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Lurking Variables: Some Examples

BRIAN L. JOINER*

Lurking variables are important explanatory variables
that might well escape attention in a routine statistical
analysis. In this report several examples of lurking
variables are given. Important points illustrated include
the following. Careful checking, plotting, and thinking
are very important. Whenever possible, data and
residuals should be examined with respect to time
order and spatial arrangement. A variety of plots of the
data and the residuals is virtually indispensable.
In designing experiments, time order should be con-
sidered and, when practical, randomized. Such ran-
domization is not a panacea, however, since lurking
variables can still be present.

KEY WORDS: Time-order effects; Plotting; Residuals;
Randomization; Lurking variables.

1. INTRODUCTION

Errors, like straws, upon the surface flow;
He who would search for pearls must dive below.
John Dryden (1678), All for Love.

A lurking variable is, by definition, a variable that
has an important effect and yet is not included among
the predictor variables under consideration (Box 1966).
It may be omitted from the analysis ‘‘because its
existence is unknown or, if its existence is known, its
influence is thought to be negligible or data on it are
unavailable’” (Hunter and Crowley 1979).

A key question is, ‘“How does one even identify the
existence of a lurking variable when, by definition, it
is not among the list of factors contemplated by
the analyst?’’ The answer often is to examine the
data and residuals with respect to time order, day of
the week, spatial arrangement, or some other *‘diag-
noser’’ variable. It is axiomatic that all data must be
collected either serially or cross-sectionally. In fact
some data have both temporal and spatial arrange-
ments. For example, crops in various ‘‘plots’ have a
spatial structure but may be chemically analyzed
sequentially.

In many respects the problem turns out to be similar
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to that encountered by physicist Walter A. Shewhart,
the father of statistical quality control. Shewhart
sought methods for finding ‘‘assignable causes’’ for
important variations in industrial production proc-
esses. Shewhart found that the data sets he con-
sidered, even those from very good laboratory
scientists, almost invariably contained peculiarities
when examined with respect to time order. He
found shifts in level and other patterns and used
these patterns to help focus searches for assignable
causes of these disturbances.

In other cases, searches may be focused by ob-
serving spatial patterns. In still other cases, efforts
may be guided by a careful examination of possible
causes for one or two ‘‘outliers.”

In this report we give several examples of lurking
variables and tell how their existence was detected.
These examples help illustrate the fact that lurking
variables can be found—or overlooked!—even in such
*clean’’ situations as carefully designed experiments.

2. VITAMIN B, IN TURNIP GREENS

Our first example of a lurking variable is based on
data that have been previously analyzed by both Ander-
son and Bancroft (1959, p. 192) and Draper and Smith
(1966, p. 229; 1981, p. 406). These data resulted from
an experiment conducted to evaluate the effect of three
variables on the amount of vitamin B, in turnips. The
three variables are x, = radiation; x, = moisture in
soil; and x; = temperature. Anderson and Bancroft
report a model linear in x,, x,, and x;. Their model
gives an (unadjusted) R? of .75. Draper and Smith
arrive at a model containing x,, x; and x,> with an
R? of .90.

Even relatively careful analysis of the residuals from
the Draper and Smith model, such as the residual plots
in Figure 1, reveals no serious problem with the fitted
model. Draper and Smith did say (1966, p. 339; 1981,
p. 598), **A plot of the residuals reveals runs of + and
— signs indicating the presence of unconsidered
x-variables.”

However, if one plots the original data in the order
they were presented in the textbook, a striking pattern
can be seen (Figure 2). The data drop off nearly
linearly. In fact, a simple straight line fitted to the
plot in Figure 2 gives an R? of .90! What is the ex-
planation? The answer is not clear, and attempts to
get more details about the original experiment have not
been successful. One conclusion is that some other
factor not recorded—that is, a lurking variable—
was the primary responsible party. It may have been
that the values are reported in the order measured and
that reagents or the turnips themselves decayed over
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Figure 1. Standardized Residuals From Draper & Smith Fit for Vitamin B, in Turnips

time. There is no other ready explanation. The Y values
are not merely listed in decreasing order, for a number
of inversions are apparent in Figure 2. The argument
that x, is the most important factor loses credibility
on at least two accounts. A quadratic is needed to
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fit the three levels of x,, and the Y values in Figure 2
seem to continually drop off with order unaffected by
changes in.x,. Careful data checking has opened serious
questions about the quality of the data but, in this case,
has not identified the culprit.

Vitamin

B,

Data vs i

Order (/)

Figure 2. Plots of Data for Vitamin B, in Turnips

NOTE: Letters denote values of X,: A = 0.070, B = 0.020, C = 0.474.
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Figure 3. Time-Order Plot of Raw Oxygen-in-Steel Data

Lesson 1: One needs to plot the data themselves,
not merely the residuals from some model. Analyzing
the residuals does not always make obvious the
existence of the lurking variables. (John Tukey has
suggested we call the data the ‘‘null residuals,” i.e.,
the residuals from a null model, thus avoiding the
need to teach people to do something ‘‘new.’’)

3. OXYGEN IN STEEL

Another example of data having an important but not
easily detectable time order decay of measurements is
provided by the oxygen in steel data reported in Ryan,
Joiner, and Ryan (1976, p. 205) and Joiner and Camp-
bell (1976).* These data come from a National Bureau
of Standards experiment conducted to evaluate the
homogeneity of oxygen in steel rods. Twenty rods
were haphazardly selected from a large batch and two
measurements were made on each. A standard one-
way analysis of variance revealed no significant

* Oxygen is inadvertently misspecified as nitrogen in this
reference.

inhomogeneity from rod to rod, but more variation
than expected was present.

Fortunately, the measurements had been made in
random order. A study of the residuals was unin-
formative, but a careful study of a time order plot of the
raw data (Figure 3) led to the construction of still
another time order plot (Figure 4). The latter plot made
it clear that the readings had decreased dramatically
within each day. In this case, a careful timely search
for causes was made, but unfortunately no explana-
tions were found. Some consolation was taken in the
fact that a serious problem has been brought to light
by careful statistical analysis.

The original randomization had been critical; without
the randomization of measurement order, there would
have been little chance of even finding out that there
had been a problem. Note, however, that randomiza-
tion is not a panacea. It enabled us to find the existence
of a problem but it did not make the problem go away.
Analysts should not be advised to ignore external
factors merely because randomization has been
practiced.

Lesson 2: Randomization of time order is useful.
However, randomization does not obviate the need for
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Figure 4. Revised Time-Order Plot of Oxygen-in-Steel Data

careful analysis of possible time-order-dependent ef-
fects. In addition, such randomization is not always
practical (see, e.g., Joiner and Campbell 1976).

Lesson 3: Even very similar plots often show quite
different things. There is no substitute for making and
looking carefully at a wide variety of plots, especially
given the ease and speed of computer-generated plots.

It is important to note that time itself is seldom the
culprit; rather, the problem usually lies with some other
factor that has varied with time in a systematic way.

4. FREEZING MEAT LOAF

These data were obtained in an experiment in
which the primary interest was in comparing several
different methods of freezing meat loaf. The meat loaves
were to be baked, then frozen for a time, and finally
compared by expert tasters. The data in question here
were obtained in a pretest of oven uniformity (see
Ryan, Joiner, and Ryan 1976, pp. 207-214).

Eight loaves could be baked in the oven at once and
a ‘‘uniformity trial’’ was run to see if the drip loss
(weight lost due to drippage during cooking) was differ-
ent among the eight positions. Three batches were

cooked and the results analyzed as a randomized
block design. The results indicated that there was a
statistically significant difference among the oven
positions.

Further checking revealed that the three positions
with the lowest drip loss were the three positions
in which thermometers had not been inserted in the
loaves. Possible remedies in future studies would be
to insert at least a dummy thermometer in all loaves
or use thermometers in no loaves.

As in many cases, once one knew where to look the
‘‘assignable cause’ was obvious. An important con-
tribution of good statistical design and analysis is to
help researchers identify good places to look for
problems or unexpected benefits.

Lesson 4: Look for commonalities among the best
and worst (highest and lowest) data points or estimated
effects. Ott (1975, e.g., pp. 107-110) and Deming (1981)
give a number of interesting industrial examples.

5. RED DYE 40

Red dye number 40 is currently the second most used
food coloring in the United States. Does it cause cancer
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in mice? Some experts say yes and some say no. Here
is a brief outline of the story, and of how a lurking
variable played an important role. More details are
given in Lagakos and Mosteller (1981).

Red dye 40 was approved for use by the U.S. Food
and Drug Administration in 1971 after being tested for
carcinogenesis in rats. In that study the rats were fed
large doses of the dye throughout their lives, and no
significantly greater rate of tumors was found in the red
dye group than in the control group. In 1975 another
study was initiated, this time using mice. Preliminary
results showed a surprisingly early incidence of
reticuloendothelial (RE) tumors in the exposed groups.
This led to a second, larger, mouse study.

This new study, undertaken in 1976, involved 100
male and 100 female mice in each of two control groups
and three dose levels for a total of 1,000 mice. Con-
siderable controversy arose over many aspects of both
mice studies; this controversy is still not resolved
despite the efforts of several well-known statisticians
called in as consultants. One particularly telling
set of results is given in Table 1. Sex seemed to be a
factor, as expected, but not red dye 40. The difference
in rates for the control groups was particularly
puzzling.

Statisticians Frederick Mosteller and Stephen
Lagakos requested cage information and discovered
that the vertical level of the cage and front or back
placement were lurking variables (Table 2).

Further investigation revealed that the mice had been
placed in the cages based on litters, five mice per
cage. All mice in a given cage were of the same sex.
The first cage had the three males from litter 1 plus
two males from litter 2. The next cage had the remaining
male from litter 2 plus three males from litter 3 and one
male from litter 4. The next cage had two males from
litter 4 plus three from litter 5. This pattern was re-
peated until all the male cages were filled. The
female cages were filled in a similar systematic fashion.
Then the cages were placed on the racks in the
following systematic order: first came all the male con-
trol 1 cages, then all the female control 1 cages, then
male control 2, female control 2, male dose 1, female
dose 1, male dose 2, female dose 2, male dose 3, then
finally female dose 3.

This placement led to complete confounding of the
male control 1 versus male control 2 with front versus
back of racks and to partial confounding of the other
factors of interest with cage placement differentials.

The statistician Bernard Greenberg, who was also
called in as a consultant, found evidence for a litter
effect. This was particularly troublesome since the
mice had been assigned to treatment groups by litters.

Table 1. Incidence Rate of RE Tumors (in %)

Sex Control 1 Control 2 Dose 1 Dose 2 Dose 3
Male 25 10 20 9 17
Female 33 25 32 26 22

Table 2. Incident Rate of RE Tumors (in %)

Top Bottom
Front Back
Row 1 2 3 4 5 Cages Cages
Rate 32 24 18 18 17 25 19

Final conclusions on this study are still not available
but considerable progress in understanding the results
has been made possible by the discovery of cage
placement factors and the litter effect.

Lesson 5: Spatial and familial relationships may be
important factors, as may sex.

We now give a brief sketch of several other pub-
lished examples of lurking variables.

6. STACK LOSS

Daniel and Wood (1971, 1980) did a careful analysis
of a data set that had already been analyzed by several
previous authors. The data represent 21 successive
days of operation of a plant oxidizing ammonia to nitric
acid. The three explanatory variables are the flow of
air to the plant, the temperature of the cooling water,
and the concentration of nitric acid in the absorbing
liquid. The response variable is the percentage of
ammonia that is lost.

In their now classic analysis, Daniel and Wood
identified two important time-order effects. The first is
a start-up effect (Chapter 5) in which it seems apparent
that the first day’s operations under a new set of condi-
tions produced values that were quite different from
those experienced after the plant has had a chance to
“‘line out.”

The second effect is an autocorrelation effect (Ch. 7,
p. 126 of 1st edition and p. 138 of 2nd edition); there
are really only six clumps of data; there is strong
correlation among the measurements in each clump.

Lesson 6: Start-up effects and strong correlation
among measurements made close together in time are
common in data made in time order. Plotting pre-
dictor variables versus time as well as responses
versus time can help identify potential problems.

7. DANIEL AND WOOD 10-VARIABLE EXAMPLE

Even Daniel and Wood missed the time-order effect
in their ‘*10-variable’’ example in their first edition
(1971). The data are weekly figures relating to the
operation of a petroleum refining unit. In their second
edition (1980, pp. 146—148) Daniel and Wood find that
their 10-variable example has plant start-up problems
similar to those they found earlier in the stack loss
data. They found two points (19 and 20) that had ab-
normally large influence on the fitted equations. These
two points were “‘observed to have been taken after a
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three-week shutdown of the unit (or at least omission
of data).””

Lesson 7: Even analysts who are known to do careful
work must be on guard lest they miss important lurking
variables.

8. CRYOGENIC FLOW METERS

The case study reported in Joiner (1977) provides
still another example of time-order dependence. In that
study a new facility for calibrating cryogenic flow
meters was evaluated. The facility was quite com-
plicated and involved such components as a submerged
pump, a heat exchanger, temperature control valves,
a weigh tank, a load cell, a set of calibrated weights,
and a revolution counter. Each of these factors was
subject to some uncertainty as to how it would work at
cryogenic temperatures, about 85° Kelvin. A series of
tests was done on the system while several meters were
being calibrated.

Some lurking variables identified in that study in-
cluded the following:

1. In one set of data the first three points were
‘‘outliers’’; the apparent cause was insufficient ‘‘exer-
cise’’ of the weight system (p. 358). This was corrected
in further runs by adding more exercise cycles.

2. Another outlier may have been caused by the
revolution counter’s picking up a stray pulse (p. 359).

3. All the readings on one day were lower than
expected, perhaps owing to the fact that a delivery of
liquid nitrogen had been received that day that may
have abnormally increased the pressure in the system,
thereby forcing an extra amount of fluid into the catch
tank, which in turn increased the buoyancy force on
the weigh system (p. 360).

4. Points taken later in the day sometimes tended
to be higher than those taken earlier in the day. This
may have been caused by thermally generated voltages
in the measuring system (p. 361).

5. A number of other abnormalities were found, but
time did not permit the identification of all assignable
causes.

In this example the benefit of close collaboration be-
tween statisticians and scientists is quite obvious. The
analyst identified several suspicious sets of values,
which enabled the scientists to focus their search for
trouble spots. Further experiments helped confirm the
validity of some of the findings. An even more
iterative scheme in which preliminary findings sug-
gested further data collection efforts that led to new
findings, and so on, would have been even better. In
this complex experiment, lurking variables seemed to
be everywhere.

Lesson 8: Good continuous communication between
statistician and experimenter is very valuable.

9. STRENGTH OF PLASTIC

Wilson (1952, pp. 55-56) reports the results of an
experiment which was

performed to determine the effect of the length of time of
pressing in the mold on the strength of a plastic part. Hot
plastic was introduced in the mold, pressed for 10 seconds,
and removed. Another batch was then introduced into the
same mold, pressed for 20 seconds, and so on, the time
increasing with each batch. Afterward the strength of each
piece was measured and plotted against the duration of the
pressure. [The plot seemed] . . . to indicate a strong de-
pendence of strength on duration. However, the research
supervisor criticized the experiment because the order of the
experiments had not been randomized, and so it was repeated.
The results . . . [were replotted with notes as to] the order
in which the measurements were taken . . . it was the order
and not the duration which was the controlling variable; the
first conclusion was quite erroneous. The origin of the trouble
was easily traced after its presence was made known; the mold
got warmer and warmer as successive batches of hot plastic
were pressed in it.

Lesson 9: In many cases it is a good idea to do a
repeat experiment using carefully controlled ran-
domization.

10. CONCLUSIONS

Good statistical analysis often involves careful
detective work. Part of this work is based on using some
specified set of predictor variables to develop a sound
model. Making proper use of these specified variables
is often hard enough, but lurking variables can make the
task even more difficult. The existence of such vari-
ables can usually be detected only by careful study of
patterns in the data or the residuals. The failure to
detect the presence of lurking variables can sometimes
lead to grossly incorrect conclusions.

Lurking variables are to be found in every field. The
examples given here have been predominantly from
the physical sciences since that is where the author
has the most experience. Many of these examples
have exhibited time-order dependencies. Careful in-
vestigation of time-order dependence is one of the most
useful approaches for finding lurking variables since
many factors normally vary over time, and not
all of them will be recorded for use among the list of
predictor variables. ‘

Spatial arrangements also often provide useful clues
since some factors change ‘‘geographically’’ —across
fields, from floor to ceiling, or in some other way. In
other cases, lurking variables are found only by a care-
ful study of what some subset of points have in com-
mon. Clusters of observations that may appear only
slightly discordant must be examined for common
factors.

Advice to search for lurking variables is not new.
For example, Anscombe and Tukey (1963) advised an
examination of ‘‘the relationship of the residuals to
external variables, such as time of observation or
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geographical position.”” Such advice is surely much,
much older.

Plotting seems to be the best way to identify the
presence of lurking variables. Some plots should be
done routinely. For example, if data have a time or
space ordering, they should be plotted versus that
order. Residuals should also be plotted versus order.
If the time or space differences between observa-
tions are not equal (e.g., if there are occasional big
gaps) then a real time or space plot should be made,
too. When appropriate, daily, weekly, monthly, or
seasonal plots should also be made (see, e.g.,
Figure 4).

The best general rules in analysis seem to be think
and plot. What could have gone wrong? How could
you give patterns a chance to expose themselves? Look
carefully at the plots. What hints of possible trouble
are there? What else could you do to expose any
problems? Ask to see the apparatus or any other source
of potential problems. Ask the researcher, Precisely
how did you get these measurements? What did you
do first? How many measurements were made from
each batch of solution? Were any repeat measure-
ments made? What aspects of the process were
repeated?

In design, the standard statistical advice is to block
to eliminate sources of variation suspected to be
important and randomize as much of the rest as is
practical. Note that these are not standard principles
of experimental practice in most fields. Generally, the
statistician must specify explicitly which measure-
ments are to be made in which order, by whom, on
which device, and so on. A mere instruction to ‘‘run
these randomly’’ will seldom suffice.

In summary, the statistician who brings to light an
important lurking variable makes a very real contribu-
tion to the research, far beyond that available from the
routine calculation of estimates, tests and p values.

Such good work often has a major impact on the
research and may result in important new findings. At
the very least it reduces the chances that mis-
leading or erroneous results will be reported without
cautioning remarks.

[Received September 1979. Revised June 1981.)
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