CONSTRUCTIVE PROOF OF THE MIN-MAX THEOREM

George B. Dantzig

1. Introduction. The foundations of a mathematical theory of "games of strategy" were laid by John von Neumann between 1928 and 1941. ${ }^{1}$ The publication in 1944 of the book "Theory of Games and Economic Behavior" by von Neumann and Morgenstern climaxed this pioneering effort. The first part of this volume is concerned with games with a finite number of pure strategies with particular emphasis on the "zero-sum two-person" type of game. There it is shown that in most instances a player is at a disadvantage if he always plays the same pure strategy and that it is better to " mix" his pure strategies by some chance device. The starting point of all discussions of this type of game is the celebrated "Main Theorem" or Min-Max Theorem which is concerned with existence and properties of optimal mixed strategies for both players.

The first proofs of this theorem, given by von Neumann, made rather involved use of topology, functional calculus, and fixed point theorems of L. E. J. Brouwer. The first proof of an elementary character was given by J. Ville, 1938. The von Neumann-Morgenstern book, with the purpose of having a proof which is accessible to a less highly trained group, carries the theme of elementarization further [6]. At this late date there still continues to be a need for a truly elementary proof ; for example, the recent book of McKinsey on game theory [5] omitted a self-contained proof because none was available.

Kuhn [4] gives a bibliography of some of the better known proofs of the Min-Max Theorem, together with a discussion of their general characteristics which he broadly classifies into (1) those based on separation properties of convex sets and (2) those using some notion of a fixed point of a transformation. Kuhn [4] and McKinsey [5] provide proofs along the lines of von Neumann [6] based on a separation theorem. Dresher [3] gives a self-contained proof along the lines of Ville. As was pointed out in [7], the Min-Max Theorem is completely algebraic and should be given an algebraic proof. The purely algebraic proofs, when made selfcontained and elementary, appear to be quite long, [3], [4], [7], and, with the exception of Weyl's proof [7], make use of nonalgebraic concepts as the minimum of a continuous function on a closed bounded set is assumed on the set. All these proofs are either pure existence proofs

[^0]or, from the viewpoint of practical computations, nonconstructive.
The present proof has the following features: It is purely algebraic (in the spirit of Weyl) and elementary in the sense that it used nothing more advanced than the notion of an inverse of a matrix. It is short, self-contained, and noninductive. The very nature of the solution, if desired, could be used to advantage to establish well-known theorems regarding the structure of the class of optimal strategies. It is a special adaptation for games of the simplex method used for solving linear programming problems [1]. ${ }^{2}$ As such, it provides perhaps the most efficient means currently available for explicitly constructing optimal mixed strategies for both players.
2. The Min-Max Theorem. It has been found convenient in a part of the proof to compare certain vectors "lexicographically." The term is borrowed from an alphabetical ordering of words (as in a dictionary). Thus a vector A is greater than B (written $A>B$) if $(A-B)>0$; where by $(A-B)>0$ is meant that $(A-B)$ has nonzero components, the first of which is positive.

Let $\left[a_{i j}\right]$ be the payoff matrix of a finite zero-sum two-person game where $a_{i j}$ is the payoff to player I (the maximizing player) when player I plays pure strategy i and player II (the minimizing player) plays pure strategy j. Player I (in order to guard against his strategy being "found out") chooses a mixed strategy ($x_{1}, x_{2}, \cdots, x_{m}$) where x_{i} is the probability of playing strategy i; accordingly, player I's expected payoff becomes ($\sum_{i} a_{i j} x_{i}$) if the minimizing player plays pure strategy j. If player I's mixed strategy is found out he can expect that player II will choose j such that $\sum_{i} a_{i j} x_{i}$ is minimum. Thus, player I wishes to choose his x_{i} such that the smallest such sum (which we will denote by x_{0}) is a maximum. For similar reasons player II chooses a mixed strategy y_{1}, y_{2}, \cdots, y_{n} such that the largest sum $\sum_{j} a_{i j} y_{j}$ (denoted by y_{0}) is minimum. The Min-Max Theorem states that there exists a choice for player I of $x_{i}=\hat{x}_{i}$ and a choice for player II of $y_{j}=\hat{y}_{j}$ such that the corresponding $x_{0}=\hat{x}_{0}$ is the maximum value for x_{0} and the corresponding $y_{0}=\hat{y}_{0}$ is the minimum value for y_{0} and, moreover, $\hat{x}_{0}=\hat{y}_{0}$. The common value of \hat{x}_{0} and \hat{y}_{0} known as the "value" of the game.

To establish this result we shall consider, as is often done, a related linear inequality problem. Let x_{i} and y_{j} satisfy the system of relations

[^1](1) $x_{i} \geqq 0$,
$(i=1, \cdots, m) ;$
(4) $y_{j} \geqq 0$,
$(j=1, \cdots, n) ;$
(2) $\sum_{i=1}^{m} x_{i}=1$
(5) $\sum_{j=1}^{n} y_{j}=1$
(3) $\quad x_{0} \leqq \sum_{i=1}^{m} x_{i} a_{i j}, \quad(j=1, \cdots, n)$;
(6) $\quad \sum_{j} a_{i} y_{j} \leqq y_{0}, \quad(i=1, \cdots, m)$.

If we multiply (3) through by any y_{j} satisfying (4), (5), and (6) and sum with respect to j; similarly multiply through (6) by any x_{i} satisfying (1), (2), (3) and sum with respect to i, one obtains immediately

$$
\begin{equation*}
x_{\mathrm{u}}=x_{\mathrm{o}} \sum_{j} y_{j} \leqq \sum_{i} \sum_{j} x_{i} a_{i,} y_{j} \leqq y_{0} \sum_{i} x_{i}=y_{0} \tag{7}
\end{equation*}
$$

so that the lower bounds x_{0} never exceed the upper bounds y_{0}.
We shall, however, construct a solution $x_{i}=\hat{x}_{i}$ and $y_{j}=\hat{y}_{j}$ with the property that

$$
\begin{equation*}
\hat{x}_{0}=\hat{y}_{0} . \tag{8}
\end{equation*}
$$

In particular (7) holds for $\hat{y}_{\text {, }}$ and any x_{0} and also for \hat{x}_{0} and any y_{0}. It follows, therefore, that $x_{0} \leqq \hat{y}_{0}=\hat{x}_{0} \leqq y_{0}$ and

$$
\begin{equation*}
\hat{x}_{0}=\max x_{0} \quad \text { and } \quad \hat{y}_{0}=\min y_{0} \tag{9}
\end{equation*}
$$

and the Min-Max Theorem would be demonstrated.
3. Proof of the Min-Max Theorem. We shall begin the proof by augmenting the matrix of the game $a_{i j}$ and consider the matrix

$$
\left(\begin{array}{ccccc}
0 & 1 \cdots \cdots & 0 & \cdots & 0 \tag{10}\\
-1 & a_{11} \cdots & a_{1 n} & 1 & \\
-1 & \cdots & \cdots & \\
-1 & a_{m 1} \cdots a_{m n} & 0 \cdots & \cdots
\end{array}\right)
$$

The columns of this matrix will be denoted $P_{0} ; P_{1}, \cdots, P_{n} ; P_{n+1}=U_{1}, \cdots$, $P_{n+m}=U_{m}$ where U_{i} are unit vectors with 1 as the ($i+1$)st component. It will be convenient to arrange the rows of the matrix such that

$$
\begin{equation*}
a_{m 1}=\max _{i} a_{i 1} \tag{11}
\end{equation*}
$$

Let B (which we will call a basis) be a subset of $m+1$ columns of (10) (including P_{0} as first column) which, considered as an $m+1$ square matrix, is nonsingular and let the rows of B^{-1} be denoted by $\beta_{i}(i=0,1$, $\cdots, m)$. We shall further require that B, to be a basis, have the property that each row (except $i=0$) of B^{-1} have its first nonzero component positive. Thus we are assuming in the lexicographic sense that

$$
\begin{equation*}
\beta_{i}>0 \quad(i=1,2, \cdots, m) \tag{12}
\end{equation*}
$$

For example, we may choose $B=B_{0}$ as consisting of the first two columns of (10) and the unit vectors U_{1}, \cdots, U_{m-1}. This near identity matrix

$$
B_{0}=\left[P_{0}, P_{1}, U_{1}, \cdots, U_{m-1}\right]=\left[P_{0}, P_{1}, P_{n+1}, \cdots, P_{n+m-1}\right]
$$

is obviously non-singular and possesses a simple inverse

$$
B_{0}^{-1}=\left(\begin{array}{lllllr}
a_{m 1} & 0 & 0 & & 0 & -1 \tag{13}\\
1 & 0 & 0 & \cdot & 0 & 0 \\
b_{1} & 1 & 0 & \cdot & \cdot & -1 \\
b_{2} & 0 & 1 & \cdot & . & \cdot \\
\cdot & \cdot & . & \cdot & . & \cdot \\
b_{m-1} & 0 & 0 & & 1 & -1
\end{array}\right)
$$

where $b_{i}=a_{m 1}-a_{i 1}$. Because of (11) it follows that $b_{i} \geqq 0$ and our special lexicographic assumption (12) holds.

Let the columns of a general basis be denoted by

$$
\begin{equation*}
B=\left[P_{0}, P_{j_{1}}, \cdots, P_{j_{m}}\right] \tag{14}
\end{equation*}
$$

and note that the conditions $\beta_{k} P_{j_{i}}=0$ for $i \neq k$ and $\beta_{i} P_{j_{i}}=1$ for $i, k=0$, $1, \cdots, m\left(j_{0}=0\right)$ must hold between B and its inverse. The 0 -row of B^{-1} is used to compute the scalar quantities $\beta_{0} P_{j}$ for $j=1,2, \cdots, n, \cdots, n+m$. We shall now prove the following.

Theorem. If for all $j=1,2, \cdots, n+\hbar$ we have

$$
\begin{equation*}
\beta_{0} P_{j} \leqq 0 \tag{15}
\end{equation*}
$$

then the components of the 0 -row and 0 -column of B^{-1} yield the required optimal strategies.

Proof. Denote the components of the 0 -row of B^{-1} by

$$
\begin{equation*}
\left[\hat{x}_{0},-\hat{x}_{1}, \cdots,-\hat{x}_{m}\right] ; \tag{16}
\end{equation*}
$$

the components of the 0 -column of B^{-1} by

$$
\begin{equation*}
\left\{\hat{y}_{0}, \hat{y}_{j_{1}}, \cdots, \hat{y}_{j_{m}}\right\} \tag{17}
\end{equation*}
$$

We shall now show that an optimum mixed strategy for player I is obtained by setting $x_{i}=\hat{x}_{i}$ for $i=1,2, \cdots, m$; and one for player II, by setting $y_{j_{i}}=\hat{y}_{j_{i}}$ for $j_{i} \leqq n$ and $y_{j}=\hat{y}_{j}=0$ for all other $j \leqq n$. Moreover, the value of the game is $\hat{x}_{0}=\hat{y}_{0}$. Indeed, for player I, it is easy to verify the condition $\beta_{0} P_{0}=1$ is the same as (2); moreover, $\beta_{0} P_{j} \leqq 0$ for $1 \leqq j \leqq n$ are the same as (3), while for $n+1 \leqq j \leqq n+m$ they are the same as (1). For player II, the lexicographic property of the rows of B^{-1}, namely
$\beta_{i}>0$ for $i=1, \cdots, m$ implies that the first component of β_{i} (which by definition is $\hat{y}_{j_{i}}$) is nonnegative ; thus, (4) is satisfied. Multiplying B on the right by 0 -column of B^{-1} yields ($m+1$) linear expressions in ($\hat{y}_{0}, \hat{y}_{j_{1}}$, $\cdots, \hat{y}_{j_{m}}$) which may be equated to unit vector U_{0}.

The first of these $(m+1)$ linear equations yields (5) since the 1st components of $P_{j_{i}}$ are unity for $1 \leqq j_{i} \leqq n$ and zero otherwise. The remaining m equations yield the inequalities (6) if the terms involving $j_{i}>n$ are dropped (the latter are nonnegative because $\hat{y}_{j_{i}} \geqq 0$ and their coefficients are the components of the unit vectors P_{n+i}). Finally, the proof is completed by noting that (8) or $\hat{x}_{0}=\hat{y}_{0}$ holds since both are defined in (16) and (17) as the (0,0) element of B^{-1}.

Constructing an Optimal Basis. It is clear now that the central problem is one of constructing a basis B with the property that $\beta_{0} P_{j} \leqq 0$ for $j=1,2, \cdots, n+m$ since this in turn yields an optimal mixed strategy for each player. We shall show that if some basis B, such as B_{0}, does not have the requisite property (15), then it is easy to construct from B a new basis B^{*} which differs from B by only one column where 0 -row of $\left[B^{*}\right]^{-1}$ (which we denote by β_{0}^{*}) has the property that

$$
\begin{equation*}
\beta_{0}>\beta_{0}^{*} \tag{18}
\end{equation*}
$$

that is, the first nonzero component of $\left(\beta_{0}-\beta_{0}^{*}\right)$ is positive. If the new basis B^{*} does not satisfy (15) then the algorithm just outlined for B is iterated, with B replaced by B^{*}, etc. This process generates a sequence of bases which terminates when a basis is obtained that has the required property. This must occur in a finite number of steps since the condition (18) is a strict inequality which insures that no basis can be repeated and the number of different bases cannot exceed the number of ways of choosing m columns out of $n+m$ from (10). ${ }^{3}$ The 0 -column of successive bases of the iterative process may be interpreted as a succession of improved mixed strategies for player II for which his expected loss, y_{0}, if his opponent is playing optimally, is decreasing to a minimum. Indeed, the components of the first column of any basis (as in (17) and sequel) satisfy (4) and (5) independently of condition (15), while y_{0}, the first component of β_{0}, is nonincreasing from basis to basis by virtue of (18).

To construct B^{*} from B let P_{s} denote the column of (10) which replaces the r th column of B where P_{s} and $P_{j_{r}}$ are determined by the following rules: Choose P_{s} such that

[^2]\[

$$
\begin{equation*}
\beta_{0} P_{s}=\max _{j} \beta_{0} P_{j}>0, \quad(j=1, \cdots, n+m) \tag{19}
\end{equation*}
$$

\]

In case the choice of s is not unique, then choose s with the smallest index satisfying (23). Next, compute the column vector V satisfying $B V=P_{s}$. It is clear that components of $V=\left\{v_{0}, v_{1}, \cdots, v_{m}\right\}$ are given by

$$
\begin{equation*}
v_{i}=\beta_{i} P_{s} \quad(i=0, \cdots, m) \tag{20}
\end{equation*}
$$

where, in particular $v_{0}=\beta_{0} P_{s}>0$ from (19). We now choose to drop from B that column $P_{j_{r}}$ such that the lexicographic minimum of the vectors $\left(1 / v_{i}\right) \beta_{i}$ for $v_{i}>0$ is attained for $i=r$. Thus,

$$
\begin{equation*}
\frac{1}{v_{r}} \beta_{r}=\min \frac{1}{v_{i}} \beta_{i} \quad\left(v_{r}>0, v_{i}>0\right) \tag{21}
\end{equation*}
$$

where $i, r \neq 0$, and where it is assumed for the moment that there is at least one $v_{i}>0$. The minimizing vector is easily obtained in practice by finding the vector whose first component is the least; if there is a tie, then one passes to the second components of the tying vectors and selects the least, etc. A relation which will be used later that follows from (21) is

$$
\begin{equation*}
\beta_{i}-\frac{v_{i}}{v_{r}} \beta_{r}>0 \quad\left(v_{i}>0\right) \tag{22}
\end{equation*}
$$

It is clear from the structure of the augmented matrix (10) that the first column P_{0} can not be formed as a positive linear combination of the other columns P_{j}. However, if we assume, contrary to the assumption of (21), that all $v_{i} \leqq 0,(i \neq 0)$ and write

$$
P_{s}=B V=v_{0} P_{0}+\sum v_{i} P_{j_{i}}
$$

then, by transposing to the left all terms other than $v_{0} P_{0}$, we obtain a positive linear combination of columns P_{s} and $P_{j_{i}}$ that yields $v_{0} P_{0}$, where $v_{0}>0$; a contradiction.

There remains only to show that B^{*} has the requisite properties (12) and (18). The proof, as well as the efficiency of the computational algorithm, is obtained by constructing $\left[B^{*}\right]^{-1}$ from B^{-1} using the relations

$$
\begin{align*}
& \beta_{i}^{*}=\beta_{i}-\frac{v_{i}}{v_{r}} \beta_{r} \tag{23}\\
& \beta_{r}^{*}=+\frac{1}{v_{r}} \beta_{r}
\end{align*}
$$

where β_{i}^{*} is the i th row of $\left[B^{*}\right]^{-1}$. To verify that (23) is indeed the inverse of B^{*}, one notes from (23) that for $i \neq r$ the values $\beta_{k}^{*} P_{j_{i}}$ are
the same as $\beta_{k} P_{j_{i}}=0$ (or 1 if $i=k$) ; moreover, it follows readily from the definitions of v_{i} given in (20) that $\beta_{r}^{*} P_{s}=1$ and $\beta_{i}^{*} P_{s}=0$ for $i \neq r$.

The required properties of β_{i}^{*} are immediately evident: Thus, the first nonzero component of β_{r}^{*} is positive because β_{r} has this property and $v_{r}>0$. Next, for all other $i=1,2, \cdots, m$ the property must hold if $v_{i} \leqq 0$ since β_{i}^{*} is the sum of two vectors with this property. If $v_{i}>0$ then $\beta_{i}^{*}>0$ by (22) and (23). Finally we note that the relation $\beta_{0}>\beta_{0}^{*}$ (and not $\beta_{0} \geqq \beta_{0}^{*}$) holds because β_{r}, a row of a nonsingular matrix, possesses at least one nonzero component and β_{0}^{*} is formed by subtracting from β_{0} a vector $\left(v_{0}\left(v_{r}\right) \beta_{r}\right.$ where $v_{0}>0, v_{r}>0$; hence, (18) holds and the proof is complete.
4. Example. Solve the 3×6 game matrix M

$$
M=\left(\begin{array}{llllll}
4 & 3 & 3 & 2 & 2 & 6 \\
6^{*} & 0 & 4 & 2 & 6 & 2 \\
0 & 7 & 3 & 6 & 2 & 2
\end{array}\right)
$$

from [8, Chap. 3, Ex. 10]. Element a_{21} of M has been starred. It will be noted that this is the maximal element in the first column. For convenience, see (11), the second and third rows have been interchanged so that this element appears in the bottom position of this column in forming the augmented matrix, $\left[P_{0}, \cdots, P_{9}\right]$, given below:

$$
\begin{gathered}
P_{0} \\
P_{1}
\end{gathered} P_{2} \quad P_{3} \quad P_{4} \quad P_{5} \quad P_{6} \quad P_{\tau} \quad P_{8} \quad P_{9} .
$$

Initial Iteration. The initial basis, $B=B_{0}$, consists of $P_{0}, P_{1}, P_{7}=U_{1}$, $P_{8}=U_{2}$. The inverse of B_{0} (given below) is determined by formula (13). The entries v_{i} shown, for the moment, cannot be filled in until P_{s} is first determined.

$$
B_{0}^{-1}=\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right)=\left(\begin{array}{rrrr}
6 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
2 & 1 & 0 & -1 \\
6 & 0 & 1 & -1
\end{array}\right) ; \quad \begin{aligned}
& v_{0}=6 \\
& v_{1}=1 \\
& v_{2}=5 \\
& v_{3}=13
\end{aligned}
$$

Next, $P_{s}=P_{2}$ is determined by

$$
\beta_{0} P_{s}=\beta_{0} P_{2}=\max _{j \neq 0} \beta_{0} P_{j}=6>0
$$

so that the entries $v_{i}=\beta_{i} P_{s}$ (given above) can now be computed. The column r to be dropped from the basis is determined by forming the lexicographic minimum of the vectors (See §2).

$$
\frac{1}{v_{r}} \beta_{r}=\frac{1}{5} \beta_{2}=\min _{v_{i}>0, i \neq 0}\left(\text { lexico.) } \frac{1}{v_{i}} \beta_{i}\right.
$$

Drop col $r=2$; that is, P_{7}.
1st Iteration. The next basis $B^{*}=B_{1}$ is $\left[P_{0}, P_{1}, P_{2}, P_{8}\right]$. To obtain its inverse set: $\beta_{i}^{1}=\beta_{i}-\left(v_{k} / v_{r}\right) \beta_{r},(k \neq r)$ and $\beta_{r}^{1}=\left(1 / v_{r}\right) \beta_{r}$ where $r=2$ where the superscript (in place of ${ }^{*}$) refers to the basis $B=B_{k}$.

$$
B_{1}^{-1}=\left(\begin{array}{c}
\beta_{0}^{1} \\
\beta_{1}^{1} \\
\beta_{2}^{1} \\
\beta_{3}^{1}
\end{array}\right)=\left(\begin{array}{cccc}
\frac{18}{5} & -\frac{6}{5} & 0 & +\frac{1}{5} \\
\frac{3}{5} & -\frac{1}{5} & 0 & +\frac{1}{5} \\
\frac{2}{5} & \frac{1}{5} & 0 & -\frac{1}{5} \\
\frac{4}{5} & -\frac{13}{5} & \frac{5}{5} & \frac{8}{5}
\end{array}\right) ; \quad \begin{aligned}
& v_{0}=\frac{12}{5} \\
& v_{1}=\frac{7}{5} \\
& v_{2}=-\frac{2}{5} \\
& v_{3}=\frac{36}{5}
\end{aligned}
$$

where $P_{s}=P_{5}$ is determined by

$$
\beta_{0}^{1} P_{s}=\beta_{0}^{1} P_{5}=\max _{j \neq 0} \beta_{0}^{1} P_{j}=\frac{12}{5}>0
$$

and $P_{j_{r}}=P_{j_{3}}=P_{8}$ is determined by

$$
\frac{1}{v_{r}} \beta_{r}^{1}=\frac{5}{36} \beta_{3}^{1}=\min _{v_{i}>0,}(\text { lexico } 1
$$

2nd (Final) Iteration.

$$
B_{2}=\left(\begin{array}{cccc}
P_{0} & P_{1} & P_{2} & P_{5} \\
0 & 1 & 1 & 1 \\
-1 & 4 & 3 & 2 \\
-1 & 0 & 7 & 2 \\
-1 & 6 & 0 & 6
\end{array}\right) ; \quad B_{2}^{-1}=\left(\begin{array}{l}
\beta_{0}^{2} \\
\beta_{1}^{2} \\
\beta_{2}^{2} \\
\beta_{3}^{2}
\end{array}\right)=\left(\begin{array}{cccc}
\frac{50}{15} & -\frac{5}{15} & -\frac{5}{15} & -\frac{5}{15} \\
\frac{16}{36} & \frac{11}{36} & -\frac{7}{36} & -\frac{4}{36} \\
\frac{16}{36} & \frac{2}{36} & \frac{2}{36} & -\frac{4}{36} \\
\frac{4}{36} & -\frac{13}{36} & \frac{5}{36} & \frac{8}{36}
\end{array}\right) ;
$$

where no P_{s} can be determined since $\beta_{0}^{2} P_{j} \leqq 0$ for $j \geqq 1$. Thus an optimal
solution has been obtained (from top row) $\hat{x}_{1}=5 / 15, \hat{x}_{2}=5 / 15, \hat{x}_{3}=5 / 15$ and (from first column) $\hat{y}_{1}=16 / 36, \hat{y}_{2}=16 / 36, \hat{y}_{5}=4 / 36$ where all other $\hat{y}_{i}=0$. The "value of the game" (from upper left corner) is $\hat{x}_{0}=\hat{y}_{0}=$ $50 / 15$. It will be noted that actually $\xi_{0}^{2} P_{j}=0$ for all $j \geq 1$, which means there exist other bases and corresponding solutions. Williams shows in his book, in all, eight such solutions.

References

1. G. B. Dantzig, A. Orden, and P. Wolfe, "The generalized simplex method," The RAND Corporation, Research Memorandum RM-1264, 1954.
2. Robert Dorfman, "Application of the simplex method to a game theory problem," Activity Analysis of Production and Allocation, T. C. Koopmans (Editor), John Wiley and Sons, New York, 1951.
3. Melvin Dresher (and others), Mathematical theory of zero-sum two-person games with finite number or a continuum of strategies, The RAND Corporation, R-115, 1948.
4. H. W. Kuhn, Lectures on the theory of games, reprint, Princeton University Department of Mathematics, 1952.
5. J. C. C. McKinsey, Introduction to the theory of games, McGraw-Hill, New York, 1952.
6. J. von Neumann and Oskar Morgenstern, Theory of games and economic behavior, 2nd Edition, Princeton University Press, 1947, p. 153.
7. Herman Weyl, "Elementary procf of a minimax theorem due to von Neuman," Contributions to the Theory of Games, 1, H. W. Kuhn and A. W. Tucker (Editors), Princeton University Press, 1950.
8. J. D. Williams, The Compleat Strategyst, McGraw-Hill, New York, 1954.

The Rand Corporation

[^0]: Received January 15, 1954 and in revised form September 29, 1954.
 The author wishes to express his indebtedness to Melvin Dresher for his encouragement and suggestions.
 ${ }^{1}$ For the contributions of Borel to this field see Econometrica, Vol. 21, No. 1, January, 1953, pp. 95-127.

[^1]: ${ }^{2}$ That the simplex method itself could be used to prove the Min-Max Theorem was first pointed out by Dorfman (and H. Rubin) [2]. This paper, by incorporating methods for avoiding "degeneracy" and "cycling" in the simplex algorithm [1], puts the proof on a completely rigorous foundation.

[^2]: ${ }^{3}$ In practical computations with the simplex method, of which this is a variation, the number of iterations is usually very small. In a game case where, say, $m / 2$ of pure strategies are used with positive probability in an optimal mixed strategy, something in the order of $m / 2$ iterations might be expected before an optimal basis is obtained.

