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SAMPLING THEORY OF THE NEGATIVE BINOMIAL AND
LOGARITHMIC SERIES DISTRIBUTIONS

By F. J. ANSCOMBE, Statistical Laboratory. University of Cambridge

1. INTRODUCTION

The negative binomial distribution depends on two parameters, which for many purposes
may be conveniently taken as the mean m and the exponent k. The chance of observing any

non-negative integer r is m\* T(k+r) [ m \
Pr=(‘+7z) W’F‘(H(m) (-1

Sometimes it is more convenient to replace m by p or X defined by

Thus we may write P = (1-X)k I; '(];‘:_k;) Xr. (1-3)
We assume k, m, p >0, 0 < X < 1. The factorial-cumulant-generating function is

lnE{(l+t)’}Ei§1 kgtii! = —kln (1= pt), (1-4)
and the ith factorial cumulant is Km:: (¢ — 1) kpt. (1-5)
The generating function of ordinary cumulants* is

In E(e) = ﬁlkiti/u = —kIn{l—p(e— 1)}, (1-6)
and the first four are Ky = ;p = m,

Ky = kp(l+p) = m+m?/k, l (17)

ko = kp(1+p) (1+2p), J
Ky = kp(1+p)(1+ 6p+ 6p2).

From (1-4) or (1-6) we see that the sum of N independent observations from the distribution

has still a distribution of negative binomial form, with mean Nm and exponent Nk.

The logarithmic series distribution of R. A. Fisher is obtained by a limiting process from
the negative binomial distribution by considering a sample of N readings, letting N tend
to infinity and k to zero, and neglecting the zero readings. It is a multivariate distribution,
consisting of a set of independent Poisson distributions with mean values

aX, 3aX? l1aX3, ..., (1-8)
A ‘sample’ comprises one reading from each Poisson distribution.

* For a discussion of ordinary and factorial cumulants of a related distribution see Wishart (1947).
Aitken (1939) and Haldane (1949) have pointed out that discrete distributions are often more con-
veniently described by factorial than ordinary cumulants, and this proves to be so for the distributions
considered in § 2. The following relations may be noted:

Ky = Knps

Kg = Kig)+ Ky

K3 = Kig) + 3Kia1 + Ky

Ky = Kig+ 6Kpg) + TKig + K1y
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The main purpose of this paper is to carry somewhat further Fisher’s investigations
(Fisher, 1941; Fisher, Corbet & Williams, 1943) into the sampling properties of these dis-
tributions. The following is a brief summary of contents.

In §2 the negative binomial form of distribution is compared with seven other two-
parameter forms of distribution that have been proposed by various writers. It is shown that
they can be arranged in order of increasing skewness and tail length, and that they vary in
the number of modes possible in the frequency function. Thus while Neyman’s Type A
contagious distribution may have an unlimited number of modes, a distribution given by
Pélya may have either one or two modes, and the negative binomial and a discrete form of
the lognormal distribution have always one mode. The estimation of the distribution of
local mean values in heterogeneous Poisson sampling is considered.

In §3 the estimation of the parameters of a negative binomial distribution from a single
large sample is considered.* Alternatives to the maximum-likelihood method are described
and their efficiencies indicated. Three such methods are found to be of practical importance:
estimation by the first two sample moments, estimation by the first sample moment and the
observed proportion of zero readings, and estimation with the aid of a transformation of the
observations which makes the variance independent of the mean.

In § 4 two large-sample tests are described for discriminating between alternative forms
of parent distribution. Each test is fully efficient in certain circumstances.

In §5 the estimation of a common exponent from a series of samples is considered, when
the parent populations possibly differ in their means. The results of §§ 3 and 5 have already
been summarized by me elsewhere (1949), and their use discussed.

Finally, §§6 and 7 deal with the logarithmic series distribution. The estimation of « by
maximum likelihood, and some alternative formulae for its sampling variance, are dis-
cussed. Two tests of departure from the logarithmic series form of distribution are con-
sidered, one of them being due to Fisher and the other new.

Notation. The following notation will be used for the negative binomial distribution:

m, k, p, X, P, as defined above.
N = total number of observations in sample.

n, = number of observations equal to r (for » > 0).

7 = Y nr/N = mean of sample.

r=0

s* = ¥ n,(r—7)% (N — 1) = variance estimate.
r=0
For other distributions in§2, kand p are defined so that the mean = kp, variance = kp(1 + p).
The notation for the logarithmic series distribution will be:

a, p, X, n, as defined above.

0

S =3 mn,.
r=1
0

I =73 nr
r=1

* The investigation may be compared with that of Shenton (1949) for Neyman’s two-parameter
Type A distribution.
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An estimate of a parameter will be denoted by the same symbol with circumflex added.
Different estimates of the same parameter are not distinguished in the notation, but only
by context.

2. COMPARISON OF NEGATIVE BINOMIAI, WITH OTHER DISTRIBUTIONS

A number of ways are known in which the negative binomial distribution can arise:

(1) Inverse binomial sampling. If a proportion @ of individuals in a population possess
a certain character, the number of observations in excess of k£ that must be taken to obtain
just k individuals with the character has a negative binomial distribution with exponent &
(Yule, 1910; Haldane, 1945).*

(2) Heterogeneous Poisson sampling. If the mean A of a Poisson distribution varies ran-
domly from occasion to occasion, a ‘compound Poisson distribution’ results (Feller, 1943 ).
We obtain a negative binomial with exponent & if A has a Type III distribution, proportional
to a y? distribution with 2k degrees of freedom (Greenwood & Yule, 1920).

(3) Randomly distributed colonies. If colonies or groups of individuals are distributed
randomly over an area (or in time) so that the number of colonies observed in samples of
fixed area (or duration) has a Poisson distribution, we obtain a negative binomial distribution
for the total count if the numbers of individuals in the colonies are distributed independently
in a logarithmic distribution (Liiders, 1934; Quenouille, 1949).

(4) Immigration-birth-death process. A certain simple model of population growth, in
which there are constant rates of birth and death per individual and a constunt rate of
immigration, leads to a negative binomial distribution for the population size (McKendrick,
1914; Kendall, 1949). The model has been applied to the growth of some living populations,
e.g. populations of bacteria, and to the spread of an infectious disease in a community.

The first of these, inverse binomial sampling, is the simplest mathematically, and is the
only one where the mathematical model is likely to hold exactly in practice. While # may be
unknown and require estimation, & is known, and the estimation problems discussed in the
present paper are irrelevant. Inverse binomial sampling will therefore not be considered
further.

In general heterogeneous Poisson sampling A may be supposed to have a distribution
dU(A) with mean m. If A has a cumulant-generating function

(1) =InEer = ‘{\_;]K,-fi/i!, (2:1)

then ¢(t) is the factorial-cumulant-generating function of the distribution of the observed
count r, and ¢(e!— 1) the generating function of ordinary cumulants. Hence if A has a Type
III distribution with cumulant-generating function

(1) = —kIn (1—mt/k), o

§
1o
~

7 has the negative binomial distribution required.
With the model of randomly distributed colonies, let the number of colonies observed per
sample have a Poisson distribution with mean m,, and let the number of individuals p per

* Tt appears from I. Todhunter’s History that the earliest general statement of the negative binomial
distribution in this connexion was by Montmort in 1714. As to the other methods of deriving the dis-
tribution, a more detailed review has been given by Irwin (1941).
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colony have a distribution with frequency function u,. If the latter distribution has factorial-
cumulant-generating function

Y(t) = mE(+8) = S Ltifi, (2:3)
i=1

then m,(e¥®—1) is the factorial-cumulant-generating function of the distribution of the
total count », and the first four factorial cumulants of » are

myLy, my(Ly+ L), my(Ly+3LyLy+L3), my(Ly+4LsLy+3L5+ 6L,L3 + LY).

We obtain the negative binomial with parameters p and k if m; = kln (1 + p) and if p has the
logarithmie distribution 1 P\
()@=, (24

U = pln(1+p)\l+p

which has mean m, = p/In (1 + p) and factorial-cumulant-generating function

In (1 —pt) .
g&(t)—ln{l—ln(l+p)}. (2:5)

Models (3) and (4) for the negative binomial are closely associated, in that we may use
(4) to justify (3). But it will be convenient below to consider models of randomly distributed
colonies without specifying an evolutionary stochastic process that could give rise to it, and
so the two models have been separated.

While we may expect that distributions closely resembling the negative binomial will
often in fact be observed in population counts and in the sampling of heterogeneous material,
it will not be surprising if sometimes the specific assumptions made in the above models are
so wide of the mark that a substantially different form of distribution appears. Before
embarking on a detailed study of the sampling properties of the negative binomial it will be
as well to consider briefly what other distributions have been proposed that might perhaps fit
such observations better. Attention will be confined to distributions having only two adjust-
able parameters; there seem to be seven of these outstanding in addition to the negative
binomial. A convenient method of comparison is to express each distribution in terms of
parameters k and p such that the mean and variance are kp and kp(1 + p), and then evaluate
the third and fourth factorial cumulants. Results are shown in Table 1. The distributions
can also be compared by computing specimen frequency functions; this is done in Tables
2 and 3.

The two-parameter contagious distribution of Type A of Neyman (1939) arises from the
model of randomly distributed colonies in which the number of colonies per sample has
a Poisson distribution with mean m, if we assume that the number of individuals per colony
also has a Poisson distribution, say with mean m,, m, and m, being positive constants.
A derivation along these lines has been given by Cernuschi & Castagnetto (1946), who,
however, appear not to have recognized what they derived. The distribution can also arise
from heterogeneous Poisson sampling, if A has a discrete distribution and is equal to myz,
where 2 has a Poisson distribution with mean m,. This is more or less the model Neyman used
in deriving the distribution. The frequency function is, for > 0,

r @ a7
B= e me ), (2:6)
! j= :

and its factorial-cumulant-generating function is

my(emed —1). (2

13
-1
~
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To express the mean and variance in the form kp and kp(l+p) we must set m, = k,
My = P.

Neyman’s two-parameter contagious distributions of Types B and C were derived from
a more complicated model. The factorial-cumulant-generating function of the Type B is

mol 1
my{E2 2t (2:8)
Myt

and we find $m, = k, 3m, = p. The factorial-cumulant-generating function of the Type C

distribution is omid— 1 —mt A, oo
ol o 1) =9
and &m, = k, 4m, = p. These two generating functions, (2-8) and (2-9), can be derived from
that of Type A, (2-7), by a suitable integration. Thus to get (2-8) we replace m, in (2:7) by
x and m, by (m,/m,)dz, and integrate for z between 0 and m,; while to get (2:9) we do the
same except that m, is replaced by [2m,(m, — x)/m3] dz. The observed variable r can therefore
be regarded, in each case, as the limit of the sum of a large number of random variables
following independent Type A distributions with values of the second parameter distributed
in a range (0, m,).

Recently, Thomas (1949) has proposed a distribution very similar to Neyman’s Type A.
With the model of randomly distributed colonies, where the number of colonies in the
sample has a Poisson distribution with mean m,, the number of individuals per colony is
assumed to be one plus an observation from a Poisson distribution with mean m,— 1. m, is
now a constant > 1. The factorial-cumulant-generating function of the distribution is

my{(1+1t) ema—Dt_ 1}, (2-10)

If m, is large the distribution is close to the Neyman Type A with the same values of the
parameters m,, m,. For m,— 1 small, we may set

my = 1+4p+§p2+0(p?), mm, = kp.

Pélya (1930) gives a distribution that arises from the model of randomly distributed
colonies when the number of individuals per colony has a geometric distribution with
£ .
requency function w, = (1—7)70-1, (211)
- p takes positive integer values, and 7 is a constant, 0 < 7 < 1. The mean number of individuals
per colony is m, = (1 —7)~1. The frequency function of the total observed count r per sample
is given by , . _

r—1\ 1 (m,(1—71)\!

P =e¢m s P =g . 3 S 2 1), 2-12

pTETm e 1731(3—1)9!( T ) =D =12

and the factorial-cumulant-generating function is
_ myt

S | 2-1:
l—7—17¢ (2-13)

We find m,/(27) = k, 27/(1 —7) = p. Pélya states that the distribution was given by A. Aeppli
in a thesis in 1924. It will accordingly be referred to here as the Pélya-Aeppli distribution.

Preston (1948) has considered a distribution derived from the model of heterogeneous
Poisson sampling, where it is supposed that A has a lognormal distribution, i.e. that In A
has a normal distribution, say with mean £ and variance o2 The distribution may be
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conveniently referred to as the discrete lognormal distribution.* It suffers from the dis-
advantage that its frequency function involves an untabulated integral;t for » >0,

mrT}r(r—l) ) u2
- —— r—3% pi .

5 rly(2mInT) _weXP[ I Y :ldu, (2:14)
where m = exp (£ + }02), 7 = exp (02). However, the first few factorial cumulants are easily
found, for they are the ordinary cumulants of the distribution of A, and these are obtained
(Finney, 1941) from the moments of A about the origin,

i = exp (1€ + §1%0%) = mir¥i-D, (2-15)
The mean and variance of A are therefore m and m2(r — 1); and we have
(r—=1)"1=k m(r-1)=np.

Another rather intractable distribution derived from the model of heterogeneous Poisson
sampling has been given by Fisher (1931), who supposed that A was distributed like the
square root of a Type III variable. The frequency function can be expressed in terms of
Hh-functions, which have been tabulated to some extent. The cumulants involve I'-functions.
For the entry in Table 1 the limit p — 0 with kp constant has been considered. The distribu-
tion will be referred to as Fisher’s Hh-distribution.

Table 1

Distribution Kig/ (kp®) Kiq1/(kp*)
Thomas i+ip+0(p? 3+0(p)
Fisher Hh 1+k140(p?) 0+ O(p)
Neyman A 1 1
Neyman B 2 3z
Neyman C s 8
Pélya-Aeppli 3 3
Negative binomial 2 6
Discrete lognormal 3+k1 16+ 15k~ 4+ 6k~ 2 4 k2

The third and fourth factorial cuamulants of the above distributions are given in Table 1.
It will be seen that, apart fromFisher’s Hh distribution, they form a sequence of distributions
of increasing skewness and tail length (leptokurtosis) in the order shown. The position of the
Hp distribution relative to the others is ambiguous and variable (ambiguous in that it
depends on whether we rank by «, or by &y, variable because it depends on the values of the

parameters), but we may say at least that it should come somewhere towards the front of
the list.

* Preston does not give any exact sampling theory. Other writers (e.g. Williams, 1937; Gaddum, 1945)
who have alluded to lognormal distributions in connexion with frequency counts have contented them-
selves with recommending that the data should be transformed by a logarithmic transformation of the
form y = log (r+c), so as to appear approximately normal. It should also be noted that Preston is con-
cerned with the situation where zero counts are not recorded and therefore the total sample size N is
unknown. This will be discussed in §§ 6 and 7.

T A usable approximation to the frequency function of the discrete lognormal distribution has been
developed by Dr P. M. Grundy.
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The difference in shape between the distributions is clearly substantial if p is large. To
demonstrate this further some expected frequencies are given in Table 2 for three distribu-
tions having p = 10, mean = 20, variance = 220, namely,

(e) Neyman Type A, with m; = 2, m, = 10;
(b) Pélya-Aeppli, with m, = 3%, 7= §;
(c) negative binomial, with k = 2, m = 20.
Also shown is a distribution having mean = 20, variance = 218, namely,
(d) Thomas, with m, = 2, m, = 10.

To save space, the frequencies have been grouped. The Neyman distribution (a) has modes
or peaks at r = 0, 10, 20, while at » = 30 there is a mode in first differences which is not large
enough to produce a mode in the frequencies themselves. The Thomas distribution (d) is
practically indistinguishable from (a), the difference being that the modes of (d) are slightly
more pronounced than those of (@). The Pélya-Aeppli distribution (b) has two modes only,
at r = 0 and 11. The negative binomial (c) has one mode, at r = 9 and 10 (equal frequencies).
If a discrete lognormal distribution were added to Table 2 (with m = 20,7 = 1-5, § = 2-:7930,
and o = 0-6368) it would resemble (c) in having only one mode, but would be rather more
skew; the frequencies for the first few values of » would be lower.

Table 2
Percentage frequency Percentage frequency

r r

(2) ) (e) (d) (a) (®) (e) (d)
0 13-53 3-57 0-83 13-53 17-18 5-04 5-52 577 5-09
1- 2 0-07 418 3-55 0-03 19-20 5:37 5-18 528 5-52
3-4 0-72 4-96 5-31 0-54 21-22 5:23 4-81 4-79 533
5- 6 2-74 5-52 6-34 2-56 23-24 4-74 4-42 4-31 4-74
7- 8 5:54 5-89 6-86 5-66 25-26 4-19 4-02 3-86 4-15

9-10 7-01 6-07 7-01 7-29 27-28 3-78 3-63 3-43 377
11-12 6-41 6-10 6-90 6-47 29-30 348 3-25 3-03 3-51
13-14 5-18 6-00 6-62 5-00 31-32 319 2-89 2-67 3-23
15-16 4-73 5-80 6-22 4-59 33-0 19-05 18-20 17-22 18-98

A less extreme comparison is shown in Table 3, which compares distributions having p = 3,
mean = 6, variance = 24, namely,

(@) Neyman Type A, with m, = 2, m, = 3;

(b) Pélya-Aeppli, with m, = 2-4, 7 = 0-6;

(c) negative binomial, with k = 2, m = 6.
(e) and (b) have two modes, (c) has one.

In general, the Neyman Type A and Thomas distributions can have any number of modes
from one upwards, and if there are several modes they will occur at values of r approximately
equal to multiples of m,. The Pélya-Aeppli distribution, on the other hand, has either one
or two modes—two if 2 <m, < (1—7)~%, one otherwise. The negative binomial distribution
has always one mode. Presumably, by analogy, Fisher’s Hh distribution has one or two
modes, and the discrete lognormal one mode.
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For the mere purpose of graduating data there is little to choose between the distributions
in shape if p (=m/k) is not large, and then considerations of ease of handling weigh heavily
in favour of the negative binomial. Experimental discrimination between the different
forms of distribution is practicable, however, if p is large. An interesting attempt at such
discrimination has been made by Beall (1940), who fitted Neyman Types A, B, C, Pélya-
Aeppli, and negative binomial distributions to eleven series of counts of insect larvae. Some
of the series seemed to indicate a bimodal population, and he concluded that they were well
fitted by the Neyman forms of distribution, but not by the other two. Mr D. A. Evans has
pointed out to me, however, that Beall fitted the latter distributions incorrectly, having
mixed up the two parameters, and he was consequently unfair to them.

Table 3
Percentage frequency Percentage frequency
? »
(a) ) (e) (a) 0 (c)

0 14-95 9-07 6-25 9 5-23 4-92 4-69
1 4-47 871 9-37 10 4-42 4-12 3-87
2 7-36 9-41 10-55 11 3-67 3-40 3-17
3 8-77 9-49 10-55 12 3-:00 278 2-57
4 8-83 9-12 9-89 13 2-42 2-25 2-08
5 8-29 8-46 8-90 14 1-92 1-80 1-67
6 7-60 7-63 7-79 15 1-51 1-43 1-34
7 6-86 6-71 6-67 16 1-17 1-13 1-06
8 6-06 5-80 5:63 17-c0 3-48 378 3-95

In analysing population counts we may have two quite distinct objects. On the one hand,
the counts may have been made on plots in an experiment, and we desire some means of
interpreting them so that the effects of treatments can be judged. What is usually done is to
apply a transformation to make the method of analysis of variance appropriate. We study
the distribution of the original counts in order to find a suitable transformation. It does not
matter greatly whether the form of distribution fitted, if any, is very accurate or not.

On the other hand, we may be interested in relating the observed counts to some theory
of population growth or spread. In that case we shall endeavour to use only forms of dis-
tribution that are ‘biologically significant’. Neyman’s distributions were intended to repre-
sent populations of insect larvae observed shortly after emergence from eggs, the eggs being
supposed laid in clusters of a fixed size. The models seem rather special, and not likely to be
widely applicable to other sorts of population counts. The characteristic feature of the
distributions (at any rate, that of Type A) is the possibility of a series of three or more
equally spaced modes. Unless such a series of modes is demonstrated conclusively by obser-
vation, one may reasonably feel reluctant to use such a model. Thomas’s distribution was
intended to represent plant quadrat counts, but no evidence has been adduced to make
plausible the special form of %, assumed, and again one may reasonably feel reluctant to
useit. The derivation of the Pélya-Aeppli distribution from the model of randomly distributed
colonies is much more promising. Kendall (1949) has shown that the progeny of a single
individual after a fixed lapse of time will follow a geometric distribution with modified zero
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term, in certain fairly general conditions of no competition. Hence if progenitors (e.g. plant
seeds) are released randomly over an area at one time and their progeny (freely increasing
by vegetative reproduction) are observed at a later time, we shall expect the number of
individuals per quadrat to follow the Pélya-Aeppli distribution. The parameter m, will be
the mean number of progenitors per quadrat of which some progeny survive. If, instead of
being released all at one time, the progenitors are released with uniform distribution in time
from a particular time up to the present, and if the birth- and death-rates per individual are
constant, we get the negative binomial, as already remarked at the beginning of this section.
We may therefore expect that elose approximations to both these distributions will in fact
be observed in the study of growing populations. Of course, some population counts will not
resemble any of the distributions we have considered, on account of overcrowding or, with
mobile fauna, aggregating for reproduction, defence, or other social purposes. It is unlikely
that any two-parameter distribution will describe such counts adequately.

In view of the difficulty of discriminating experimentally between forms of distribution
arising from different mathematical models, the study of counts made all at one time is not
likely to give reliable information on laws of population growth. For this purpose, repeated
observations on the same population are needed, if possible with identification of individuals.

Sometimes, in sampling investigations, it is reasonable to suppose that the observations
arise from heterogeneous Poisson sampling, but there may be no definite grounds for pre-
dicting the distribution of A. If the observations are sufficiently numerous, the distribution
of A can be estimated (Newbold, 1927). Let &, k,, ..., be the k-statistics calculated from a
sample of N observations on 7 (see, for example, Kendall, 1943). Then we can take as unbiased
estimates of the first four cumulants K,, K,, K;, K,, of A the following:

A

K, =k,
Ky =ky—k, -
A 'l

K, = ky— 3k, + 2Ky,
K, = ky— 6k + 11k, — 6k, |

The right-hand sides are in fact unbiased estimates of the factorial cumulants of the dis-
tribution of 7, analogous to the well-known k-statistics for ordinary cumulants. It is quite
straightforward to calculate the variances (and other cumulants) of these estimates. If, for
example, K; = m, K, = 0?, and all the K, for ¢ > 3 are zero or negligible, we find (for IV large)

A 2

var (Ky) = "2,
A 2)2 2

var(K2)=2_(1”i‘7_N)_+2_‘7, (2:17)
A 2)3 2 2

var (R,) = 6(m +o?) +]le<7 (m+30').

One possible application of this method is to estimating the process curve of the output of
a production line from inspection records which give the number of defectives found in
samples of a fixed size taken from each lot produced. A similar biological problem in sur-
veying a district for presence of potato-root eelworm has been described by me elsewhere
(1950). Newbold developed the method in a study of accident-proneness.
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3. FITTING A NEGATIVE BINOMIAL DISTRIBUTION TO A LARGE SAMPLE

Haldane (1941) and Fisher (1941) have considered the maximum-likelihood method of
fitting a negative binomial distribution to a large sample. If the distribution is expressed in
terms of the parameters m and k, the maximum-likelihood estimates of the parameters turn
out to be independent (asymptotically). For the estimate # of m we have simply

A

m=r. (3-1)

The estimate % of & is the root of the following equation in z:

1 1 1
Nln(1+7/x) E"(z x+l+ '+x+j—l)' (3-2)
Itis easy to show that the left-hand side is greater than the right-hand side if z is large enough,
provided (N — 1) s? > N7 (or, ignoring the difference between N and N — 1, if s2 > 7); and also
that the left-hand side is less than the right-hand side if « is small enough (but positive),
provided that ny <N, so that there are some non-zero observations. Since both sides are
continuous functions for x > 0, the equation must have at least one finite positive root. I have
not proved that there is only one root in this case, and that if s? <7 there is none, but after
an unsuccessful search for a gegenbeispiel I suppose both these statements to be true. If
s% <7 (and if, indeed, there is no finite root), the excess of the right-hand side over the left-

hand side tends to zero as ¥ — 00, and we may say k= o0, implying that a Poisson distribution

is being fitted. If n, = N, we may conventionally take k= 1, say.
For the variance of m we have

var (m) = %7 (m +?~nk—2) . (3:3)

From the matrix of expectations of second derivatives of the log-likelihood function, we
obtain the large-sample formulae:

A

cov (M, k) ~ 0, (3-4)
A 2k(k+1) 4X 3X* ] N
var (k) ~ NX° /{l 3(k+2)+(/c+2)(k+3)+”'f' (3-5)

The summation involved in deriving the second of these is due to Fisher; the series in curly
brackets may be written
2 jL Xi-1
I+ ¥ s S =
iS2g+1(k+2)(k+3)... (k+j)

(3:6)

It may be noted in passing that large-sample variances and covariances found in this way
relate to the asymptotic normal distribution of the estimates, and are not necessarily asymp-
totically equal to the actual variances and covariances of the estimates for finite N. In the
present case, in sampling from any negative binomial distribution, there is always a positive

chance, albeit perhaps a minute one, of finding s2 <7, when we should set k= oo. & does not
therefore have a proper distribution, nor variance. It does, however, have an asymptotic
distribution with the variance glven as N —»oo0.

While equation (3-1) gives #m very simply, equation (3-2) for % is tedious to solve, and it is
worth while to consider alternative methods of estimating 4. We begin with a general moment
method. Let f, be any specified convex or concave function (not linear) of the non-negative
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integer r. Then we may consider ¥, n,f, as a statistic for k. Let E(f,), expressed as a function
r=0

of m and k, be denoted by F(m, k). Then we shall take as our estimate I; the root of the following
equation in x: | ®
= Snf, = FF, x). (3-7)
N r=0

The right-hand side of this equation is a monotone function of x, with no constant stretches,
for z positive, provided 7> 0. For if  is increased to x+ dx, the change 0F, in F,(m,x) is
negative for 0<r<a and for r>b+1, and non-negative for a+1<7<b, being strictly
positive for one of these values of r at least, where a and b are integers satisfying 0<a <0.
Moreover, Y, 8P, = ¥ 0P, = 0. 1t follows easily that if f, is convex from below ¥ f,0F, <0,
r=0 r=0 r=0
while if f, is concave from below the inequality is reversed. Thus in either case the right-hand
side of (3-7) is monotone, as stated; and therefore the equation has at most one positive

solution . On the other hand, in repeated samples from the same negative binomial dis-
tribution, the probability is small that (3-7) has no positive solution, when ¥ is large. For
the left-hand side has a high probability of being close to F(m, k), and F (7, z) is a continuous
function of 7 and x with a range of values, as x varies in (0, ), differing little from the rangc
of values of F(m,x) if 7 is near to m.

We can find the large-sample variance of the estimate k given by (3-7) by treating k—k
and 7—m as infinitesimals. Denoting the latter by 6k and dm respectively, and »,/N — F,
by é8F,., we have ©
om = Y, rop,

=0

r

A8k = 3 (f,— A,7) 8P,
r=0

0 0
where A, = 87_nF(m’ k), 4d,= B—kF(m’ k).
Now var (0F;) = P(1—-F)/N, cov (0F,dF)=—-PFPEIN (i,720,1%)),

2
while from (1:1) we find (m _*lr.;_) 4,, = E(f,)—mE(f,).

Hence we obtain the desired results:

A

cov (7, k)~ 0, (3-8)
var (]AC)NE(ff)"[E(fr)]l\:;ém"'mz/k)flfn (3-9)

The ratio of the variances (3-5) and (3-9) is the large-sample efficiency of method (3-7)
of estimating k. As already remarked, m is easily estimated with full efficiency by equation
(3-1). Since these estimates are in large samples independent, it is appropriate to consider
their efficiencies separately. In general, when considering inefficient estimates of the para-
meters of a distribution, a reasonable single measure of large-sample efficiency is provided
by the square root of the ratio of determinants of sampling variance matrices for the maxi-
mum-likelihood estimates and for the alternative estimates under consideration, if there are
two parameters to be estimated, or the cube root if there are three parameters, etc. This
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measure is the ratio of the numbers of observations required by the maximum-likelihood
method and the alternative method to achieve the same error variance determinant. In
the present case it would be equal to the square root of the efficiency of estimation of k.
Let us now consider some examples.
Method 1. f, = 7%, so that k is estimated from the sample variance s2, i.e.

A f2
= * 1
- (310)
On evaluating E(f,), E(f2), 4, 4,,, we find the large-sample variance
A 2k(k+1)
var (k) ~ X (3-11)

and the efficiency of estimation of k is equal to the reciprocal of the expression (3-6).
Method 2. fy =1, f, = 0 for > 1, so that k is estimated from the observed proportion of

Zeros, i.e. no/N = (1 +;/];.‘)_12. (3-12)
The large-sample variance is
1-X)*—1-kX

A - -l
var (k) M-I (I-X)—X]*' (3-13)
Method 3. f. = 1/(r+1). % is given by
© XV (1_ X\ =
1 3 n,__ (1 )i) (1-X) , where X = J7 (3-14)
N Zor+1 (k-1)X Pk
The large-sample variance of kis given by (3-9), where
(1-X)~(1-X)* 2 e kk+1)... (k+r-1)
= = (1— Xr
1-X
_ — — k. - .
Ay = oy L+ (= D X1 - Xp—(1-X)] b (315)
1
- Tl — el — XV — (kb —1)2 — XV —(1—
A, = k(k—l)zX[{l k(k—1)In(1-X)—(k—1)2X}(1-X)r—(1-X)].
This is for £+ 1. Corresponding expressions when k = 1 are easily found directly.
Method 4. f, = c", where c is a positive constant not equal to 1. We find
L En,c’: [l+(l—c)7/l?]—’3; (3-16)
Nr=0
and for the large-sample variance
E(f,) =+p(A-o)* E(f})=[1+p(l1-c?]*,
= —(1— —c)]k-1

Ak=[1+p(1-c)]~k{_1n[1+p(1—c)]+ pl=c) }

L+p(1-c)
The above seem to exhaust the tractable applications of the moment method. Several
other forms for the function f, suggest themselves as possibly worth investigating, such as
. 1 .
1) fo=0,f = 1+§+él-+... +;for r>1, (ii) f, = In(r+1) for > 0, and (iii) f, = /r for r>0;
but unfortunately these do not lead to a simple expression for E (f,). Their practical use is
therefore ruled out unless special tables are constructed for estimating k from Zn,f,/N.

Biometrika 37 24
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A method of a different kind is the following.

Method 5. We guess a value of k, apply a transformation (depending on k) to the observa-
tions to make the variance independent of the mean, and then obtain an improved estimate
of k by equating the observed variance to the expected; the process is repeated until the
answer becomes stable. Suitable transformations were investigated by me (1948) and sum-
marized by me (1949). From a consideration of equation (4-37) of the former paper, which
gives an asymptotic expansion for the variance of the transformed variable when k = 1, it
appears that the transformation method is unlikely to be serviceable for k < 1. For higher
values of k, the method is possible for not-too-low values of m. In principle the method could
be used for any values of m and £, if the expected variance of the transformed observations
were known as a function of m and % in a convenient form, e.g. by an adequate double-entry
table. But such a table is not available, and so the method is restricted to those values of m.
for which the limiting variance as m — o0 is near enough attained.

The large-sample variance of the estimate of k derived by the transformation method will
now be found. Let y denote the transformed variable, a function of the observed count 7,
when the true value of kis inserted in the formula for y; and let ) be the transformed variable

when an estimate % of & is used. Then in samples from a fixed negative binomial distribution
with parameters m and k, we have, from equation (4-23) of my 1948 paper (setting 4 = }k),
iy E=RE o1 .
var(ﬁ)—vﬁ(k)+(k_l)2m+0 e B (3-18)
as m—o0, if k> 2.* Let s be the variance estimate calculated from the observations after
transformation to y-variables, and §2 that calculated after the observations have been trans-
formed to §-variables. We choose k, by successive approximation, so that

& = y'(k). (3-19)

Let 0s2/0k denote the derivative of s? (for the given sample of observations) with respect to
the parameter k entering into the y-transformation, when k is set equal to its true value. For

any arbitrary k, not necessarily close to k, we have in probability as N —co
& = var (9) + O(1/N),

0s? 0 1
and therefore %= [5;\]; var (g)] . + 0( I—V—) .

Hence, if % is determined by (3-19) and we set %—k = 6k and s®— var (y) = 002, we have in
probability for large N and m

A 0s? kék
4 /” P = 4 = .A2 = 2
Y'(k)+y"(k)ok = Y’ (k) = § akc?k Y’ (k) + 00— T’
k
2 __ "
and therefore do2 = {t/r (Ic)+—————«—(k_ Ve }8k.

The large-sample variance of the left-hand side is found from equations (4:23) and (4-30) of
my 1948 paper, and we obtain the result

N[W lc)+ i ]

* (), ¥'(2), ... denote the successive denvatxves of InT'(2).
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This should be sufficiently accurate for practical purposes if m is above 50 and k above 5,
assuming that the appropriate inverse hyperbolic sine transformation is used. It is not clear
from existing calculations how far (3-20) may be relied on outside this region.

‘We thus have an assortment of alternatives to the maximum-likelihood method of
estimating k. Let E,, E,, E,, E,, E; denote the large-sample efficiencies of the five methods.
By tabulating these efficiencies we can see under what conditions, if any, each method is
likely to prove useful. In the figure are shown 50, 75, 90 and 98 %, contours of E, and E,,
and 90 and 98 9, contours of E;. The 75 %, contour of E; has been found only for m very large,
when it is close to the line k£ = 1; it is not shown in the figure. Since Method 5 can hardly be
used when £ < 1, no attempt has been made to determine the 50 %, contour.

107 T 17 1 R
' .
| ! 1 | \.‘ | —
40 1 v \ "
! I swpl A | NI
20 “ \J _‘ e =
\ \ \/
10—y -
‘\ ) L~ 0%~ |
- 4 ‘ ‘\ ‘ P
5 ' 7\ en 50% [~
R e E
O,
5 1 / \ //"\ N LS
< \ M~ _so%
/ \/ )/ \~\\75% \:~~
04 V. // < / ~< 90<y [~ = —~
A |2 ke 2 A s e
~ —
01 / / - o
0-04 01 02 04 1 2 4 10 20 40 100 200 400
Mean m
Fig. 1. Large-sample efficiencies of estimation of %.
Method 1 ———— Method 2 ———— Method 5 -« ——. —

In considering the lower right-hand region of the figure, where m is large and % is small,
it is helpful to note* that if we set @ = —kIn (1 —X) and let £~ 0, X — 1, with a constant,
the expression (3-6) is asymptotically equal to 2(1 —e~*)/k, whence the limiting efficiencies
of Methods 2, 3 and 4 are all equal to a?e?/(e*—1)2. Other limiting forms of the efficiencies,
for movement away from the centre of the figure in various directions, are easily found and
need not be quoted.

No contours are shown in the figure for Methods 3 and 4, since, as it turns out, these are
nowhere more efficient than the more efficient of Methods 1 and 2, and the latter are more
convenient to use. Method 4 becomes equivalent to Method 2 as ¢—>0, and to Method 1
as ¢~ 1. If we imagine ¢ increasing continuously from 0 to 1, a constant-value contour of
E,, such as the 90 %, contour, departs from the corresponding contour of £, by a translation
of the uppermost part of the curve to the right (‘east’) and a pulling of the middle part of
the curve downwards to the left (‘south-west’). (The first of these movements is easily
expressed. The contour has a vertical asymptote for k large, of the form m = constant. This
value of m is equal to the value for the corresponding contour of F, multiplied by (1 —¢)=2.)
As cincreases, the contour eventually breaks up into two disjoint parts, and two new parallel

* Proofs of this and other statements in the remainder of this section are omitted, to save space.

24-2
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asymptotes appear, of the form m/k = constant. As ¢—1, the upper part of the curve
approaches the E, contour, while the lower part recedes and vanishes in the limit. The E,
contours are similar in character to £, contours.

4. TESTS FOR DEPARTURE FROM THE NEGATIVE BINOMIAL FORM OF DISTRIBUTION

We have considered how a negative binomial distribution can be fitted to a large sample.
We turn now to testing goodness of fit, in particular to detecting a departure from the
negative binomial form towards one of the other forms discussed in § 2. Tests are required
that are reasonably convenient to use.

Particular interest attaches to discriminating between the negative binomial and the
Pélya-Aeppli forms of distribution. Let us suppose to begin with that m/k (=p) is small.
Then the log-likelihood function of the observations on the hypothesis of a negative binomial
distribution is

Ly= %o] n,InP, = § n,rIlnm— Nm— OZO] n,In (»!) + % n,[(—r—_—m—)2:1] ?J
r=0 r=0 r=2 r=0 m 2

) — —_ 2
—rgon, ﬁ"_%ii__ﬂ_ 3r + 2m:| %+O(p3), (4-1)

as p— 0 with m fixed. The maximum-likelihood equations for estimating k and p are asymp-
totically those of Method 1 of the last section. Consider now the hypothesis that the obser-
vations are drawn from a Pélya-Aeppli distribution. In terms of parameters & and p defined
as in §2, the log-likelihood function of the observations, L, say, is the same as the above
expression for L, except that the term in p? is ’

© [r(r-1)2 r(r-1) p?
,§on’ mE om ™|

(42)

Again the maximum-likelihood method of estimating k and p is asymptotically equivalent
to fitting by the first two sample moments. The likelihood ratio criterion for discriminating
between the two distributions is found by maximizing L, and L, separately with respect
to k and p, and then subtracting them. Its leading term involves the first three sample
moments. We are thus led to propose the following test for departure from the negative
binomial form towards the Pélya-Aeppli form, to be used when p is small:

Test 1. Estimate the parameters of the negative binomial distribution from the first two
sample moments (Method 1), and then compare the third sample moment with the estimated
third moment of the distribution.

There is no point in actually evaluating the likelihood ratio criterion just described, since
we do not know a prior:i that the parent distribution is necessarily of one or other of the two
forms considered. We may, however, apply a test similar to Test 1 to see whether or not the
observations are in agreement with the Pélya-Aeppli or any other hypothetical form of
distribution.

We can similarly investigate the likelihood ratio criterion in another simple limiting case,
namely, for P,— 1 with m constant. We find, for both distributions, that the maximum-
likelihood estimation of the parameters involves asymptotically only the two statistics 7
and ny/N (Method 2 above). The leading term of the likelihood ratio criterion involves, in

)

addition to these, a further statistic, 3} n, In . This is not a convenient statistic on which
r=2



F. J. ANSCOMBE 373

to base a test, since its expected value cannot be expressed simply. The only simple test that
suggests itself is, in fact, one based on the sample variance, thus:

Test 2. Estimate the parameters of the negative binomial distribution from the sample
mean and the observed proportion of zeros (Method 2), and then compare the sample
variance with the estimated variance of the distribution.

Test 2 arises more directly in another problem of discrimination. We suppose that the
parent distribution of the observations is a compound (or heterogeneous) negative binomial,
i.e. that each observation is drawn from a negative binomial distribution having the same
exponent kbut a mean that varies randomly from observation to observation in a distribution
with mean m and variance ¢, say. The resulting distribution departs from the negative
binomial form towards that of the discrete lognormal, having high skewness and kurtosis
coefficients. We now test the hypothesis that ¢ = 0. If the log-likelihood function of the
observations is expanded in ascending powers of ¢, the coefficient of ¢ is a function of the
first two sample moments (and of the unknown parameters m and k). The optimum large-
sample test of the hypothesis thus consists of fitting & and m by maximum likelihood, assuming
that ¢ = 0, and then comparing the observed and estimated variances. In the region where
Method 2 of fitting £ is efficient, we would use Test 2 above. In the region where Method 1
is efficient, i.e. for k large, a small heterogeneity in the mean of the negative binomial has
the effect of apparently reducing £ but not otherwise changing the shape of the distribution,
so that the heterogeneity is not easily detectable. Test 1 could be used to detect a pronounced
degree of heterogeneity in the mean.

It remains to consider how Tests 1 and 2 are carried out. We shall suppose the sample size
N to be large. The criterion of Test 1 is the difference between the third sample moment and
its estimated value, i.e.

1 2 2s2
= — =78 —g2 — — iy
T = Nr§=;0n,(i 7)3—s ( . l). (4-3)

Using the known formulae (quoted by Kendall, 1943) for the variances and covariances of
k-statistics, or, alternatively, working in terms of the sample factorial moments (of which the
variances and covariances are easier to find directly), we obtain the large-sample result

Nvar (T)~ 2k(k+ 1) p3(1 + p)*[2(3 + 5p) + 3k(1 +p)]. (4-4)

The criterion of Test 2 is the difference between the sample variance and its estimated value,

ie. U= 32—?-—72//2, (4-5)
where & is the estimate of £ by Method 2. We find, for NV large,

Neov (k,7)~0, Necov (k,s2)~ —k(k+1)p/{—In(1—X)- X}, (4:6)

from which and (3-13) we obtain
X2 (1-X)*—1-kX ~
N ~ 2h(lo+ 1) p2 S . N g . (4
var (U) ~ 2k(k + 1) p*(1 + p) I:l —ln(l—X)—X:|+p [(—ln(l—X)—X)2 (4+7)
As an example, we may consider a frequency distribution quoted by Williams (1944,
Table 6) of the number of head-lice of all stages found in the hair of Hindu male prisoners on
admission to Cannanore jail, South India, over a period from1937 to 1939 (see Buxton, 1940).*

* Prof. Buxton has very kindly allowed me to check the frequency distribution against the original
records. There seems to be one error in Williams’s table, the number of heads without lice being given as
622 instead of 612. Williams has also made a numerical slip in fitting a negative binomial distribution
to the observations, so that the fit appcars worse than it should.
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We have N = 1073, n, = 612, 7 — 6:93569, s? = 583-8. By Method 2, % = 0-144198, and
hence U = 243-3, with estimated standard error 38-9. We conclude that the observations
are not adequately fitted by a negative binomial distribution, being too skew. The result is
not surprising, in view of the heterogeneity of the prisoners in caste and in other respects
likely to affect personal hygiene.

5. FITTING A COMMON EXPONENT TO A SERIES OF SAMPLES

We suppose now that we have a series of samples, one from each of v negative binomial
distributions. Characteristics of the ith distribution and the sample from it will be denoted
by the usual symbol with suffix s added. We may be interested in investigating how £; is
related to m,. If the k; are not too small we may estimate them by Method 1 and plot them
against 7;. We shall obtain a less skew distribution of errors if the reciprocal of the estimate
of k,, rather than the estimate itself, is considered, i.e. (s —7;)/7%. In either case, there is
a bias of order Nj! which may be worth removing if  is large. The following estimate of k;*,

1 &-7 s} )
g=f%o+mﬁ’ (&1)
is approximately unbiased, having expected value k;'+O(N;2). This is easily proved
(dropping now the suffix 4, for convenience) by writing 7 = kp +dm, s® = kp(1+ p)+ 602,
and expanding (5-1) in ascending powers of m and da2. To the first order when N is large,
the variance of this estimate of £~'is equal to the right-hand side of (3-11) divided by #*, and
its correlation with 7 is zero, in samples from the same distribution.

Sometimes it is reasonable to suppose that all the k; are equal. We then desire an efficient
estimate of the common value. A method that suggests itself is to choose a value of % such
that the sum (or a weighted sum) of s? — 7, — 7%/ % vanishes. The expected value of this expres-

sion, when kis replaced by the true k, is O(N;), and it can be reduced to O(N;?) if we use

instead N A ~
ti(k) = 83— (F;+73/k) (1 — [N;£]). (5-2)

If weights w; are used, our equation for f: becomes
-glwiti(k) = O. (5’3)

Treating % — k as infinitesimal and working to the first order for N; large, we find easily

A Xwlvar(t,)

~ e~ Re

var (k) Swdty ok’ (5-4)
N var (t;) ~ 2k(k+ 1) pY(1+p,)%, (5°5)
ot,/0k ~ p3. (6-6)

var (I:;\) is a minimum when the weights w; are taken to be proportional to

1o . A
var(t;) 3%’ ie. to Tt

We therefore choose w; = it (5:7)

(i + ]2)2.
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The numerator N, — 1 is more convenient than X, since (V;— 1) s% is found in the course of
calculating s3. Thus the method is to choose k to satisfy 27}(k) = 0, where

_ (N=1)si— (N —1—k7) (7, +73[k) (5-8)
(Ts+ k)?

It is easy to verify that 7}(k) has expected value O(V;~!). The method is equivalent to taking

an appropriately weighted average of the estimates (5-1); and, to the first order for N, large,

the variance of k is the reciprocal of the sum of reciprocals of the variances (3-11) for each

sample. In samples from a single population, the correlation between 7T'(k) and 7 is O(N 1),
We can deal similarly with estimates of k£ based on Method 2. Corresponding to (5-2) we

may consider

A r. -k r. 7
(k) = nOi—(1+;’) {M-’—(’“*—P} (5°9)
k 2(7; + k)
the expected value of which is O(N;~?). The optimum weight factor w; (for N, large) is
— _‘_ln(l‘“Xi)'"Xi (5.10)

RIS A LTI AE > & |

or rather an estimate of this. Since there is little to be gained by exactitude in weight factors,
we may prefer to take instead .
w; = In (147,/k), (5-11)

which has roughly the same effect and is easier to calculate. If (5-10) is used, we find that,

to the first order for N, large, the variance of k is the reciprocal of the sum of reciprocals of
the variances (3-13) for each sample. To test whether k& changes progressively with m, we
may plot U; = w;u,; against 7, and look for a correlation. In samples from a single population,
the correlation between U and 7 is O(N-1).*

6. FITTING THE LOGARITHMIC SERIES DISTRIBUTION

Fisher’s logarithmic series distribution was proposed as a model for the relative abundance
of different species found in trap catches or other methods of sampling; in particular, to
describe the relation between the numbers of moths of different species caught in a light-trap
over a period of time. Suppose there are N species that might be observed, and that their
abundances (numbers expected to be caught in a unit period of time) are distributed as if
they were a sample of size N from a Type IIT distribution, proportional to a x? with 2k
degrees of freedom. We suppose further that the individuals of each species move indepen-
dently, so that the number of individuals of any species caught has a Poisson distribution
with mean value equal to the abundance multiplied by the length of time of observation.
The numbers of individuals caught per species then form a random sample of size NV from the
negative binomial distribution (1-1). The results of the observation can be expressed by the
numbers n; of species represented by 7 individuals for all 7> 0. We define S and 7 asin §1,
so that S is the number of species represented by at least one individual, and I is the total

* In my 1949 paper there is an oversight on this point. Having noticed a correlation between U; and
7; in some data, I added (p. 172): ‘The effect is too marked to be attributed to the negative correlation
between n, and 7 that occurs in repeated sampling of the same population.” This is literally true, but mis-
leading, since the relevant correlation is that between U and 7, not ny and 7, and that is O(N?).
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number of individuals of all species observed. The probability distribution of n; for ¢ > 1,
given N, k and X, is

_m (1— X)kan,(k(kz“;‘ ”)n2 (k(k+ 1) (k+ 2))% o X1 (6-1)

© |
(N—8)! I n,! 3t
i=1

If we set Nk = a, and consider the limit k£ — 0, N — o0, with « constant, we find easily that
the above breaks up into a product of Poisson frequency functions for n,; (¢ > 1), as indicated
at (1-8). If the time of exposure or attractive power of the trap were multiplied by a factor c,
without the abundances of the species being affected, it follows from the above assumptions
that p would be changed to cp, and therefore X to cp/(cp+ 1), while & would be unaltered.
o is thus a property of the biological association that is being examined, and has been termed
by C. B. Williams the ‘index of diversity’ of the association.
The log-likelihood function of the observations is

L=aln(1-X)+Slna+IInX - §{n,lnr+lnn,!}. (6-2)
r=1

Thus S and I are jointly sufficient for estimating a and X, and the maximum-likelihood
equations are R R

I= &X/(1-X)=ap,

[1-X) = &p X } (6:3)
S=-8ln(1-X)=_&In(1+7p).

On inverting the matrix of expectations of second derivatives of L, to find the variances of
these estimates in the usual way, we get

[—In(l—X)—X]var (X) ~ —éX(l—X)ﬂn(l—X),
[—In(1—X)—X]cov (X,&)~ — X(1—X), (6-4)
[-In(1-X)—X]var(&a) ~e.

These formulae would certainly be correct asymptotically if the right-hand sides were
divided by v and we were considering pooled estimates from v completely independent
samples, with » tending to infinity. But we are actually concerned with one sample. Let us
see in what sense, if any, (6-4) can still be regarded as correct. If @ and p are both large,
differentiation of any derivative of L by p changes its order of magnitude by a factor 1/p,
and differentiation by « changes its order by a factor 1/a. The second derivatives are

effectively constant if in probability

2 2,
a p

where da = &—a, 8p = p—p. Assuming (6-4) to be true,

ol i) ol

in probability. Hence formulae (6-4) are correct asymptotically if & — occ while p is constant
or increases (or, more generally, has a positive lower bound).

But this result is not entirely satisfactory, since a is a constant of the association being
observed, and although in many of the examples cited by Fisher et al. (1943) and Williams



F. J. ANSCOMBE 377

(1944) o is fairly large, there is no logical necessity for it to be so.* The only adjustable
feature of the sample is the time of exposure (or the attractive power) of the trap, by
increasing which p may be increased. It is therefore of interest to develop asymptotic
formulae valid as p—>co with o constant. To the first order when p is large, the variance
of & given at (6-4) is

a
&) ~ —— 6-5
var (@) ~ . (6:5)
while to the next order of approximation
X a

var (a)Nlnp—l' (6-6)

Let us see whether in fact one or both of these is correct, as p—>oo.

From (6-3), & is determined by the equation

S =a&{ln(l+&)—Ina}. (6-7)

The distribution of § is Poisson, with mean aln (1+p); the distribution of I is negative
binomial with mean ap and exponent a. Thus while the former approaches normality as
p—>00, and has coefficient of variation tending to zero, the latter does not. The distribution
of In (I 4+ a) also does not approach normality as p->o0, but the asymptotic distribution is
known (Anscombe, 1948), and we have

E{ln(I+a)} = Inp+y(x)+0(p~*), var{ln(I+a)} = ' (a)+0(p~*), (6-8)

where £ is any quantity such that 0< <1, f#<a. We write now 89, &1, d1In (I + ) for the
differences between S, I, In (I + ), and their respective mean values. Then (6-7) can easily
be shown to give, in probability as p — oo,

_ 08+ aflno— () — §1n (I + )}

T Inp-{1+na—y(x)—éIn(I+a)}+o(1)’
Considering the first terms of numerator and denominator, we see at once that the distribution
of & is asymptotically normal and that (6-5) is correct. To see whether (6-6) is also correct,
we need to evaluate E{0SéIn (I +a)} and E{(dS)?6In (I +a)}. The joint distribution of S
and I has probability-generating function

do

(6-9)

E (t5u!) = exp{a(t—1)In(1+p)—atln (1 +p—pu)}. (6-10)
Writing r={8—aln(l+p)}{eln(l+p)}-* and y=Ip- |

we find, on expanding the characteristic function of « and y for p large and applying the
Fourier inversion formula, the following asymptotic continuous distribution of x and y:

1 1 1 1
“"—\/(277) e"tzz F(—a—) ya-l e~V [l + :/m {%$(x2 - 3) + ow;(lny - ¢(“))} + 0(@)] dxdy (6.1 1)

* The fact that a is not adjustable does not in itself bar the use of an asymptotic formula valid as
a—> c0, since in any case such asymptotic formulae are used as approximations. Even if the parameter
concerned is adjustable, only one value is usually available for consideration, and not an infinite sequence
of values. An example of confusion on this point is the criticism by Kendall (1948) of a limit situation
considered by Jones (1948) in the theory of systematic sampling. Jones gives a formula for the error
variance which is asymptotically correct as the population extent tends to infinity, with constant spacing
between sample points. Kendall, remarking that the population extent is not in general adjustable, gives
a formula asymptotically correct as the spacing between sample points tends to zero, with the population
extent constant. As an approximation to the actual situation, Jones’s formula is the better (see Kendall,
1948, equations (20) and (25)).



378 Negative binomial and logarithmic series distributions

Hence easily E{6SdIn(I+a)} = ayf’(a) + O{(In p)"*},} 612
E{(8)281n (I +a)} = O(1). (6:12)
Finally, from (6-9), E(4) = oc:I 4ma- ‘/1’1501‘0) + 0(1)}, (6:13)
var (&) o (6-14)

TInptay(a)—2(1+lna— (@) +o(l)

On inserting the asymptotic expansions of yr(a) and '(«) in powers of a~1, we obtain the
right-hand side of (6-6) with remainder term in the denominator which is o(1) for both p
and « large. Thus (6+6) is not correct, to the order suggested, if p is large, unless « is also large.

The formulae for var (&) that we have just discussed differ from one another only in
accuracy ; they are all approximations to the same true value, which has not been found.
An essentially different formula has been given by Fisher (Fisher et al. 1943). When expressed
in a form similar to (6-6), it is 2ln 2
(Inp—1)*
This formula is appropriate to a special type of comparison, namely, between estimates of
o for the same biological association derived from similar nearby traps, where it may be
assumed that the individual species have exactly the same abundances (or at least the same
relative abundances), and the difference between the catches at any two traps arises solely
from Poisson variation in the numbers caught of each species. In such a sampling process,
the estimate of a given by (6-7) is substantially biased, since only one set of relative abund-
ances is involved. If we consider the variation in the bias for all possible sets of relative
abundances following the limiting Type III distribution assumed, the overall variance of &
isincreased from Fisher’s value to that already considered. The larger variance is appropriate
to comparing the values of & from observations on different sorts of biological association,
involving perhaps entirely different families of species, and also to comparing values of &
from observations on the same sort of biological association observed at different seasons of
the year or in different years, when, even if the families of species are the same, the relative
abundances of the species are different and may be supposed in aggregate to constitute
independent samples from the limiting Type III distribution. Fisher’s formula, in fact, is
not likely to be often useful, since if we desire to test whether the abundances of the in-
dividual species are the same (or in proportion) at a number of traps it will be correct in the
first place to make direct comparisons of counts of individual species, by a 2 contingency-
table test, or by analysis of variance after making a square-root transformation. If it has
been established that the relative abundances of the species are not the same at different
traps, it is likely that they will differ sufficiently to appear in aggregate to be independent
samples from the hypothetical parent Type III distribution. They may indeed be so different
as to suggest quite different parent distributions, and a test of this point would be based on
the total variance of &.

For example, Williams gives figures for captures of Noctuidae during a period of three
months in 1933 at two traps (Fisher et al. 1943). One trap, on a roof-top, gave § = 58,
I = 1856, &= 11-37, p = 163; the other, in a field a quarter of a mile away, gave S = 40,
I =929, & = 851, p = 109. Fisher’s formula (6-15) for the standard error of either estimate
of a gives approximately 0-67, indicating a significant difference between them. Whether or
not the relative abundances of the species differed at the two traps would be more efficiently

var (&) ~ (6-15)
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tested by comparing counts of individual species. Formula (6-6) gives for the standard error
of either estimate of a approximately 1-59, against which the observed difference is not
significant. A significant difference in the richness of the associations observed at the two
traps might be demonstrated, perhaps, by showing that the forty species caught in the field
trap had the same relative abundances (within the limits of Poisson variation in numbers
caught) as in the roof trap, while the remaining species caught in the roof trap were signi-
ficantly more abundant, relatively to the others, than in the field trap (where the catches
were zero). Apart from some such argument based on comparing catches of individual species,
we cannot conclude from the figures for § and I alone that the biological associations observed
at the two traps differed in diversity index «.

7. TESTS FOR DEPARTURE FROM THE LOGARITHMIC SERLES FORM OF DISTRIBUTION

Numerous alternatives to the logarithmic series distribution suggest themselves. Fisher has
considered the negative binomial form (6-1) with £> 0 and X, k¥ and N unknown. We can
obtain other three-parameter distributions by replacing the Type III distribution of species
abundances by any other distribution of a non-negative random variable. The situation is
the same as for the heterogeneous Poisson sampling considered in § 2, except that n, is not
observed and X is an unknown parameter requiring estimation.

Fisher gives a test for departure from the logarithmic form of distribution towards that
at (6-1) with k> 0. The appropriate statistic, in addition to S and 7, is

11 1
J = Zn(l+2+3+ - 1), (7-1)

of which the expected valueis 3a[In (1 + p)]%. Thus J — §%/(2&) may be taken as a test criterion,
and its sampling variance can be investigated by the methods already indicated. If we are
content with a first-order asymptotic result when a o0, we may consider the matrix of
expectations of second derivatives of the logarithm of the likelihood function (6-1), the
differentiations being with respect to X, «, and k. Setting £ = 0, we obtain

| §\ ald{-In(1-X)P{-In(1-X)—4X}+$X){-In(1-X)-X}]
lvar(J—%—L) 1x (- X)-X , (12)
1 1 Xr
where LX) = gj (1+ ! stget +(r— 1)2) . (7-3)
When p is large d(X)~Alnp—-B, (7-4)

where, in terms of the Riemann {-function,
A ={(2) = 16449, B = 2{(3) = 2-4041; (7-5)
and hence, ignoring a factor 1+ O(p!), as in (6-6),

82\ alfs(np)P(np—4)+(dlnp— B)(Inp-1)]
Var(J—ﬁ) lnp—l

Fisher denotes the right-hand side of (7-2) by ¢ and has tabulated it.

Applications of the distribution made by Williams suggest that another sort of departure
from the logarithmic series form may be worth investigating. In a complex association it
might happen that while certain components of the association exhibit logarithmic series
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distributions the whole does not, since the component distributions have different para-
meters. Let o;, X, p; relate to the sth component association (¢ = 1, 2, ...,»), and consider
a logarithmic series distribution with parameters a,, X, po, chosen to give the same expected
numbers of species and individuals as in the whole association. Then

g In (1+po) = _g:l“iln (1+p),

(7:7)
QoPo = _;l“ipr
Hence ln(l +1’)0) _ wiln(l +pi), (7'8)
Do i=1 Py
where w; = a;P; / 2 %p;,
i=1

s0 that In (1 +p,)/p, is a weighted mean of In (1 + p;)/p;. If E and E* denote respectively
expectations for the actual distribution and for the fitted logarithmic series distribution,
we have

v pr:—l R
Em) =3 ap, L
) iélo%pt r(1+p;)" '
E* - 25t ‘ 79
() = | S 72— —

We therefore consider ¥ =p"-1(1+p)™as a function of Z=p—'ln(1+p). When » = 1, we
find d?Y[dZ?> 0 for all p, so that Y is a convex function of Z, and therefore E*(n,) < E (n,),
with equality only if the p; are all equal. For 7> 2, the sign of d2Y /dZ? depends on p and can
be studied in detail for each . It is not difficult to show that E* (n,) < E (n,) for a range of
small values of  and also for large values of », while the inequality is reversed in a middle
range (assuming the p, not all equal). If all the p, are large and not very unequal, the values
of r where the inequality changes are roughly

Po
21n p,

and 2p,.

The appropriate statistic for detecting a small degree of inequality in the p;, is easily seen

from the likelihood function to be 3 n,r(r — 1), of which the expected value is ap? when there
r=2

is no heterogeneity, i.e. when p; = p for all s and ¥ a; = a. Hence we may take
i=1

&3 ma(r—1)
r=2

=1 (7-10)
as test criterion. It is easy to show that, asymptotically for large «,
. 1 2 1
E(W)~l, Va/I'(W)N’&I:F—‘:m], (7'11)
h is large also var (W 1 2— 1
or, when p is large also, ) a lnp—l]' (7-12)

The test is a limiting form of Test 2 of §4.
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Several distributions of classification of species into genera given by Williams (1944) seem
to show this kind of heterogeneity. Thus for Coccidae of the world classified by MacGillivray
(Williams’s Table 11), § = 352, I = 1763, & = 132:2, p = 13-34, W = 2.76, s.e. (W) = 0-11.
The observed number of monotypic genera n, is 181, which is much above its expected value,
123-0, on the basis of the logarithmic series distribution. From r = 2 to r = 25, roughly,
the %, are on the whole less than expected, while for higher r they appear again to be greater
than expected.

W is closely related to the characteristic K of Yule (1944). Thus

W Znr(r—1)

K = 10,000 = 10,000 =" (7-18)
It is easy to show that, asymptotically for large «,
E (K) =10,000a, var(K) = 2x 108[a3X?]-1, (7-14)

if the observations are drawn from a logarithmic series distribution. Simpson (1949) has
shown that, asymptotically for large p, but with « not assumed large,

E (K) = 10,000(ct + 1)~1. (7-15)

As a statistic for estimating o, K is of low efficiency. Its proper function is to test distribution
shape.

I owe my interest in this subject to stimulating conversations with Dr C. B. Williams.
Several persons have offered helpful suggestions and criticisms, in particular Mr D. G. Kendall,
Mr J. G. Skellam and my colleagues at Cambridge, Dr J. Wishart, Dr H. E. Daniels and
Mr D. V. Lindley. The work was begun at Rothamsted Experimental Station, and some
help with the computations on which the figure is based was given by Mr B. M. Church.
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