurling projection theorem in D(wy, dy) USqUU; to find a constant C3 > 0

depending only on m such that

(3) w(w1,8U1 ﬂaQﬂD($1,C4R0),Q) > Cg > 0.
Therefore

C
(4) w(wy, dU; N OQ N D (1, c4Ro) N Epy gy Q) > 73 >0

by lemma 2.1 with a sufficiently small initial choice of § > 0.

For each point a € E,, ,NOU; ND(x1, c4Ry) let F, C [c1 Ry, Ry] denote the
set of r such that L(a,r) > (142)7r. By (2), the set F, has [F,| > c3R; and
for each r € F,, ~y(a,r) intersects the ray L;. Let x denote the orthogonal
projection of x; on the line L;. For points z,w in the plane, let Zw denote
the line segment with endpoints z and w. Then L; = Zgz U 2{0o} and we

write F, = F,;f UF, where F (respectively, F, ) is the set of r € F, such

a

that x{oo} (respectively, Tox) divides v(a,r) into two subarcs, the smaller
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of which has an angle at least 22~. Then either || > 2R or |[F, | > 2R;.
Making a choice of + or — so that the previous inequality holds, we rename
the chosen set F¥. Let L] denote the corresponding side of L; with respect
to the point x and let
G, ={LiNn~(a,r):r € F;}.

By (4) and the pigeonhole principal we find a; and a} in E,,; N OU; N

D(z1,c4Rp) and constants ¢5 > 0 and ¢g > 0 so that % < |ay —aj| < esRy

and so that |G, N Gy:

> cgR1. Note that here, ¢5 << ¢4. In fact it will

be seen in the following paragraph that c; should be chosen to be small

Com

compared to the angle 2%

There are now two cases to consider.

Case I. For each p such that ¢;R; < p < Ry we have y(ay, p) NSy # 0.

Case II. There is some radius p with ¢;R; < p < Ry, such that v(a;, p) N
So = 0.
Assume that we are in Case I. Given a and b in G4, NG, let S(a,b) C Q

be the subdomain of 2 between the crosscuts y(ay, |a; — a|) and y(aq, |a; —

b|). Let S*(a,b) denote the annular corridor bounded by v(aq,|a; — al),

v(ar, |ay — b|), ab, and 3Sy. We claim that there is a constant ¢; > 0 and
there are points @ and b in G4, NG, such that |a —b| > ¢z R, and such that

S*(a,b) contains no point of 9€2. In fact, if |a — b| < ¢tR; and if there is

a point 7 € 00 contained in S*(a,b) then some piece of 92 must connect

Com :

7 to ab and then must extend past L; through an angle of at least e in

c5 Ro
2 )

S(a,b). Since c5 is very small compared to £* and since |a] — a;| >
simple geometric considerations show that if ¢} is sufficiently small, then
one of the arcs vy(aj,|a; — b|) or y(a}, |a} — a|]) would intersect O at a
point too close to L; for the points a and b to be contained in Gg; (see

Figure 1). As |Gy, N Ga:| > ceRy and diam (Go, N Gor) < (1 — )Ry

we find the desired constant c; with ¢ > ¢; > 0 and the points a and b
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FIGURE 1. S*(a,b) can contain no point of 9f2.

with ¢;R; < |a — b] < ¢tR;. Note that the constant ¢; only depends on
previously introduced constants and therefore only on m. We rename the
above annular corridor S*(a,b) C Q as S§.

Now, still assuming Case I, let
Jo =A{z:arg(z) = =0, a| <[z] <[b[}
and let
Si={z:l|a| <|z| < b], —b) <argz<—(6+ )}

where
0, = inf{f € ((6p + ), 7) : Jp NI # 0}.

See Figure 2.
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ale, doL

FIGURE 2. Step one of the construction.

Choose x4 € Jy, N 0S2. Let Ry = ‘x—;‘ and let L, be the ray {z : argz =
—(01+a)}. The arc 0D(x2,c4Ry) NSy USGU S, defines a subdomain U not
containing w;. Arguing as before with Harnack’s inequality, the comparison
principle and the Beurling projection theorem but now in D(w,dy) U Sy U
Sy U St UU, we find, using Lemma 2.1 with a sufficiently small choice of

0 > 0, a constant C; > 0 such that

w(wl, oU, N o2 N D(l‘g, C4R2) N Em,k; Q) >(Cy > 0.

As in the previous step we find points as and aj in D(z2, c4Ro)NOU2NE,,
and sets G,, Ga; C Lo with the same properties as before. We then have

again

Case I. For each psuch that ¢; Ry < p < Ry we have y(ag, p)NSoUSFUS| #
0.

and the complementary Case II.
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Assume we are again in Case I. We repeat the argument made for the point
x1 at the new point z, and find two annular sectors. First ST is found by
the pigeon hole argument in the same way that S; was found in the previous
step. The new annular corridor S} is centered at the point ay near z, and
ends on the ray Lo after having passed through the additional angle of «
clockwise around xy. Now Sy is obtained in the same that S; was previously.

That is, Ss is centered at zy, begins where ST ends on L9 and is stopped in its

clockwise course around xy by a point x3 € Jy, N0S). In the jth subsequent

step a point x; is found at the end of S;_; and nearby points a;, a;f € Bk

are found as before. Case I at the jth step means that every principle
separating arc for a; with radius p between ¢, ?; and R; intersects the union
of the previously constructed annular corridors Sy, Sg, S1, ST, ..., Sj—1. The

new annular corridors S7_; and S; are now found as in previous steps. Note

that after the jth step, the union of annular corridors so far constructed
has turned through an angle of at least ja clockwise from the horizontal
through xy. A sufficiently small initial choice of § > 0 ensures that there is

an abundance of points of E,, ; near the point z; at the end of S;_; so that

the construction may continue to the (j + 1)St step.

Assuming that we only encounter Case I in each step, a sufficiently small
choice of ¢ at the beginning of the proof allows us to repeat the argument
N = [%] times and this determines the choice of N at the beginning of the
construction. Since the union of constructed corridors turns by an additional
angle of at least o with each step, we will have constructed a connected union

of annular corridors C in €2 contained in the annulus
{2:27VRy < |2 — mo| < 2V Ry}
The union of C with D(wy, dp) contains a closed curve in  surrounding the

boundary point z.

If case II occurs at any step n before the NI then there is a principle

separating arc for a, of radius p, ¢c; R, < p < R,, which does not intersect
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SoUSgUSTUSTU---US,_;. It follows that the circular crosscut centered
at a, of radius p which does intersect Sop U S U S; UST U---US,_; cannot
be a separating arc for a, at all. This means that wy is located in €2 on
the concave side of this arc but on the convex side of the arcs which make
up S, 1. We then continue the construction at the (n + 1)St step with the
original annulus A, centered at xy but now turning in the counterclockwise
direction. Since we have found case II in the clockwise direction, we cannot
find case Il in the counterclockwise direction without repeating the situation
of wy being on the concave side of the last non-separating circular arc but on
the convex side of the arcs in the last S,,_; from Case I. Simple topological
considerations rule out this possibility and we therefore find a closed curve
in 2 surrounding xy in at most N more steps.

It follows that there can be no point of density of f~'(E,, ) and that the

harmonic measure of F,, ; is therefore zero. The theorem is proved.
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