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Abstract

This paper is an exposition of some applications of Stochastic Processes to boundary behavior
problems for harmonic functions. As an illustration, we give a proof of Fatou’s theorem in simply
connected plane domains which is probabilistic and does not use the Riemann mapping theorem. The
paper closes with some remarks on further related work and open questions.
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1. Introduction

This paper comes from a talk given at a conference session on Applications of Stochastic
Processes held in honor of M.M. Rao. The author thanks the organizers and Professor Rao
for a very pleasant and informative meeting. The talk was a survey of topics and results
centered on the connections between stochastic processes, potential theory and boundary
behavior of harmonic functions. In the present paper we will focus on one point in the
talk as an illustrative example of this relationship, presenting in detail a probabilistic and
potential theoretic proof of a classical result of Fatou.

For 0 < r < 1 and −π ≤ θ ≤ π , let Pr(θ) = 1−r2

1+r2−2r cos(θ) denote the Poisson kernel in

the unit disk, and for 0 < α < π let Γα(θ) denote the convex hull of the point {eiθ} and
the circle of radius sin(α

2 ) centered at the origin. The region so defined has a vertex with
angle α at eiθ . The following theorem is a result from Fatou’s 1906 thesis and addresses the
question of how solutions to the Dirichlet problem in the plane behave near the boundary of
the domain.
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498 Michael D. O’Neill

Theorem 1.1. If u(z) is a harmonic function in the unit disk with the representation

u(reiθ ) =
1

2π

π∫
−π

Pr(θ − t)F(t)dt, 0 ≤ r ≤ 1, −π ≤ θ ≤ π

for some F ∈ Lp[−π,π] and 1 ≤ p ≤ ∞, then for almost every θ ∈ [−π,π] with respect to
Lebesgue measure, u(z)→ F(θ) as z → eiθ with z ∈ Γα(θ).

In particular, u(reiθ ) converges to F(θ) as r → 1 for almost every θ . In order to state
a possible generalization of this last statement to higher dimensions and more general do-
mains, we require some terms whose definitions will be given precisely below. For now,
readers less familiar with potential theory should compare the analogous parts of Theorem
1.1 where the domain Ω is the unit disk, the Green lines are radii and the measure dω is
given by integration against the Poisson kernel. A standard classical treatment of potential
theory is given in Helms (1969). For more (or much more) on the connection with probabil-
ity and stochastic processes see Port and Stone (1978), Bass (1995) or Doob (1984).

Let Ω ⊂ Rn be a domain containing the origin and consider the family P of harmonic
functions on Ω which have a representation of the form

u(x) =
∫

∂Ω

f (ξ )dωx(ξ ) x ∈ Ω

where dωx denotes the harmonic measure in Ω and f ∈ Lp(dω0) with 1 ≤ p ≤ ∞. As
a consequence of Harnack’s inequality (for which see for example Garnett and Marshall,
2005, p.27), the measures dωx, x ∈ Ω are all mutually absolutely continuous, have the same
sets of measure zero and give the same Lp spaces on ∂Ω.

Say that Ω has property F if, for any u ∈ P we have

lim
x→ξ ,x∈ℓξ

u(x) = f (ξ ), ξ ∈ ∂Ω

for almost every trajectory ℓξ of the Green function g(0, ·) ending at ξ ∈ ∂Ω. Here, the
notion of almost every trajectory refers to the Green measure on trajectories which will
be discussed below, but it is equivalent to consider the harmnonic measure of the set of
endpoints ξ ∈ ∂Ω.

It is not known whether general domains in Rn have property F or whether there is a
good characterization of those that do. In R2, the fact that simply connected domains have
property F follows from Theorem 1.1 by a conformal mapping argument. In Rn for n ≥ 3,
the absence of the conformal mapping technique makes results or conjectures which might
appear to be straightforward extensions of two dimensional results, difficult or impossible
to prove. In the following sections of the paper we will concentrate on the modest goal
of proving that simply connected domains in the plane have property F , without using a
conformal mapping. Instead the proof will rely only on probabilistic and potential theoretic
arguments. The new proof will give probabilistically intuitive reasons why the theorem is
true and lay the groundwork for extending the ideas to higher dimensional generalizations.
In the next section we will give background and some lemmas on harmonic measure, Green
functions and other potential theoretic ideas, emphasizing the probabilistic viewpoint. In
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section 3 we give the proof that simply connected domains in R2 have property F . In
section 4 we close with some remarks on further work and some related open questions.

2. Brownian Motion and Harmonic Measure

The term Harmonic Measure (Harmonische Mass) originates in the monograph (Nevanlinna,
1944) of R. Nevanlinna as the name for a useful conformally invariant quantity in problems
of geometric function theory. The technique had already been in use by (e.g.) Carleman,
Lindelöf, and both F. and R. Nevanlinna. We will jump ahead a bit and take as our starting
point the potential theoretic description of harmonic measure in terms of the Perron-Wiener-
Brelot solution of the Dirichlet problem.

A real valued function u defined on a domain Ω in Rn is superharmonic if it is lower
semi-continuous on Ω, not identically infinite on any component of Ω and if for any x ∈ Ω
the average value of u on small balls centered at x does not exceed u(x). A function u defined
on Ω is subharmonic if −u is superharmonic.

Let Ω be any domain in Rn and let f be a function defined on ∂Ω. The upper class of
functions for f , denoted by U f , includes the function which is identically +∞ on Ω and
otherwise consists of all superharmonic functions u defined in Ω which are bounded below
and satisfy, for each Q ∈ ∂Ω,

liminf
Ω∋x→Q

u(x)≥ f (Q).

The lower class L f of functions for f has the mirror image definition in terms of an upper
envelope of subharmonic functions or equivalently

L f =−U(− f ).

The upper and lower solutions of the generalized Dirichlet problem for f are respectively,

H f (x) = inf{u(x) : u ∈U f }

and
H f (x) = sup{u(x) : u ∈ L f }.

If H f (x) and H f (x) are equal and harmonic in Ω, we write H f (x) = H f (x) = H f (x) and
say that f is a resolutive boundary function. It is a result of Wiener (1924) that each con-
tinuous real function on ∂Ω is resolutive. It can be shown further that the space of bounded
resolutive functions is a Banach space in the supremum norm on ∂Ω and that the operator
H is linear on this space. By the maximum principle and the Riesz representation theorem,
there is for each x ∈ Ω, a unique Borel measure ωx on ∂Ω such that for each f ∈C(∂Ω),

H f (x) =
∫

∂Ω

f dωx.

The measure ωx is called the harmonic measure of Ω evaluated at x. The harmonic measure
can be considered to be a function of three arguments; Ω the domain, E ⊂ ∂Ω the set being
measured and z ∈ Ω, the base point for the measure. We will suppress the arguments of the
harmonic measure when it is convenient and not confusing. When necessary for clarity we
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will expand the notation completely, writing ω(z,E,Ω) for the harmonic masure at z ∈ Ω of
E ⊂ ∂Ω in the domain Ω. When it is more convenient typographically, we will write this as
ωz(E,Ω) or just ωz(E) when Ω is understood.

It was Kakutani who first made the connection between Brownian Motion and harmonic
measure in Kakutani (1944), by showing that the harmonic measure ωx is the exit distribu-
tion of a Brownian motion in Ω started at x. With Ω as before, let E ⊂ ∂Ω be a Borel set
and fix a ∈ Ω. Let Xt denote a Brownian motion started at a and let

τ = inf{t > 0 : Xt /∈ Ω}.

Then
ωa(E) = Pa{Xτ ∈ E}.

In the seminal paper (Doob, 1954), Doob extends the ideas of Kakutani and provides com-
plete details for a more general treatment. In the process, he lays out a complete theory
connecting (super)martingales and (super)harmonic functions. A martingale is a model of a
fair game, and with the ideas of Kakutani and Doob we may interpret the Dirichlet problem
with resolutive boundary data f as just such a game. A player located at x ∈ Ω randomly
chooses a Brownian path according to the Wiener distribution and receives a payoff equal
to the value of f at the first exit point of the path from Ω. The player’s expected payoff is a
function u(x) which is harmonic and which solves the Dirichlet problem. Doob also shows,
(Doob, 1954, Theorem 6.2), the following fact which we will think of as

Theorem 2.1 (Doob’s probabilistic version of Fatou’s theorem). If u solves the Dirichlet
problem on Ω with resolutive boundary data f , then

lim
t↑τ

u(Xt) = f (Xτ). a.s. Px

where Xt is a Brownian motion started at x and Px denotes Wiener’s measure on paths
started at x.

Note that Theorem 2.1 provides, in one sense, a far reaching generalization of Fatou’s
theorem since it gives a boundary convergence result in any domain and in any dimension.
In another sense, the hypotheses of Theorem 2.1 are much weaker though since convergence
is allowed to occur along almost any randomly chosen Brownian path exiting the domain.

A few years after Doob’s paper (Doob, 1954) appeared, the works of Hunt, (Hunt,
1957a,b, 1958) (and other probabilists such as Kac, Kemeny and Snell, Spitzer and Kesten)
extended the new probabilistic potential theory from Brownian motion to the setting of
general homogeneous Markov processes. These works created a dictionary describing the
non-trivial analogies between potential theoretic and probabilistic notions. As an example
from this dictionary we consider the potential theoretic Green function and the Green func-
tion defined in the theory of random walk on a square lattice. Given a domain Ω ⊂ C and
z0 ∈ Ω, let

u(z) =
∫

∂Ω

log |z0 −ξ |ωz(dξ )

be the solution to the Dirichlet problem with boundary data log |z0−ξ |. The Green function
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g(z0,z) is defined to be

g(z0,z) = log
1

|z− z0|
+u(z)

so that g is harmonic in Ω \ {z0}, g tends to zero at the boundary, and g has a logarithmic
singularity at z0. One shows that g is uniquely defined and that for smooth ∂Ω,

dωz0 =
∂g
∂n

(z0, ·)|dξ |

where n denotes the unit outward normal vector and |dξ | is the arclength on ∂Ω.

In the theory of random walk on a lattice (say Z2), for a bounded set A of lattice points,
we define the Green function gA(x,y) for Ac ×Ac to be the expected number of visits to y
of a random walk starting at x before hitting A. Lemma 2.8 below gives an example of the
analogy between these two Green functions.

An alternative definition of harmonic measure can be given in terms of the trajectories
of the gradient of Green’s function, and this was done by Brelot and Choquet (1951). Note
that the previous definitions become vacuous in case Ω has no Green function and assume
from now on that all domains considered possess one. By the work of Doob, we know that
this means exactly that Ωc has positive probability of being visited by a Brownian traveler
starting at any z ∈ Ω. To briefly summarize some of the results of Brelot and Choquet, let
a∈Ω be fixed and let ga(x) be Green’s function for Ω with pole at a. The Green lines starting
at a are the maximal orthogonal trajectories of the level lines of ga which have a limit point
at a. Each Green line has a well defined initial direction given by its unit tangent vector at
a and each point on the unit sphere corresponds in this way to a Green line at a. Given a
Borel subset E ⊂ ∂Ω, the Green’s measure of E is defined to be the normalized Lesbesgue
measure of the set of unit tangent vectors on the sphere for which the corresponding Green
lines terminate at points of E. Denote the Green’s measure of E by Ga(E) and take the
normalization so that Ga(∂Ω) = 1. With respect to Green’s measure, almost every Green
line terminates in a point of ∂Ω and such Green lines are called regular. Let Ga and Ga
denote respectively the outer and inner Green measures and let ωa and ωa denote the outer
and inner harmonic measures for general subsets of ∂Ω. Brelot and Choquet proved that for
any subset A ⊂ ∂Ω

ωa(A)≤ Ga(A)≤ Ga(A)≤ ωa(A) (2.1)

so that harmonic measurability implies Green measurability with equality of the measures.
Later, Arsove (1972), proved the converse of this statement, thereby showing that the two
measures are the same.

We will not go into the details of the arguments in Brelot and Choquet (1951) but we
remark that the main idea behind them is to carefully apply Green’s theorem. One defines a
tube as the set of Green lines connecting neighborhoods on disjoint level surfaces of ga and
uses Green’s formula to show that the flux of the vector field of ∇ga is the same at each end
of the tube. Letting one end of a tube tend to the boundary and the other to the singularity of
ga we get the equivalence of the normalized Lebesgue measure on a sphere centered at a for
one end of the tube with the harmonic measure of the endpoints of the Green lines on ∂Ω
at the other. Difficulties posed by critical points are circumvented by using the fact that the
critical set of ga corresponds to a set of measure zero in the normalized spherical measure
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at a. Covering subsets of the boundary by ends of tubes and attending to the details leads to
(2.1).

We will require the following basic projection estimates of harmonic measure due to
Beurling and Hall. The original proofs are in Beurling (1933) and Hall (1937) respectively.
Here we will give the statements as they appear in Øksendal (1983) where stochastic proofs
using the strong Markov and reflection properties of Brownian motion are given. Versions
of the results for R3 are also given in Øksendal (1983).

Let 0 ≤ R1 < R2 ≤ ∞ and let A denote the annulus

A = {z : R1 ≤ |z| ≤ R2}

Let K ⊂ A be compact and let −R2 < a <−R1. Put

K∗ = {|z| : z ∈ K} ⊂ R⊂ C

and define U = A◦ \K and V = A◦ \K∗.

Lemma 2.1 (The Beurling projection theorem).

ωa(K,U)≥ ωa(K∗,V ).

With the same notations, suppose that

R1 < r1 < r2 < R2

Lemma 2.2 (Hall’s Lemma). There exists c > 0 such that for all compact K ⊂ {z : r1 <
|z|< r2},

ωa(K,M)≥ cm1(K∗)

where M = A◦ \K \ [0,∞) and m1 denotes one dimensional Lebesgue measure on R.

The probabilistic content of the projection theorems is perhaps intuitively clear. Among
all sets with the same projections, the ones which are best hidden from a Brownian motion
started at a are prescribed by the theorems.

We can combine Hall’s lemma and the strong Markov property to get the following well
known lemma in the plane simply connected case. We require a standard notation for disks
shall use, here and elsewhere, D(z,r) for the open Euclidean disk with center z and radius r.

Lemma 2.3. Let Ω ⊂ C be a simply connected domain. Given ε > 0 there is c0 > 0 such
that for any z ∈ Ω

ω(z,∂Ω∩D(z,c0dist(z,∂Ω)),Ω)> 1− ε

where dist denotes the Euclidean distance in the plane.

Proof. The proof may be accomplished by a standard application of Hall’s lemma, see
Øksendal (1983), and the strong Markov property. Similar arguments have been used in
many places, see for example the survey article Betsakos (2001) and the papers referred to
there.
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Let r = dist(z,∂Ω), Dk = {w : |w− z| ≤ 2kr}, Ak+1 = Dk+1 \Dk for k = 0,1,2, . . . . Then

ω(z,∂Ω∩Dc
k,Ω) =

∫
∂Dk−1∩Ω

ω(w,∂Ω∩Dc
k,Ω)ω(z,dw,Ω∩Dk−1)

≤ max
w∈∂Dk−1∩Ω

ω(w,∂Ω∩Dc
k,Ω)ω(z,∂Dk−1 ∩Ω,Ω∩Dk−1)

and for j < k we have in the same way

ω(z,∂D j ∩Ω,Ω∩D j) =
∫

∂D j−1∩Ω

ω(w,∂D j ∩Ω,Ω∩D j)ω(z,dw,Ω∩D j−1)

≤ max
w∈∂D j−1∩Ω

ω(w,∂D j ∩Ω,Ω∩D j)ω(z,∂D j−1 ∩Ω,Ω∩D j−1).

If there is w ∈ ∂D j−1 ∩Ω then since Ω is simply connected, the circuluar projection of ∂Ω
onto a radius of A j−1 is an onto mapping. An application of Hall’s lemma in the annulus
A j ∪A j−1 then shows that there is a universal constant 0 < c1 < 1 such that

max
w∈∂D j−1∩Ω

ω(w,∂D j ∩Ω,Ω∩D j)≤ (1− c1).

(Note that the conclusion of Hall’s lemma is scale invariant.) It then follows by induction
that ω(z,∂Ω∩Dc

k,Ω)≤C(1−c1)
k. Taking k sufficiently large so that C(1−c1)

k < ε proves
the lemma with K ≥ 2k. �

The next lemma and the definitions that precede it relate the exits of Brownian travelers
to the Green line definition of harmonic measure.

Given a domain Ω⊂Rn and a fixed point x0 ∈Ω, choose an angle 0<α < π and consider
a regular Green line ℓ(x0,x1) starting from x0 and passing through some other point x1 ∈ Ω.
Let v be the unit tangent vector to ℓ(x0,x1) at x1 pointing in the direction of decreasing
g(x0, ·) along ℓ(x0,x1). We define the forward cone Λα(x1) to be the set of Green lines
starting at x1 whose tangent vectors at x1 are at an angle less than α with v.

In a plane domain Ω, define forward cones with respect to a fixed base point z0. As a
replacement for the regions Γα(eiθ ) used in Fatou’s theorem we have

Definition 2.1. The Green cone of aperture α over ζ ∈ ∂Ω is denoted Γα(ζ ) and defined
as

Γα(ζ ) = {z ∈ Ω : ζ ∈ ∂Λα(z)}.

The geometry of Green cones is not completely out of control.

Lemma 2.4. For any λ > 0 and any two points p1 and p2 in

Γα(ζ )∩{z : g(z0,z) = λ}

there is an N depending only on α and a sequence of m ≤ N disks Di ⊂ Ω,1 ≤ i ≤ m such
that D1 is centered at p1, Dm is centered at p2, consecutive disks intersect and each disk has
radius comparable to its distance to ∂Ω.



Edit
ors

' C
op

y

504 Michael D. O’Neill

The proof of this fact is omitted here since it relies only on facts about Green lines and
Harnack’s inequality. Lemma 2.4 is proved without using a conformal mapping in O’Neill
(Preprint). Notice that it implies that if u ≥ 0 is harmonic in Ω then the values of u on
Γα(ζ )∩{z : g(z0,z) = λ} are all comparable. That is, there are universal constants C1 and
C2 such that C1u(w1)≤ u(w2)≤C2u(w1) for any w1,w2 ∈ Γα(ζ )∩{z : g(z0,z) = λ}.

In what follows, we will identify Green lines starting from some fixed base point z0 ∈ Ω,
with ideal boundary points of Ω. By the Moore triod theorem of plane topology, the number
of points in the Euclidean boundary, ∂Ω, which are the endpoints of more than two regular
Green lines is at most countable. In many situations, it is possible to reduce matters to the
case in which there is exactly one Green line ending at each Euclidean boundary point by
considering interior approximation by Jordan domains.

Let Xt(η) denote Brownian motion started at the fixed base point X0(η) = z0 and let
τ(η) = inf

t
{Xt(η) /∈ Ω} denote the first exit time from Ω. Let K be a compact subset of ∂Ω

and let C(K,α) =
∪

ζ∈K
Γα(ζ ). With these notations, we have the following lemma.

Lemma 2.5. For almost every Brownian path η such that τ(η) ∈ K, there is t0(η)< τ(η)
such that

Xt(η) ∈C(K,α), t0 ≤ t < τ.

Proof. Given z ∈ Ω and α ∈ (0,π) we may choose λ > 0 such that if w ∈ {w : g(w,z) =
λ}∩Λ α

2
(z) then ω(w,∂Λα ∩ ∂Ω,Λ◦

α) ≥ 1
2 . With such a choice of λ define a sub-domain

U(z,α)⊂ Ω as
U(z,α) = {w ∈ Ω : g(w,z)> λ}∪Λα(z).

Then we have ω(z,∂Λα(z)∩∂Ω,U(z,α))≥ α
8π . Now define stopping times as follows:

τ1(η) = inf{t > 0 : Xt(η) /∈C(K,α)},

τ2(η) = inf{t > τ1 : Xt(η) ∈C
(

K,
α
2

)
\U(Xτ1(η),α)},

τ2k+1(η) = inf{t > τ2k : Xt(η) /∈C(K,α)},

and
τ2k(η) = inf{t > τ2k−1 : Xt(η) ∈C

(
K,

α
2

)
\U(Xτ2k−1(η),α)}.

We have, from the definitions of C(K,α), U(z,α), and from the strong Markov property
that

P{τ2k > τ|Xτ ∈ K}= 0,

P{τ2k < τ|τ2k−1 < τ}< 1− α
8π

and
P{Xτ ∈ K|τ2k+1 < τ}< 1− α

8π
.

It follows that
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P[{Xτ ∈ K}∩{τ2k+1 < τ}]<
(

1− α
8π

)
P{τ2k+1 < τ}

≤
(

1− α
8π

)
P{τ2k < τ}

and that

P{τ2k < τ}= P[{τ2k < τ}∩{τ2k−1 < τ}]≤
(

1− α
8π

)
P{τ2k−1 < τ}.

By induction, we then have

P[{Xτ ∈ K}∩{τ2k+1 < τ}]< (1− α
8π

)k.

By the Borell-Cantelli lemma, with probability one only finitely many of the events {Xτ ∈
K}∩{τ2k+1 < τ} occur. The statement of the lemma follows. �

The following three lemmas are technical results about harmonic measure whose poten-
tial theoretic proofs may be lifted from the paper Jerison and Kenig (1982). The statements
have been altered to suit our purposes here. We include the proof of the first one since it is
short. For any point w ∈ Ω let dΩ(w) denote the Euclidean distance from w to ∂Ω. We will
use this notation several times below.

Let r0 > 0 be small compared to dΩ(z0), say r0 < 2−10dΩ(z0), and let ξ ∈ ∂Ω be fixed.
Suppose that for each k = 0,1,2, . . . , sk is an arc of a circle centered at ξ with radius 2−kr0.
Suppose also that each sk separates the same ideal boundary point at ξ from z0 in Ω. Let u
be a positive harmonic function in Ω that vanishes continuously on γ , the subset of the ideal
boundary of Ω which is separated from z0 by s0. With this setup and notation we have the
following lemma.

Lemma 2.6. There is β > 0 which does not depend on Ω such that

u(z)≤ 2−βk(sup
s0

u) for z ∈ sk and k = 0,1,2, . . .

Proof. We shall use the method given in Jerison and Kenig (1982) Lemma 4.1.
Let M = sup

s0

u and let v be harmonic in the component Ω′ of Ω \ s0 not containing z0,

with v = 1 on s0 and v = 0 on γ . Then u ≤ Mv on Ω′ by the maximum principle, so we show
that v ≤ 2−βk on sk.

On s1, v ≤ 1− ε0 for some ε0 > 0 by the Beurling projection theorem. Let β > 0 be
such that 1− ε0 = 2−β . In the same way, for k ≥ 1, if v ≤ 2−βk on sk, then 2βkv ≤ 2−β on
sk+1. �

The next lemma provides local control over harmonic functions which vanish continu-
ously at the boundary.

Suppose a circular arc s2r of radius 2r is centered at ξ ∈ ∂Ω and separates an ideal
boundary point at ξ from z0. Let γ denote the part of the ideal boundary separated from z0
by s2r. Let sr be an arc of radius r centered at ξ which separates the same ideal boundary
point from z0 and let zr ∈ sr ∩Ω. Suppose that u is harmonic in Ω, u ≥ 0 and vanishes
continuously on γ . Let Ωr denote the component of Ω\ sr which does not contain z0.
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Lemma 2.7. There is C > 0 depending on dΩ(zr)
r but not depending on Ω or on u such that

u(z)≤Cu(zr)

for all z ∈ Ωr.

Proof. The proof follows the reasoning in Jerison and Kenig (1982), lemma 4.4, which
has its origin in Carleson (1962). It can also be considered as a nice exercise in the use of
the previous lemma. �

For the last lemma we control the local geometry. Assume that Ω is simply connected
and that ∂Ω contains a line segment L. Suppose that ξ ∈ L and r > 0 are such that a diameter
L′ of the disk D(ξ ,r) is contained in L and that L′ divides D(ξ ,r) into a half contained in Ω
and a half contained in Ωc. Suppose that z0 ∈ Ω\D(ξ ,r). Let zr/2(ξ ) ∈ ∂D(ξ ,r/2)∩Ω be
the point with Euclidean distance r/2 to L′. Under these assumptions we have the following.

Lemma 2.8. There are constants C1 and C2 which do not depend on Ω or z0 or on r > 0
such that for ξ ∈ L,

C1g(z0,zr/2(ξ ))≤ ωz0(D(ξ ,r/2)∩∂Ω)≤C2g(z0,zr/2(ξ ))

The proof is again omitted but we will make a few remarks on the origins of the main
ideas. For bounded Ω, the argument follows that of the proof of inequalities 4.3 and 4.6
in Jerison and Kenig (1982). The Beurling projection theorem replaces the existence of
exterior non-tangential balls. In the unbounded case, the replacement of the Newtonian
potential by the logarithmic potential requires an estimate of∫

∂Ωfar

log |ξ −w|dωz0(w)

where the integral is over the part of ∂Ω far from ξ (as compared to |z0 −ξ |). This may be
done by an application of Hall’s lemma as in the proof of lemma 2.3. The reasoning given
in Jerison and Kenig (1982) has its origin in Dahlberg (1977). Note the analogy between
the two dimensional potential theoretic Green function and the Green function for a discrete
random walk. We may compare g(z0,zr/2(ξ )) to the expected number of crossings by a
Brownian motion started at z0 of the annulus centered at zr/2(ξ ) with radii r/4 and r/8,
before exiting Ω. This expectation is in turn comparable to the probability that the same
Brownian motion visits the interior disk of the annulus.

3. Fatou’s theorem on Green lines

We now turn to a proof of the generalization of Theorem 1.1 to simply connected domains
in the plane. For the sake of simplicity we will state the theorem here for Jordan domains (so
that ∂Ω is homeomorphic to a circle) thus avoiding a more complicated statement involving
ideal boundary points or Martin boundary points and the introduction of the Martin kernel
in place of ωz(dξ ). The proof below is easily adapted to the general case by considering
the Green measure as a measure on sets of Green lines with each regular Green line ℓξ
corresponding to an ideal boundary point ξ .
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Theorem 3.1. Let Ω ⊂C be a simply connected Jordan domain and let z0 ∈ Ω be fixed. Let

u(z) =
∫

∂Ω

f (ξ )ωz(dξ )

where ωz denotes the harmonic measure at z ∈ Ω and f ∈ Lp(dωz0) for some 1 ≤ p ≤ ∞.
Let E denote the set of all Green lines ℓξ with ξ ∈ ∂Ω such that lim

z→ξ ,z∈ℓξ
u(z) = f (ξ ). Then

ωz0(E,Ω) = 1.

Recall that, in its general form, this theorem is the conformally invariant version of Theo-
rem 1.1 and that our goal is to prove it without using the Rieman mapping theorem. We will
first outline a separate argument for the case where the boundary data f is in L∞(dω). This
argument emphasizes the probabilistic intuition underlying the theorem. For the proof in the
general situation of f ∈ Lp, 1 ≤ p ≤ ∞, we will use a classical maximal function argument,
but one which still relies on the strong Markov property.

The basic building block for our proof is the construction of a “cap". As before, let z0
denote a fixed point in Ω. We will construct a cap at the point z1 ∈ Ω as follows.

Let ℓ denote the Green line starting at z0 which passes through z1. Almost all ξ ∈ ∂Ω
with respect to harmonic measure are the endpoints of Green lines, and we assume ℓ has the
endpoint ξ . At z1 there is a tangent vector v to ℓ pointing toward ξ along ℓ. Let 0 < α < π
and consider the pair of Green lines ℓ+ and ℓ− which start at z1 and whose tangents at z1
make an angle of ±α with v respectively. The total angle subtended by ℓ+ and ℓ− is 2α ,
so the Green lines between them sweep out a subset E of the boundary with ωz1(E) =

α
π .

Denote the endpoints on the boundary of ℓ± respectively by ξ±. Let δ > 0, to be chosen
more precisely later, and follow ℓ+ and ℓ− away from z1 until the first points z+ ∈ ℓ+ and
z− ∈ ℓ− such that

dΩ(z±)< δdΩ(z1).

We now re-use the notation and let ℓ+ and ℓ− denote the segments of the Green lines joining
z1 to z±. Let p± ∈ ∂Ω be a nearest boundary point to z± and let L± denote a straight line
segment connecting z± and p±.

Definition 3.1. With the notations given above the cap at z1 over the point ξ ∈ ∂Ω is the
union

cap(z1,ξ ) = L+∪ ℓ+∪ ℓ−∪L−.

By a simple limiting argument, every point of ∂Ω which is the vertex of a triangle con-
tained in Ω is the endpoint of a regular Green line starting at z0, so the points p± correspond
to Green lines from z0.

With this setup we have the following

Lemma 3.1. The cap(z1,ξ ) separates ξ from z0 in the sense that any Jordan arc contained
in Ω which joins z0 to ξ must intersect cap(z1,ξ ).

Proof. To see this, choose, at z+, Green lines γ+1 ,γ+2 so that γ+1 makes a positive angle
with the tangent in the direction toward ξ+ to ℓ+ at z+ and so that similarly γ−1 makes a
negative angle. By lemma 2.3, we may choose γ+1 ,γ−1 so that they terminate at boundary
points whose distance to z+ is no larger than KδdΩ(z1). Here δ > 0 is from the choice of z+
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and K is the constant from lemma 2.3. The subset of the ideal boundary separated from z1 by
L+∪ γ+1 ∪ γ+2 has ωz1 measure which is o(1) as δ → 0, by the Beurling projection theorem.
(In fact, ωz1 = O(

√
δ )). We construct γ−1 and γ−2 similarly at z− and note that if ξ is not

separated from z0 by cap(z1,ξ ) then it is separated from z1 by either s+ = L+∪ γ+1 ∪ γ+2 or
s− = L− ∪ γ−1 ∪ γ−2 . Since the Green lines ending at ξ and ξ± form an angle of size α at
z1 and therefore sweep out harmonic measure α

2π , this latter possibility cannot occur if δ is
sufficiently small because the sets s+ and s− respectively separate ξ± from z1. �

We need one more property of cap(z1,ξ ). Namely, that of all Brownian travelers starting
from z0 which hit cap(z1,ξ ) before hitting ∂Ω, a large proportion of them hit cap(z1,ξ )
“near"’ z1. To prove it, we will apply lemmas 2.6 and 2.7 using harmonic measure and
Green’s function with pole at z0 defined in the component Ω′ of Ω \ cap(z1,ξ ) which con-
tains z0. To make a precise statement, we will need to define, for a given constant c > 0 and
a cap cap(z1,ξ )

Tc = {z ∈ cap(z1,ξ ) : dΩ(z)> cdΩ(z1)}.

We these notations we have

Lemma 3.2. Given ε > 0 there is c > 0 not depending on Ω, such that

ωz0(Tc,Ω′)> (1− ε)ωz0(cap(z1,ξ ),Ω′)

Proof.
Consider the segment L+ ⊂ cap(z1,ξ ) and mark off points {ak} on it so that a0 = z+ and

for k > 0, ak is the midpoint of ak−1 and ξ+. Let L+
k = [ak,ak+1] denote the segment in L+

joining ak and ak+1. Let Ck denote the circle with diameter L+
k and let bk denote the point

of Ck ∩Ω on a radius of Ck perpendicular to L+
k .

By lemma 2.8 we have (≈ means “is comparable to")

ωz0(L
+
k ,Ω

′)≈ gΩ′(z0,bk).

By lemma 2.6, lemma 2.7 and Harnack’s inequality, there is δ > 0 such that

gΩ′(z0,bk)≈ gΩ′(z0,b1)(1−δ )k

≈ ωz0(L
+
1 ,Ω

′)(1−δ )k

where gΩ′ denotes the Green function for the domain Ω′. We repeat the construction on L−

(getting the same δ > 0). Given ε > 0, after summing a geometric series, we see that for
K ≥ logεδ

log(1−δ ) we have

ωz0(
∪

k≥K

(L+
k ∪L−

k ),Ω
′)≤ εωz0(L

+
1 ∪L−

1 ,Ω
′)

so that
ωz0(ℓ

+∪ ℓ−∪
∪

0≤k<K

(L+
k ∪L−

k ),Ω
′)≥ (1− ε)ωz0(cap(z1,ξ ),Ω′).

The set which is measured on the left hand side of this inequality is clearly contained in Tc
for some c > 0 depending only on ε . �
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Notice that if 0 ≤ u ≤ 1 is harmonic in Ω, then by Harnack’s inequality there is c > 0
depending on K (and therefore depending on ε) such that if u(z1)< 1−δ then u(z)< 1−cδ
for all z ∈ ℓ+∪ ℓ−∪

∪
0≤k<K

(L+
k ∪L−

k ). It will be convenient below to refer to this set of z in

the cap as the “top" part of the cap.

With these properties of the “caps", we are ready for the proof of Theorem 1.1. In the case
of L∞ boundary data f , it suffices by linearity and a limiting argument to consider f = χE
(the indicator function) where E is a Borel subset of ∂Ω. Lemma 2.5, Lemma 2.4 and
Doob’s version of Fatou’s theorem together imply that limsup

z→ξ ,z∈ℓξ

ω(z,E) = 1 for ωz0 almost

every ξ ∈ E. By letting ε decrease to zero through a countable sequence, it suffices to show
for a fixed ε > 0 that

ωz0({ξ ∈ E : liminf
z→ξ ,z∈ℓξ

ω(z,E)< 1− ε}) = 0.

Denote the set whose measure is considered above by Aε . For each ξ ∈ Aε we have a
sequence {zn} such that zn → ξ with zn ∈ ℓξ and ω(zn,E)< (1− ε). We construct the caps
cap(zn,ξ ). The caps correspond to intervals on {z : g(z0,z) = λ} for large λ > 0, where g
denotes the Green function with pole at z0. By the Vitali covering lemma we may choose
a collection of them with disjoint bases which cover E. Consider the caps constructed this
way as a first generation. We would like to construct successive nested generations so that
a Brownian traveler starting on the top of an nth generation cap has probability less than
1− c1ε of hitting an (n+ 1)st generation cap. Here c1 is a numerical constant which will
become explicit below. Suppose for the moment that we can do this and let Cn denote the
union of the nth generation caps. Let Ωn be the component of Ω\Cn which contains z0 and
let Cn = Gn ∪Bn where Gn is the union of the top parts of the caps and Bn is the union of the
leftover parts. Let τ denote the first exit time from Ω for a Brownian motion starting from
z0 and let τn similarly denote the first exit time for Ωn. By the strong Markov property for
Brownian motion (used in the second line below) we then have

Pz0{Xτ ∈ Aε} ≤ Pz0{Xτn ∈Cn}

=
∫

Cn−1

ω(z,Cn,Ωn)ω(z0,dz,Ωn−1)

=
∫

Gn−1

ω(z,Cn,Ωn)ω(z0,dz,Ωn−1)+
∫

Bn−1

ω(z,Cn,Ωn)ω(z0,dz,Ωn−1)

≤ (1− c1ε)
∫

Gn−1

ω(z0,dz,Ωn−1)+
∫

Bn−1

ω(z0,dz,Ωn−1)

≤ (1− c1ε)
∫

Cn−1

ω(z0,dz,Ωn−1)+ c1ε
∫

Bn−1

ω(z0,dz,Ωn−1)

≤ (1− c1ε)
∫

Cn−1

ω(z0,dz,Ωn−1)+ c1ε2
∫

Cn−1

ω(z0,dz,Ωn−1)
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≤ (1− c2ε)
∫

Cn−1

ω(z0,dz,Ωn−1)

= (1− c2ε)Pz0{Xτn−1 ∈Cn−1}.

In passing from the fifth line to the sixth, we have used lemma 3.2. By iteration, it follows
that Pz0{Xτ ∈ Aε}= 0.

That we can construct successive generations with the properties described above follows
from Doob’s version of Fatou’s theorem by way of the fact that

limsup
z→ξ ,z∈ℓξ

ω(z,E) = 1 a.e. dω.

In each first generation cap we can construct an auxilliary second generation using the (stop-
ping) condition u> 1−ε ′ for some ε ′ which is sufficiently small compared to ε . If cap(z1,ξ )
is a first generation cap then the probability that a Brownian motion started from z1 hits the
auxilliary second generation caps before exiting Ω must be bounded above by 1− ε ′′ for
some ε ′′ > 0. Otherwise, estimating as above we find that ω(z1,Aε ,Ω)> 1− ε if ε ′ is suf-
ficiently small. The harmonic measure of the base of cap(z1,ξ ) is as close as we like to α

π
if δ is sufficiently small. So, by taking α sufficiently close to π and δ sufficiently small,
we see that the harmonic measure ωz1 of the auxilliary caps contained in cap(z1,ξ ) will
be bounded above by 1− ε ′′/2. Beneath each auxilliary cap, we now construct the “real"
second generation caps using the condition u < 1− ε , and our second generation now has
the required properties.

With more work, this argument can be extended to the case that the boundary function f
is in Lp for 1 ≤ p ≤ ∞ and it provides some insight into the structure of the exceptional sets
in Fatou’s theorem. We will, however, change tactics for the general case and consider the
maximal function

u∗(ξ ) = sup
z→ξ ,z∈ℓξ

|u(z)|, ξ ∈ ∂Ω.

By the standard line of reasoning, in order to get our Fatou type convergence result, it
suffices to prove a weak type inequality of the form

ωz0({u∗ > λ})≤ C
λ

∫
∂Ω

| f |dωz0 . (3.1)

For in the case that f is continuous, the required convergence follows from Wiener’s theorem
(or from the argument given above) and in the general case, if we are given ε > 0 and f ∈ Lp

we can write f = g+h where g is continuous and h has ∥h∥p < ε2. By linearity we obtain

ωz0({ξ ∈ ∂Ω : | limsup
z→ξ ,z∈ℓξ

u− liminf
z→ξ ,z∈ℓξ

u|> ε})≤ C
ε

∫
∂Ω

|h|dωz0 < ε

which proves the theorem.

To get the weak type inequality (3.1), we note first that by linearity, and at the expense
of the constant C, it suffices to consider the boundary function f to be non-negative. We
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construct, with the same notations for the caps as before, a first generation of caps using the
condition u > λ . We define f̃ to be the boundary function on Ω1 which is equal to u on
C1 and agrees with f on ∂Ω∩∂Ω1. Using the properties of the caps established earlier, we
then have ∫

∂Ω

f dωz0 =
∫

∂Ω1

f̃ ω(z0,dξ ,Ω1)

≥
∫

G1

f̃ ω(z0,dξ ,Ω1)

≥Cλω(z0,G1,Ω1)

≥Cλωz0({u∗ > λ})

which completes our proof.

4. Remarks and open questions

1. It has been observed here and in several places in the literature that there is a dictionary
relating notions from potential theory and homogeneous Markov processes and that these
two subjects provide equivalent tool kits for studying the same problems. See for example
Øksendal (1983) and Sharpe (1986). Important results in analysis have been discovered
first by probabilistic arguments and then have later been reproved by classical means. The
maximal function characterization of H p by Burkholder, Gundy and Silverstein (1971) is a
prominent example of this.

There is a nice result about harmonic measure in R3 which has only been given a proba-
bilistic proof. In Tsirelson (1997), Tsirelson showed

Theorem 4.1 (Tsirelson). If Ωi is a domain in Rn for i = 1,2,3 with harmonic measure
ωi, there is no measure which is mutually absolutely continuous with respect to each of the
measures ωi.

The theorem says that no matter how three (or more) domains may intertwine in some
complicated way, their common boundary can only be given positive charge by at most two
of the measures at a time. (Consider the example of a vascular system, a lymphatic system,
and some third type of circulation system with the surrounding tissue as boundary.) The
heart of the proof is the definition of an appropriate invariant quantity on filtrations which
has different values for the Brownian Filtration and the filtration of the Walsh Brownian
Motion. The paper Tsirelson (1997), which is full of ideas, contains a challenge to potential
theorists to find a classical proof.
2. As was mentioned in section 1, it is not known whether domains Ω ⊂ Rn have property
F . The techniques in this paper can be modified to give a proof of this for simply connected
domains with some bounded geometry, such as the non-tangentially accessible (NTA) do-
mains from Jerison and Kenig (1982, p.93). What should be true for all NTA domains and
not just simply connected ones is that almost every Green line should eventually be a non-
tangential approach curve. By the results of Jerison and Kenig (1982), this would obviate
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the previous statement for simply connected NTA domains. We hope to address this in a
future paper.
3. In O’Neill (Preprint) we give a probabilistic proof of the McMillan Twist point theorem.
The theorem, from McMillan (1969), states that if Ω ⊂ C is simply connected then with
respect to harmonic measure, almost every point ξ ∈ ∂Ω is either the vertex of a triangle
contained in Ω or has the property that any curve Γ in Ω which ends at ξ has

limsup
w→ξ ,w∈Γ

arg(w−ξ ) = +∞

liminf
w→ξ ,w∈Γ

arg(w−ξ ) =−∞.

Here arg denotes a fixed single valued branch of arg(·−ξ ) in Ω. Fatou’s theorem (Theorem
1.1) is required in the proof and so the proof here helps to keep the argument in O’Neill
(Preprint) completely free of conformal mapping. The ideas in O’Neill (Preprint) may be
extended to domains in Rn with controlled geometry (such as the NTA domains) and this
will be addressed in a future paper.
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