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PROGRAMMING OF INTERDEPENDENT ACTIVITIES
II MATHEMATICAL MODEL'

By GeorceE B. Dantzig

Activities (or production processes) are considered as building blocks
out of which a tcchnoloyy is constructed. Postulates are developed by
which activities may be combined. The main part of the paper is con-
cerned with the discrete type model and the use of a linear maximization
function for finding the ‘“optimum”’ program. The mathematical problem
associated with this approach is developed first in general notation and
then in terms of a dynamic system of equations expressed in matrix nota-
tion. Typical problems from the ficlds of inter-industry relations,trans-
portation, nutrition, warehouse storage, and air transport are given in the
last section.

INTRODUCTION

Tue MULTITUDE of activities in which a large organization or a nation
engages can be viewed not only as fixed objects but as representative
building blocks of different kinds that might be recombined in varying
amounts to form new blocks. If a structure can be reared of these blocks
that is mutually self-supporting, the resulting edifice can be thought of
as a technology. Usually the very elementary blocks have a wide variety
of forms and quite irregular characteristics over time. Often they are
combined with other blocks so that they will have “nicer” characteristics
when used to build a complete system. Thus the science of program-
ming, if it may be called a science, is concerned with the adjustment of
the levels of a set of given activities (production processes) so that they
remain mutually consistent and satisfy certain optimum properties.

It is highly desirable to have formal rules by which activities can be
combined to form composite activities and an economy. These rules are
set forth here as a set of postulates regarding reality. Naturally other
postulates are possible; those sclected have been chosen with a wide
class of applications in mind and with regard to the limitations of present
day computational techniques. The reader’s attention is drawn to the
last section of this report where a number of applications of the mathe-
matical model are discussed. These are believed to be of sufficient interest
in themselves, and may lend concreteness to the development which
follows:

POSTULATES OF A LINEAR THCHNOLOGY

Posrurars 1: There exists a set (A} of activitics.

Posrturatn 110 AUl activities tale place within a time span 0 to L.

1 A revision of a paper presented before the Madison Meeting of the Econo-
metric Society on September 9, 1948. This is the second of two papers on this

subject, both appearing in this issue. The first paper, with sub-title ‘““General
Discussion,’”” will be referred to by Roman numeral I.
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Posturate 1r: There exists a finite set of commodity types, denoted
by the subscript 7, (t = 1, -+, m).

PosruLaTte 1v: Each activity has a characteristic flow of commodities;
the cumudative quantity of flow? of the i-th commodity up to time t vs denoled
by the function

(1) Cit| 4), E=1,---,m).

It will be noted that Postulate IV is given in terms of cumulative
quantity of flow. This is convenient in the same sense that it is convenient
to use the cumulative distribution function in probability theory. Thus
at a time ¢ there may be a discrete quantity of a commodity required by
(or produced by) an activity or it may occur continuously over time.
Either of these two cases is taken care of by the cumulative flow func-
tions.

PostrraTE v: The sum of any two activilies, denoted by Ay + A, , is an
activity whose flow function (for each commodity type) is the sum of the
correspondirg flow functions of Ay and A, :

(2) (/’7({1111 + 112) = (J1(ti1/{1) + C”l(t I 112)5 (Z’ = -13 ) m)-

PosTorate vi: Any subset of aclivities, (A1, Az, - -, A,), constitutes a
possible sclf-supporling system wich respect o Ag if the sum of the flow
cocfliciends of (Ag; Ar, -+, A,) for each commodity type vanishes:

3) ]2;: C.(t]4) =0, (=12 +-,m),
where Ay (called the exogenous activity) 1s not necessarily an element of {A}.

Scalar Multiplicalion of Activities: It should be noted that as far as any
physical interpretations of the abstract model are concerned, activities
are treated as though they have no common parts with each other.
This forms the basis for Postulate V and permits the addition of cor-
responding flow functions of two activities. No distinction is made as
to whether two activities are of the same or of different types. When 4, =
As in (2) the concept of scalar multiplication of activities follows
naturally. In general for any A there exists an activity, denoted by
z-A, whose flow functions are any integral multiple x = 1, 2,3, -- -,
of the corresponding flow functions for 4.

It is convenient mathematically to let « take on a continuous range of
values,—in particular to permit infinite subdivision of an activity 4.

2 This paper will use the signs + and — to indicate ¢n and out. Thus plus indi-
cates the flow is in or towards the activity; while the sign minus indicates it is
out or away from the activity. In equilibrium models particularly, where there

are many inputs to one output, this convention will result in equations with
coeflicients whose signs are nearly all positive.
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In actual practice, however, this is far from possible. Mass production
activities often use, for example, special tools that cannot be constructed
below a certain size. Accordingly, since an assumption of divisibility is
made in Postulate VII, one must take care in real situations to discover
significant indivisibilities and to make necessary adjustments in the
results.

PosturLATE VII: For all x 2 0 and any A there exists an activity denoted
by x- A whose flow function s given by:

4) Cit|z-A) = zC; (t]| A), @=1,---,m).

The Null Activity: Setting x = 0, an activity is obtained whose flow
functions vanish. This will be called the null activity and denoted by:

(5) 0-4 = 0.

Ezogenous Activity Ao: It is also convenient to single out one activity to
express initial conditions at time ¢ = 0 and flow from outside the system
during the time span 0 < ¢ < ¢ . There does not appear to be a meaning-
ful interpretation of a scalar multiple of this activity. It is however
desirable as in VI to combine 4, with other activities so that their sum
is the null activity.

PosTuLATE viiL: There exists a finite set of activities Ay, Ag, -+, Am
such that any A # Ao can be expressed as a nonnegative combination of
this basic set of activities:

(6) A= ylAl + y2A2 + -+ ymAm

where y; 2 0.

The existence of a finite basis implies that a nonvacuous linear economy
(Postulate VI) is possible only if the flow functions are of a very special
form relative to one another. Of special interest in this connection is the
discrete model which we will discuss later. Recently W. W. Leontief
and David Hawkins, [8], [3], have considered models which permit the
continuous formation of capital. Such models satisfy Postulates I through
VII, but fail to satisfy VIII in a rather unexpected way. Thus each A
(entering into a solution of the model) can be shown to be representable
in terms of a finite basis as in VIII. It is not possible however in this case
to find a basis which requires only nonnegative weights.

LINEAR PROGRAM

It is now possible to express VI in terms of the basic set of activities.
Thus a linear technology can be expressed as a set of activities satisfying

(7) A+ 0141 + 0245+ -+« + 2,4, = 0
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where z; > 0. Since there is a one to one correspondence between the
addition and multiplication of activities and the corresponding opera-
tions on the vector function of A given in (8), we can identify A with this
vector function of time and use the same symbol:

®) A = {Ci(t] 4), Co(t] 4), -+, Calt | A)}.

Hence (7) implies a simultaneous system of linear equations covering m
commodity types and a continuous range of values of {, 0 < ¢t < &.
The value z; will be referred to as the level of the j-th activity where (8)
gives the flow functions for a unit level of activity. A set of valuesz; > 0
satisfying (7) is called a feasible program. It is not always possible to find
such a set of activities in which case no feasible program exists. Should,
however, one feasible program exist, then usually many exist and the
choice of program must depend on additional restrictions.

THE OBJECTIVE FUNCTION

The acceleration principle and the Keynesian multiplier are principles
found in the economic literature which are presumed to be descriptive
of actual behavior in an economy. From the viewpoint of the author
these fall into the same class as the maximization of a welfare function,
i.e., they are devices for driving an under-determined dynamic system
in a direction that meets the ‘“objectives” of an economy. In contrast,
T. C. Koopmans’ “efficient point” is broader in concept, [4]. Based on a
moral principle underlying welfare economics, it has been summed up
by P. A. Samuelson, [9], as follows: that more of any one output, other
commodities (or services) being constant, is destrable; similarly, less input
for the same output, is desirable. At an efficient point, it is not possible to
increase output of one or a group of desirable commodities without
causing the decrease of other commodities which are also deemed desir-
able. Each efficient point represents at least one feasible program. Since
there are many such points, it is clear that this concept is more general
than one based on the simple maximization of a welfare function, so
that again for final determination of the system, additional restrictions
must be imposed.

It is our purpose now to discuss the kinds of restrictions that fit nat-
urally into linear programming. Usually objectives of an economy are
expressed in terms of commodities such as a bill of goods for the final
consumer, [2]. For example, the simplest possibility is that the consump-
tion rate for each commodity type remains constant relative to other
commodity types throughout the time span 0 < ¢ < f, and remains
at a constant level. If we let the nth activity denote the activity of
consuming a fixed pattern of commodities by the final consumer, we are
assuming that a unit level activity A, is of known form. The total
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amount of this activity in the economy is x,- A, . The objectives of the

economy might be, then, to find values of o1, X2, -+, Tn salisfying (7)
such that
(9) z, = Max.

A second possible type of restriction might fix the level of consumption
at 2, = 2% . Then Ao + 2,4, can be treated as a new A, . Itis clear from
this case that the concept of the exogenous activity A, should be broad-
encd to include specified fixed activities, as well as specified outside flows
and initial inventory. Having fixed z, = z', the purpose of economy might
be to achieve this with minimum cumulative labor force requirements
during the time span 0 < ¢ < & . If cumulative labor force, considered
as the mth commodity used by the jth activity, is given by C.(t ] 4;)
then

n—1
(10) > x;Culto| A;) = Min.
1=0

where the model in this case does not specify the labor force provided
by the nth activity, but instead sets up the labor requirements for all
other activitics as part of the objective function and secks a minimum of
this function.

As a third example, suppose it is desirable to test whether a given
feasible program zi, ---, x% constitutes an “efficient point” [4]. By
rearranging the subscripts on activities it is possible to let Ty, Te, e, Tk
specify the levels of consumer consumption of the set of desirable com-
moditics. If there exists no solution @ > i, @2 = a3, -+, % = Tn
(except all ecqualities) of (7), then a?, z3, - - -, 2, is defined as an “efficient
point.” It will be noted that this definition expresses an efficient point in
terms of activities. Setting 21 = 2§ + w1, -+, 6 = Tp + Yi ; Ty =
Yeal, =+, Tn = Yn in (7), a solution y; = O is sought to the system:

(11) By + yids + yedo 4 -+ + yada = 0
(12) h+ v+ - +yp = M = Max.
where B is given by

(13) By = Ao+ 2141 + -+ + 2ids.

Because of the feasible set of values zf , - - - , 2% , there exists at least one
solution to (11) with 1 = y» = y, = 0so that M > 0. If M = 0, then
xy, -+, a% is an efficient point. If A7 > 0, then the new solution in terms
of z, constitutes such a point.

We shall formalize our observations regarding the objective function
later.
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THE DISCRETE TYPE MODEL

It 1s to be noted that (7) implies an infinite system of equations that
must be satisfied for all ¢, 0 < ¢ < t. We shall restrict A to a class of
activitics having the property that a set of x; > 0 will satisfy the system
for the whole range of ¢ providing it is satisfied for a certain finite set ¢; .
It will be assumed that, (a) activities are initiated at successive points
in time 0, ¢y, &, - -+, tr = t and are terminated at these discrete points
in time and, (b) the rate of flow of a commodity between initiation and
termination of an activity is constant.

Our purpose now is to develop the equations of the dynamic system
using a discrete type model. We shall use equally spaced points in time
t=20,1,2,---, T for ease of notation; they may in fact correspond to
unequal consecutive intervals of time.

Notation:
(a) t = 0,1,2, ---, T denotes consecutive points in time.

(b) A represents a basic (unit level) activity whose flow functions
are zero up to time ¢ — 1 and whose flow functions have no change
after { wherej = 1,2, --- ;n,andt = 1,2, --- | T.

(¢) a!f = the discrete quantity added to the flow function of the th
commodity activity A(” at time ¢t — 1, (input coeflicient).

a.” = the discrete quantity subtracted from the flow function
of the ith commodity for A" at time ¢, (output coeflicient).
BY = constant rate of flow of the ith commodity to activity

ALY during the time period t — 1 to ¢, (flow coefficient).

(d) 2! denotes the level of the jth type activity during the period
t — 1tot.

By our convention of signs 4+ or — indicates in or out, see note after
equation (1). Thus « and & are usually positive while g is of either sign.

For the moment all activities are assumed to be of one time period
duration. The cumulative flow functions for an activity, in the discrete
model are casily obtained. For example, consider 4 {”

(0; 0<t<1
O AP) =<af? + (0 — 1B, 1<t<2
o + 85 — &l 2 <t

No uge will be made of C(t|A) in the above form. Instead equations
(3) or (7) will be replaced by the corresponding equations relating to the
discrete additions or subtractions to the flow functions at times ¢t = 0,
1, 2, -+, T, and those relating the constant rate of flows between
periods. Thus the equations of the dynamic system become
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(14) Zo affzl? = Zo e G=1,2 -,m)
-
nte

(15) 2%3,‘,%}” =0, G=12---,m)
=

wheret = 1,2, ---, Tanday = 0.

Equations (14) may be interpreted as stating that the output (for each
commodity) of all activities operating in the period ¢ — 1 must equal the
input of all activities operating during the tth period. Equation (15) states
that the net rate of flow of any commodity, considered over all activities
during a period, vanishes. It is interesting to note that if flow of the 7th
commodity is thought of as a new commodity type and given the index
m + 1, then we may consolidate equations (15) with (14) by making the
substitutions

a,(,,?., i= 5’?; &r(n?-t i=0.

J. von Neumann has considered a system of equations closely analo-
gous to the above, [12]. There are, however, two important differences.
First of all, the set of equations (15), relating rates of flow during a time
period, is absent. This difference is not too important if the time periods
are short, because the flows during the periods can usually be assumed
to be either stored by the activity at the beginning of the period for use
during the time interval or accumulated until the end of the period for
use during the next time period. Letting corresponding Roman letters
substitute for Greek letters we can make, in this case, the following
adjustments in the coefficients:

If 8P > If 8P <0
(af = aff + B‘” alf = eff
(16) ai = & aif = & — 81/
b =0 by =0

The second important difference between the two systems is that in the
von Neumann model, the set of equations (14) occur with a < instead of
= symbol. In other words von Neumann requires only that there are
sufficient quantities of commodities to carry out the activities; all surplus
commodities are disposed of with no effort on the part of the system.
They are also assumed nonrecoverable.

Storage and Inequality Relations: In only a few rare cases are these the
kind of assumptions that one would like to make. If the commodity, for
example, is men, “mustering out’’ pay is the usual rule. From a practical
point of view it is best to introduce a specific storage and/or disposal
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activity and to replace the inequality by an equality relation. Storage
activities, i.e., activities that hold over commodities for use in a subse-
quent time period, play an important role in any large scale system. In
fact a large part of the efforts of a system may be tied up in such activities
and a solution which tries to reduce or eliminate storage or disposal ac-
tivitrzes may be a very inefficient one. The nutrition problem which we
shall discuss later is an excellent example of this inefficiency, [10].

If however, storage is to be introduced as an activity during tth period
without “cost” or loss during storage, one may set af? = 1, al) =1
where ¢ is the commodity in question and j the storage activity; for all
other 7 the coefficients are zero.

Locked Activities: One may inquire how the model takes care of activi-
ties that occur over many time periods at a constant level. One way is to
allow A" to have coefficients in other time periods. Thus z{” will appear
in an equation balancing out commodities of quite different time periods.
In this form we are back to the more general case where the flow functions
can extend over the entire time span 0 < ¢ < ¢ . By a simple device,
however, we can preserve the form of relations (14) and (15). To do this
we subdivide an activity that extends over several time periods into a
set of consecutive activities each extending for one time period and locked
at the same level, ie., set 2{”? = z{*P, 2" = 2{** ... We now
invent a new commodity k which only these activities produce or use.

Setting af” = 1 and & = 1, the necessary locked relations between

2P and 2™ will result, providing that for the first time period for
which the extended activity occurs, a,ﬁf) = 0 and for the last time period,

- (t
Oll(”’) = 0
LINEAR OBJECTIVE FUNCTION AND THE MATHEMATICAL PROBLEM

In a previous section we have shown how a wide variety of restrictions
on programs can be put into the form of maximizing (or minimizing)
a linear function. Based on the notation of the discrete model we shall
assume in computing programs:

PosruraTe 1x: The oplimum feasible program s that feasible program
which maximizes a specified linear objective function:

T
17) > ' 'y,w-x,(‘) = Max.

where v{¥ are constants.

The fact that the equations of the dynamic system impose additional
linear restrictions on the unknown levels of activities (besides the condi-
tion that they must always remain nonnegative) leads to a very interest-
ing mathematical problem that may be formulated in one of two ways:
(1) Mazimize a linear function whose variables satisfy a system of linear
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tnequalities; (2) Maximize a linear function of nonzero variables subject to
a system of linear equalities. These two problems are easily shown to be
equivalent.

J. von Neumann has shown in this connection that the problem of
finding the optimum mixed strategy of a zero sum two person game can
be reduced to the above. The converse has been more difficult,—namely
that of setting up a game problem which is equivalent to a linear pro-
gramming problem. Professor A. W. Tucker and his group at Princeton
have done some work along these lines. The author very recently estab-
lished the equivalence of the converse.

Except for general properties of the solution very little can be found in
the literature that helps to solve systems of equations involving many
variables. One important property that is worth noting is the nonexist-
ence of local maxima. Thus any program which is not optimum can always
be tmproved by making small changes. A second property worth noting is
that the maximizing solution necessarily’ involves as few activities as possible
at positive levels and as many as possible at zero levels.

It is proposed to solve linear programming problems which involve
maximization of a linear form by means of large scale digital computers
because even the simplest programming problems can involve a large
number of calculations (e.g., see experience with the nutrition and
transportation problem at end of this paper). Several computational
procedures have been evolved so far and research is continuing actively
in this field.

Matriz Notation: The essential form of the system of equations of the
dynamic system is more clearly brought out by use of matrix notation:
(a) Let

(18) x(‘) = (xit)) x‘ﬁ")) e 7x(nt:))
be the vector of levels of activities in {th time period; (b) let
(19) o = [aff]; & = [a]); 8 = [85)]

represent the matrix of the input, output and flow coefficients respectively
in the tth time period; and (c) let the vector of coefficients of the maximiz-
ing form associated with the activity levels occurring in the tth time
period be denoted by

) ) )
(20) v = s, ).

The boundary conditions are given by the coefficients of the various

? In certain degenerate cases there may be more than one solution yielding
the same maximum. If so, a unique solution could be obtained by the use of addi-
tional maximizing functions.
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e ey t . . .
fixed activities A§” which we also can express in vector notation; let

@) a¥ = (@ V= ald, @k Y =l o, @ — ol
fort = 2, .-+, t;fort = 1setal, = 0above, for the B{2 coefficients set
(22) b = (B, BS, -+, BL).
The equations of the dynamic system in matrix notation become
oW ® = q®
gOL® = p®
_a(l)x(l) + a(2)x(2) — a(z)
gPz® = p@
23) —aPz® 4 @@ = g®
gOL® - p®
G e BT C JNC. B ¢
gD = D

[COB¢Y] (@), (@) 3) .3 (1) _(T)
yxr +vyx” oy 4o+ vy = Max,

where the z'” are vectors of nonnegative elements. It should be noted
that while the general mathematical problem is concerned with
maximization of a linear form of nonnegative variables subject to a
system of linear equalities, in the linear programming case one finds by
observing the above system that the grand matrix of coeflicients is
composed mostly of blocks of zeros except for submatrices along and
just off the ‘“diagonal.” Thus any good computational technique for
solving programs would probably take advantage of this fact.

APPLICATIONS

(a) The inter-industry relations studies of W. W. Leontief and the
Bureau of Labor Statistics are well known. Each activity is characterized
by a steady flow of commodities over time so that the system of equations
reduces to (15). Since the number of unspecified activities is equal to the
number of different commodity types it is clear that once the bill of
goods for the final consumer is specified a steady state solution can be
determined. Because of the equality between the number of commodities
and the number of activities, no maximization problem arises. There are
no degrees of {recedom left. It is interesting to note that the level of
activities thus computed has been shown to be nonnegative. The Bureau
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of Labor Statistics has developed an iterative computational procedure
based on this property for solving such a system that is rapidly
convergent.

(b) T. C. Koopmans’ transportation problem is an excellent example
of a steady state solution that involves the minimization of a linear
function. The problem may be stated as follows: A homogenous product*
in the amounts of ¢, g2, -+, ¢s respectively are to be shipped from s
shipping point origins and amounts 7y, re, + -+, 74 respectively are to
be received by d destinations; the cost to ship a unit amount of product
from 7th origin to jth destination is C;;. The problem is to determine
z;; , the amount shipped from z to 7, so as to minimize total transportation
costs, 1i.e.,

d
injZQi, ('I:=],2,"',S)
=1

(24) ini:Ti’ (jzlrzy'”)d)

=1

s d

Z Z Ci;’ Tij = l\lin.

=1 3=1

Because of the special form of the equations, simplified computational
procedures arc possible. For example, a large scale problem involving
about 25 origins and 60 destinations was solved recently in nine man
days by hand computation techniques. Only simple additions and sub-
tractions occurred in the process so that even the use of a desk calculator
was not required.

(¢) The minimum-cost adequate diet problem was formulated by
Jerome Cornfeld in 1941 and by G. J. Stigler, [10]. It is assumed that
(1) the composition in terms of dietary elements i.e. minerals, calories,
vitamins, of a number of foods is known; (2) the prices of the foods are
given and (3) the requirements in terms of dietary elements which will
keep a person in good health are known. The problem is then to find a diet
which will supply the requirements at minimum cost. Stigler found a
solution to the problem by testing various combinations under the as-
sumption that the body could dispose of any surplus of dietary elements.
A solution to the problem which demanded that the requirements be
met exactly cost nearly twice as much. This result illustrates the im-
portance of disposal and storage activities. A problem involving 9 die-
tary elements and 77 foods took 120 man days to compute by hand.
This may be contrasted with the above transportation problem.

4 In Koopmans’ case the homogenous product consisted of empty ships to be
moved from ports of discharge to next ports of loading and the ‘“cost’’ consisted
of time spent by these ships in travel.
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(d) A. Cahn [1] has proposed a warehouse problem which can be
solved by linear programming techniques. An entrepreneur undertakes
to operate a warehouse of fixed capacity by filling it with goods for which
there is a seasonal production and consequently a seasonal price. When
goods are in season he can purchase them at a low price and sell them
later in the year at a higher price. Each month new goods become avail-
able, and the owner must make a decision as to the disposal or continued
storage of his present holdings and as to the purchase of goods that have
just become available to use up his idle capacity.

(e) In I an application is given of the discrete type model to a hypo-
thetical air transport problem.

Department of the Air Force
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