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ON LIMITS OF SEQUENCES OF OPERATORS*

By E. M. STEIN
(Received August 3, 1960)

I. Introduction

1. The purpose of this paper is to bring to light a general principle
governing the limit of sequences of operators of the type arising natural-
ly in Fourier analysis. This principle will help to explain the reason for
occurrences which have become commonplace in certain aspects of anal-
ysis, relate some hitherto unconnected results, and dispose of some open
problems.

We begin by sketching some background.

For Fourier series of functions of one variable, f(6),

fO) ~ 22 cue™

a very basic operation is the passage to the so-called conjugate function

1),
F(0) ~ — i Y sign (n)c,et .
The linear operator which maps f(#) to £(0) has the property
O =11 FO) .,

and more generally
(1.1) NF@) I, = A, 11 £0) 1], 1<p< .

However in the fundamental case p = 1, this inequality fails. The
appropriatg substitute result for this case is also a comparison of the
“‘size’’ of f(0) with that of f(6). It is as follows. For any a, a > 0, let

E,={0]1F©O)|>a}.

Then according to a theorem of Kolmogoroff
1.2) m(E,) = (4o |"17(0)1d0 .

This result is fundamental in the theory. Moreover, as the Marcin-
kiewicz interpolation theorem shows (see e.g., [11, Ch. 12]), the result
(1.2) together with the elementary result for p = 2, leads to the proof of
the M. Riesz inequality (1.1). Several proofs of (1.2) are known. How-
ever, of special interest to us is the original proof given by Kolmogoroff

* Many of the results of this paper were announced in the Notices of the A.M.S., 1960,
Nos. 566-33, and 566-34.
Sponsored in part by N.S.F. Grant G-4943.
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SEQUENCES OF OPERATORS 141

(see [6]). Let
fN(Iry 6) = — ?/E sign (tn)/rlnlcneine .

Then, by a known result, for every f(4) e L, lim,_, f(r, 0) exists for
almost every 6. Using this fact of the ‘‘existence’’ of the conjugate
operator, Kolmogoroff proved, by an indirect method, that the limit oper-
ation satisfies the inequality (1.2).

Before we proceed to some other examples we wish to recall some
definitions. An operator f— T'f is said to be of (strong) type (p, p) if it
satisfies a norm inequality

ITFl, = Allfll,

where A does not depend on f. Similarly an operator is said to be of
weak type (p, p) if for every f e L? the function T satisfies the follow-
ing restriction. Let a > 0 and E, = {x|| Tf(x)| > a}, then

m(E.) < (Ajen)|| £ Ppdm .

The constant A does not depend on « or f. It should be noticed that
if an operator is of type (p, p) it is also of weak type (p, p) but the con-
verse is not necessarily true.

The notion of weak-type is important because, for various operations,
the fact that they are of weak type ((p, p) (for some p)) is in effect a
reformulation of their most fundamental real-variable property. A re-
lated reason is the Marcinkiewicz interpolation theorem, already men-
tioned. An important special case states the following: If a linear
operator is simultaneously of weak type (p,, ») and (p,p,), Wwhere
1<p, <p,= oo, then it is of (strong) type (p, p) for every p, p, < p < p,.

We now return to some other examples.

Let us consider the family of operators T,

T,(f)(0) = —H:f(é) + tydt h>0.

Then by the classical theorem of Lebesgue, if f is integrable
T.(f)0) — f(6), as h— 0, for almost every 6. It was not until much
later that Hardy and Littlewood were led to consider their ‘‘maximal’’
function f*(0) defined, in effect, by

SH(0) = supss, | Tu(f)O) |

for which they proved the following theorem
1O, = A, 1 FO) 1, 1<p.
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Implicit in their argument (and later brought to light by F. Riesz) is
the inequality

m(E,) = m{@|f*(0) > a} = (A/a)glf(ﬁ) ldo !

This last result (which is really the basic result for /*(6)) may be stated
by saying that the mapping f(8)— f*(0) is of weak type (1.1). (Of course,
the result of Kolmogoroff, (1.2) above, has a similar statement.)

We mention one more example. It deals with the yet unsolved problem
of the existence of an f € L*0, 27) whose Fourier series diverges almost
everywhere. This result, due to A.P. Calderon (see [11, p. 165, II]) is
of a conditional nature. Suppose we knew that every f e L*0,2r)
has an almost everywhere convergent Fourier series. Let S*(0) =
SUP,=; | S,(f)(0) |, where the S, are the »n'* partial sums. Then, we would
have

m(E,) = m{o| $*6) > a} = (4fa?)- ["I£@ Pde .

2. The examples mentioned above, together with others, illustrate the
general result obtained in this paper. Fix p, 1< p <22 Let T, bea
sequence of bounded linear operators of L?(0, 27) to itself. Suppose, in
addition, that each T',, commutes with translations. We now make the
crucial assumption that for every f e L?, lim,,_..(T,f)(0) exists almost
everywhere. Let

(T*f)O) = suppz, [ (T f)O) | .
Then

m(E,) = m{o] T°£(©0) > a) < (4ja)- || £(p) Pde .

A does not depend on « or f.

We shall prove this theorem and several variants in §§ 8-11 below. The
theorem described above is most properly formulated for any compact
group, and more generally for the homogeneous space of a compact group.
The extension is important for the applications given below. Among the
cases considered will be the k-torus, which is the underlying space of
multiple Fourier series; also the so-called ‘‘dyadic group’’ which is the
appropriate space for Walsh-Paley expansions. We now sketch some of
these applications.

1 For a discussion of these facts see [11, pp. 29-33, I].

2 The restriction 1 < p <2 is essential for the conclusions reached below. There are,
however, variants of our result which hold for more general Banach spaces. These are
considered in the appendix.
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3. Let f(x, ¥) be a function of two variables integrable over the torus
0 =2 <2m0 <y < 27, with Fourier expansion

f@,y) ~ 3 aye"et™ .
We form (in a formal way) the ‘‘double conjugate’’ series
— Y sign (n) sign (m)a, 6™ ,
and ask whether this double conjugate exists in a suitable sense.
One natural approach is to consider the Abel means of the above series
3.1) f(r x; 0, ¥y) = — 2 sign (n) sign (m)anm'r’”'emp mlgimy
and inquire whether hmM fr, x; 0, Y) exists.

Now if fe L*, p > 1 (even f € Llog L) it is known that this limit
exists almost everywhere.® This situation has an analogy with differenti-
ation of double integrals. In fact if f € L log L, it is known that

| #@+ bty + 9dtds = £z, 9)

. 1
3.2) hm;c,:g o
for almost every (z, y). However if one merely assumes that f € L then,
as is known, the limit (3.2) may fail to exist almost everywhere. But if
we assume that, for example, & = k, then the limit (3.2) exists almost
everywhere.* Going back to double conjugates (3.1), it was believed (in
analogy with the above) that lim,.,f (7, x; 7, ¥) exists for almost every
@, ).

Contrary to expectations, we shall show that there exists an f € L so
that lim,_, f(r, x; r, y) fails to exist for all (z, y)in a set of full measure.
A refinement of the argument will show that even if we assume that
S e L(log L), ¢ >0, this limit may fail to exist almost everywhere.
These and other results related to multiple conjugates are given in § 13
below.

4. We shall now consider the divergence of Fourier series in one vari-
able, and the divergence of Walsh-Paley expansions. According to a re-
sult of Kolmogoroff, there exists an integrable f whose Fourier series
diverges almost everywhere.® The proof of this theorem is, to say the
least, extremely difficult. Our general results allow us to obtain a simpli-
fication and refinement of this result. This refinement may be understood
in terms of the following fact.

If f(x) is integrable, then for almost every «

3 See [10], for these results.
4 See e.g., [7].
5 See [11, p. 305, I].
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Sn(wyf)_Sm(x’f):O(IOg(m—n)) ’ m,n— o .

In fact the above holds at each point  of the Lebesgue set of f. Our
refinement of the Kolmogoroff example is the following: let M(n) be any
function tending to zero as n — . Then there exists an integrable f so
that the restriction

is false for almost every x. This is done in § 14 below. There we shall
also obtain the existence of an integrable function whose Walsh-Paley
expansion diverges almost everywhere. While there are many analogies
between Fourier series and Walsh series, this particular problem is more
complicated for Walsh series on two counts. First, if S,(x, f) are the
partial sums of the Walsh expansion, then lim,_..S,x(x, ) exists almost
everywhere. This is not the case for Fourier series. Secondly, we have
estimates for the Dirichlet kernel of Fourier series, whose analogues are
not available for Walsh series. However, as will be seen, the method we
shall use will work equally well for Walsh and Fourier series.

5. We next turn to multiple Fourier series summed by spherical means.
More particularly let

f(x) ~ E anem'x ’ r = (wlr R xk)'

be a Fourier expansion on the k-torus, and

2\ (k—1)/2
Sa(e /) = Timea1= 1LY a0
be the spherical means of index (k¥ — 1)/2. The importance of the index
(k — 1)/2 is due to the fact that for many problems summability of index
(k — 1)/2 is the proper analogue of convergence, when k¥ = 1. See [1] and
[9].

In § 15 we shall prove that there exists an f, integrable over the k-
torus whose Fourier series is almost everywhere not summable by the
means of order (k¢ — 1)/2. The result for & = 2 has special interest be-
cause, as is known by [9], if we assume slightly more than integrability
(that is | f| (log™ | £])? is integrable) then the means of order (¥—1)/2 con-
verge almost everywhere.

6. As a last application, we shall show that our general result, de-
scribed in § 2 above, can be used to prove results of a positive nature,
and thus its use is not exclusively one of supplying counter-examples.
We shall concern ourselves with the ‘‘multiplier problem’’ for Fourier
series in one variable. The problem is that of characterizing the sequences
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M, of multipliers which lead to bounded transformation 7 on L* into itself
given by
Tf(x) ~ 3 e\ €™

when
(@) ~ 3 et
The solution of this problem is known only if p =1, p = 2, and p = oo.
We shall find conditions which are necessary and nearly sufficient, in
terms of the function
)\, einx
K(x) ~ e
@ ~ 5 2

These results are given in § 16. Whether these conditions turn out to
be the most useful possible (and this is a practical problem) remains yet
to be seen.

The author wishes to express his indebtedness to A. Zygmund and
G. Weiss for many valuable suggestions which have been incorporated into
this paper. In fact, at many points, it would be impossible to disengage
their contributions from the results obtained here. This is particularly
so in § 11, where the general result is extended to Orlicz spaces, and in
§ 16 where the multiplier problem is discussed.

II. General theorems

7. Preliminary lemmas. We shall consider the following general
situation. Let G be a compact group, and M a homogeneous space of G.
That is, G acts transitively on M, and the structure imposed on M is the
one inherited from G. In particular M has a unique normalized measure
dm, which is invariant under G. Examples of this situation of particular
relevance are as follows:

(1) G = M = k-torus, and G acts on M in the natural way.

(2) G = M = dyadic group, G acting on M in the natural way.®

(3) G = group of rotations in n variables and M the unit sphere, with
G acting on M in the usual way.

We have mentioned that M has a unique invariant measure dm, normal-

ized by S dm = 1. G also has a unique (so-called Haar) measure, dg,
M
normalized by S dg = 1.
aq
It is worthwhile to recall the connection of dm with dg. Let E be any

Borel set in M. Fix a point p € M, and let E be the corresponding set in
G, that is

6 A more detailed discussion of this case will be given in § 14.
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E={geGlg(p)e E}.
Then

(7.1) m(E) = Haar measure of E in G .

LEMMA 1.7 Let E, E,, ---, E,, --- be a collection of sets in M, with the
property that Y, m(E,) = oo. Then there exists a sequence of elements
Giy 9oy ** %y Guy »++ Delonging to G, so that the translated sets F,, F,, -,
F, -, F, = g,.FE,), have the following property:. Let

F,=limsup F, =N;_ U, F..

Then m(F,) = 1. That s, almost every point of M belongs to infinitely
many sets F,.

REMARKS. (i) If the sets E, were mutually independent then the
above would reduce to the Borel-Cantelli lemma (see [2, p. 104]; we then
could take all g; = identity).

(ii) The proof will show that the above conclusion may be obtained for
“almost all’’ sequences g,, g;, *++, gn, * -+ and not just a particular se-
quence g, gz ***y Gny ***

ProoOF. We consider two infinite product spaces. First, let M =

- My, where i is the infinite product of M,’s, each M, being a copy
of M. Thus the points of . are sequences {x,}, where x, € M. We im-
pose on M the usual product measure of the measures dm on each M,.
‘We call this product measure dm, also. Next we consider the infinite
product group I' = J];_ Gy, where I' is the infinite product of G, each
G, isa copy of G. The elements of I' are sequences {g,}, where g, € G. On
T' we also consider the usual product measure. We notice that I' is a
compact group which acts on ¥ in a natural way; that . is therefore a
homogeneous space under I'; and that the product measure of <% and T
are, in fact, their invariant measures.

Consider now the collection of sets &, &,, +++, &,, +++ on M defined as
follows. &, = set of all points in .# whose n' coordinate is restricted to
lie in E,. Then m(&,) = m(E,). Let & =N,_ U, ... We claim that
m(&) = 1.

. In fact, <€, = U;_, N,_,°Cs, and thus m(°€) = 37 m(N,_,°€,). But
m(n:;:kc n) = :zkm(c n) = Hn=k(1 - m(8n)) = H:=k(1 - m(En)) =0,
since Y} m(E,) = oo.

Therefore m(°€,) = 0, and hence m(&,) = 1. (The argument up to this
point is that of the Borel-Cantelli lemma, applied to the sets
Euy Eay vrny Epy v o).

7 A basic special case of this lemma is due to A. P. Calderon. His proof is in [11, p. 165, II].
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Let now yr(2,, %o, + + +, &, + + +) be the characteristic function of the set &,.
Consider the function f(7, x) defined on I x M as follows
Flr, ®) = (97 (®), g77(x), =+, g2 (), =)
where ¥ = {g,} € T, and © € M. Let us apply the relation (7.1) to the case
where I' is the group, # the homogeneous space, p = (x, X, &, *+ -, *++),
and E = &,. We then have that for each z, f(v, ) = 1, for almost every
7. Hence, by Fubini’s theorem, for almost every v, f(v, ) = 1 for almost
every . Fix such a v, v = {g,}.
Therefore for almost every x € M, v~ (x) € £, for infinitely many n. That
is, for almost every x € M, g,;'(x) € E, for infinitely many n. Hence, for
almost every x € M, x € g,(E,), for infinitely many n. This proves the

lemma.
We next consider the Rademacher functions »,(t). Their definition is

given by
ra(t) = r(2°) ,
r(t) =1if 0 <t =<1/2,and — 1, if 1/2 < t < 1, and r(t + 1) = 7r,(2).
These functions are orthonormal over [0, 1] (although not complete).
Their importance is due to the fact that they are mutually independent.
We shall not make explicit use of this fact, but instead we shall use a pro-
perty that, in effect, follows from this. Let

(7'2) F(t) = E anrn(t) ’ E ‘ a, |2 < oo
be a Rademacher series.

LEMMA 2. Let E be any measurable subset of [0, 1] whose Lebesgue
measure is not zero. Then there exists an tnteger N, and a constant A
(both depending only on E) so that

(7.3) (newla, )2 < Aesssupe, | F(T)] .

This lemma is well-known, see [11, p. 213, I].

8. General Theorems. As before, G is a compact group, M a homo-
geneous space of G, and dm the G-invariant measure on M. If x is any

point of M, and ¢ an element of G, then g(x) denotes the action of g on
2. We also define the operator 7, by
(Taf)(x) = f(g_l(x)) ’ g € G.

We shall refer to the family of operators 7,, g € G of translations.

Now suppose we are given a sequence of linear operators T, satisfying
the following two properties. Fix p, 1 < p < 2:

(a) Each T,, is a bounded linear operator of L?(M) into itself.

(b) Each T,, commutes with translations, that is T,7, = 7,T,, all



148 E. M. STEIN

geq@.
The following theorem is the main result of this paper.

THEOREM 1. Let T, be a sequence of operators satisfying conditions
(a) and (b) above. Suppose that for every f e L*(M),

(8.1) lim,, ... T, f)(2)
exists for almost every x € M.
Let

T*(f)@) = suPpot | (T f) )| -

Then there exists a constant A, so that if « > 0 and E, = {x| T*f(x)>a},
then

(8.2) m(E,) < (A/a”)gl flrdm (A is independent of o and f.)

Before proving the theorem, we state some corollaries which follow im-
mediately from the proof of Theorem 1 given below.

COROLLARY 1. In place of (8.1) we may make the weaker assumption:
Jor every f e L?, lim sup,,_.. | T(f)(@)| < o, for some set of x of posi-
tive measure; (this set may depend on f). Then the conclusion (8.2) still
holds.

An alternative formulation of Corollary 1 is the following:

COROLLARY 2. If the inequality (8.2) fails (that is, if the operation
f— T*f is not of weak type (p, p)) then there exists an f e L?, so that
lim sup,—.. | Tn(f)(@) | = o for almost every x.

Another corollary is

COROLLARY 3. Let S be a closed subspace of L*(M), invariant under
translations. Suppose that the operation f— T*f, restricted to S, does
not satisfy an inequality of type (8.2). Then there exists an f € S so that
lim sup,,—c. | T F)(@) | = oo, for almost every .

9. We now pass to the proof of Theorem 1 and its corollaries. The
argument is by contradiction. Let us assume that there is no 4, 4 > 0,
for which the inequality (8.2) holds. Thus for each integer #, the ine-
quality (8.2) is false for n in place of A4, for some f € L?, and some a > 0.
Hence, after appropriate normalization, there exists a sequence of func-
tions f,, and a collection of sets E,, so that

9.1) (T*f)x) > 1, x ek,
9.2) m(E,) > n | = n |7, Pdm .
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By taking a sub-collection of the original collection f,, E,, with possible
repetitions, it is possible to obtain another collection (which we again
index by f,, E,) and which satisfies the following:

(9.1%) (T*f)(x) > 1, rxek,
9.2%) 2 m(E,) = c while SNl < oo

Finally, in view of the convergence of the positive numerical series
> 11 full2, we can find a sequence R, of positive number so that
(9.3) : R,— o but 3} [|R.full} < .

Let us remember that because of Lemma 1, and (9.2*), there exists a
sequence of g, € G so that if F, = g,(E,), then almost every point of M

is contained in infinitely many F,. Fix such a sequence g, once and for
all.

We now consider series given (formally) by
9.4) F(z,t) = 32 r) R, (f)() .

Here the 7r,(¢) are the Rademacher functions (see § 7 above), and the
operators 7, are translations by the elements g,.

We shall prove that this series converges in an appropriate sense, and
has two properties:

(1) For almost every ¢, 0 <t <1, F(z,t) = F,(x) as a function of z, is
in L*(M).

(2) For almost every t, (T*F,)(x) = oo, for almost every « € M. If we
prove (1) and (2) we shall, of course, have obtained a contradiction with

the assumptions of the Theorem 1, and thus proved Theorem 1.
Let

(9.5) Fy(x,t) =37 (DR, T, () () .

Since this is a finite sum, it is a well-defined measurable function (on
the product M x I, I denoting the unit interval).
We consider first:

S; SM'FNl(x’ t) — Fy(x, t)|*dadt .

We need the following observation. Let
F(t) = 3 bara(t)
then
(9.6) [IF@© P = b, 1=p=e.
In fact,
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| F@ rat < ([P rat)" = (S5, 1) = T3 15, 1

if 1 < p =<2, which proves (9.6). Applying (9.6) and Fubini’s theorem
we obtain

| |1 o, t) = Fy o, ) lrdadt = T RS
(Notice [| £, | = I1%,,(£.) [,)

In view of the convergence of the series Y || R, f. ][5, we see that the
sequence F'y(x,t) is Cauchy in L¥(M x I). Hence there exists an
F(x,t) e L*(M x I) so that Fy(x, t)— F(«, t) in the norm of L*(M x I).
Also there exists a subsequence N, so that F (v,t)— F'(z, t) in the norm
of L*(M), for almost every ¢ € I.

Now consider F(z,t) as a function of x. By Fubini’s theorem
F(x,t) e L*(M), for almost every ¢ € I. Let us apply the operator T, (for
some fixed m). Then, T, (Fy(z,t))— T.(F(,t)), in the L*(M) norm,
for almost every ¢ € I, since each T, is a bounded operator on L?(M).
Hence,

0.7 To(F (2, t)) = 35 rat) R T(T5,(f))(®) -

The series above converges in the norm of L*(M x I). Moreover there
is a subsequence which converges in the norm of L?(I), for almost every
2 € M. These facts may be proved as in the argument above.

Our next claim is the following. The function on the left side of (9.7)
is, for almost every « € M, in L*(I), and is represented by the Rademacher
series which appears on the right side of (9.7). In view of what has been
said above, it is sufficient to notice, that for almost every «,

(9.8) 2o R Tz, (f))@) P < oo .

This may be seen as follows:

First 3 || R.f. |5 < e, by our construction. Next Y || R, T\7,, (fa) |l <
o, since || 7, (f2) I, = || fall, and each T, is a bounded operator. We can
rewrite this as follows:

T,],| BaTas (@) P < o

Thus
2 RTnt, ful®)|? < oo, for almost every x .

Since 1 < p < 2, (9.8) is proved.

There is an exceptional set of measure zero, for each m. But since our
family T,, is countable, we may assume once and for all that we disregard
the set of measure zero, so that in its complement 7, F'(z, t) as a function
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of t, is given by the Rademacher series (9.7).

Suppose now, contrary to (2), that T*F'(x, t) < o for a set of positive
(x, t) measure. Then there exists a set S of positive measure in M x I,
where T*F'(x, t) is bounded say by A. That is, T*F'(x, t) < A, (z, %) € S.
And therefore, for every m

(9.9) | T F(z,t)| <A, allm, (x,t) €S .

Let now E,=SN(x, I). E, may be considered for each x € M, a subset
of I. Since S has positive measure in M x I, E, is Lebesgue measurable
for almost every x, and for a set M,c M, | E,| > 0, (where | - | denotes
the Lebesgue measure), x € M,, and M, is of positive measure in M. Let
us now apply Lemma 2, to the case of the Rademacher series (9.7), re-
membering (9.8) and (9.9); the set E will be E,, where x € M,. We then
obtain

(X nere | BT, (f2)@) P)? < Al) , v e M,
where A(x) and N(x) are independent of m.
Hence
(9.10) | R, Tty o) | = Alx) , v e M,
if n = N(x).

Now T,7, = 7, Tn. Taking the sup (over m) of the left side of (9.10),
we obtain

R(T*f)(9:'(2) = A(®) , x e M,

whenever n = N(x).

Now if «# € F, (see Lemma 1), then « is contained in infinitely many
F,, F,=g,FE,). But T*f,(y,) > 1, if y, € E,. Therefore x € F|, implies
R, T*fu(97'(®)) > R, — oo, for infinitely many n’s. Hence if « e F\, these
are infinitely many n so that:

R,T*f,(g:'(x)) > A) .

Thus (9.10) implies « ¢ F,. This shows that M, c °F|, and therefore
m(M,) = 0, contrary to what was found earlier.

We have therefore proved that the function F'(z, t) satisfies the two
conditions (1) and (2) above: that F(z, t) € L*(M), for almost every ¢ € I,
and (2), that T*F(x, t) = oo, for almost every (, t). This leads to a con-
tradiction with the hypothesis of Theorem 1, unless an inequality of the
type (8.2) holds for some A. This concludes the proof of Theorem 1. Corol-
laries 1 and 2 are proved by noticing that we have actually constructed
an f € L? (that is, F(z, t), for almost every t € I), such that T*f(x) = o
for almost every =«.
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Finally we come to Corollary 3. Suppose that the inequality (8.2) is false
for some f € S, whatever the choice of A. Arguing as before we can con-
sider a collection f,,, where now £, € S. In view of the fact that To,(fn) €S,
if f, € S, and the convergence of the series (9.4) in the norm, we obtain
F(x, t) e S, for almost every ¢ € I. Since T *F(x, t) = o for almost every
(x, t), we have proved Corollary 3.

10. A variant of the general theorem for p = 1. We shall now obtain
a variant of Theorem 1, for the case p = 1, which is particularly useful
in applications. In order not to add irrelevant technical considerations,
we shall limit ourselves (in this section) to the case where G = M = com-
mutative (and compact) group. The argument given below can be ex-
tended, with some care, to the general case of G and M considered above.

We need to introduce some notation. z,y, -+ designate points of M,
and  + y is the sum (of the group operation) in M. L?(M) will designate
as before the Lebesgue space with respect to the invariant measure dm.
C(M) = class of continuous functions on M, with the ‘‘sup’’ topology.
Finally B(M) will designate the (finite) Borel measure on M. , having the
usual norm.

We shall consider, as before, a sequence of operators T... We shall as-
sume

(@") Each T, is a bounded operator from LM ) to C(M).

(b’) Each T, commutes with translations.

It may be proved, although we omit the elementary argument,* that
the conditions (a’) and (b’) are equivalent with condition (c)

(©) Tul)@) = | Jeula — )/ W)y
where k,, is some function in L=(M).

Let us note that such an operator 7T, has a natural extension to a
bounded operator from the Borel measures, B(M), to L=(M). Notice that
this extension also commutes with translations. We maintain the desig-
nation T, for this extension.

Our result is then

THEOREM 2. Let T,, be a sequence of operators of the type described
above. Suppose that for every fe LXM), lim SUDmwo | T F)(@) | < o0,
Jor some set of « of positive measure (which may depend on ). Then
there exists an absolute constant A with the Sollowing property. Let dp
be any Borel measure,

(T*dp)(x) = SUDPpe, | Th(dp)(®)| and E, = {x [ (T*dp)(x) > a} .

* The argument is based on the F. Riesz representation of bounded linear functionals on
L.
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Then
(10.1) m(E) = (Ala)| |dp] .

We shall deduce Theorem 2 from Theorem 1, by the aid of the following
lemma.

LEMMA. Let T, ---, Ty, be a finite collection of operators, each satis-
Sying the conditions (a’) and (b') above. Let dpt be a Borel measure, so
that ||dp|| < M. Let hy,(x) = T,(dtt). Then there exists a sequence of
Sunctions fi(@), fx), <+, fu(®), -, fu(®) € L(M), so that || fi(2) |, < M,
and if hi(x) = T,.(f%), then lim,_ . hE(x) = h,(x) for m =1, ---, N, for
almost every x.

Proor. Let [,(x) be a sequence of non-negative continuous functions
with the property that S l.(x)dx = 1, and so that the sequence [, forms
an approximation to the identity, in the usual sense. Let fi(x) = l}dy =
S li(x — y)d(y). Then each fi(x) is integrable and || /||, < || dp¢ ]| < M.

M

Moreover, owing to the fact that each T,, commutes with translations,

we obtain

To(f) = Tulidu) = U(Tndpt) = Lihn(@) .

Now by a well-known argument I h,(x) — h,(x) in the L' norm, as
k — oo. Hence, selecting a subsequence of the [, (if necessary) we obtain
the desired pointwise convergence. This proves the lemma.

PrOOF OF THEOREM 2. Let T3 (2) = suPicmsr| Tn(d)(x)|, and let EY=
{x| TH(x) > a}. Notice that the sets E are increasing with N. Now by
Theorem 1 (Corollary 1), there exists a constant A, so that if f € LY(M)

102 m|$uPne | TuN@ | > ) = (/)| |/ (@)1 dm,
with A independent of N.

Apply this to the functions f;, given in the above lemma. We then
obtain

m(E) = mle | Tidp)@) > o} < (Afa)] |dp| .
Now let N— <o, and we obtain Theorem 2.

11. A variant for Orlicz spaces. Theorem 2 above is useful in showing
that certain limits of sequences of operators may fail to exist when ap-
plied to L'(M). However, in some cases these limits exist when applied
to functions in L?(M), p > 1. It is natural in those cases to consider other
classes of functions, such as L log L, which are intermediate between L*
and the L?. We shall now show how the general theorem of § 8 may be
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modified to contain these cases.

We consider an Orlicz space L,. It is characterized by a function &
satisfying

1) ®(0) = 0, ®(¢) is convex and increasing in 0 < t < oo.

2) ®(2t) =< MD(t).
Under these hypotheses the space of functions, Lo,

Lo = {f measurable [ SMCID(]fI)dm < oo} ,

can be made into a Banach space via the norm, ||+ ||, || f|le = inf X > 0,
S @(Ml>dm < (1) .
¥ A

The case ®(t) = t?, 1 < p, leads to the usual L® space. Another case
of special interest is ®(t) = t(log(t + c))", g =0, which leads to the space
L(log L)-.

We shall find it convenient to use the following definitions. An operator
T is of type (P, @) if there exists a constant A so that

(11.1) [, @0 7rpdm = | aalsham .

Similarly we shall define T to be of weak type (®, ®), if E, =
|| Tf(®)| > o}, then

(11.2) m(E,) = SM ® <-%>dm ,

where A is some constant independent of « or f.

Now in Theorem 1, we made the restriction (which is essential), that
1 < p < 2. Thisis a restriction on the character of ®, and in the general
case we shall assume:

(8) ®(t?) is a concave function of ¢, 0 <t < .®

Our general theorem then is

THEOREM 3. Let T, be a sequence of operators each of which is of type
(®, @) (as defined in (11.1) above), and which commutes with transla-
tions. Let ® satisfy the conditions (1), (2), and (3) above. Suppose that
for every f, f € Ly, limsup, .| (T.f)(x)| < o, for x in some set of
positive measure. Let T*(f)(x) = sUDPms1| Tnf(®)|. Then there exists a
constant A, so that

(11.3) m(By) = mie [T*f(z) > a} < Sﬂ(%m)dm .

8 It may be verified_that’condition (3) on ® implies condition (2).
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The proof of this theorem is so similar to that of Theorem 1 that we
shall only discuss these details which are different. We begin by some
remarks concerning ®. Since ¥(t) = ®(¢'?) is concave, a simple geometric
argument shows that if a > 1, ¥(at) < a¥(f). Hence

(11.4) D(at) < a*®(t) , ifa=1.
If we take @ = 1/t, 0 =<t < 1, we obtain
(11.5) o(t) = *'P(1), ifost=<1.

We also need the following lemma.

LEMMA. Let F(t) = Efi b,7.(t). Suppose ®(t'?) is concave, then

(1L.6) L 2( F@) Nt = 57 @(b,) .

PROOF OF THE LEMMA.
Let ¥(t) = ®(t'*); owing to the fact that ¥ is concave, we have

S ®( F(t) )dt = S V(| F(t) P)dt < \v(g | F(t) 12dt> .
But

| F )t = 3 b
Now
VoW b 1) = 20 W(15, 1) = (b, )

This proves (11.6).

We return now to the proof of Theorem 3. As in the proof of Theorem
1, we pick a sequence of functions f,, € Ls, so that

(T*fa)(@) > 1, ifrekE,,

and

m(E,) > | o f,m .

Due to the convexity of ®, ®(n | f,|) = nd®(| 1, ).
Hence by choosing an appropriate subsequence, with possible repeti-
tions, we obtain
E m(En) = o,

while
] s hdm < o

n=1

We can also choose constants R, — oo, but so slowly so that

2| @B, hdm < e .



156 E. M. STEIN

Note that ®(R, |f,]) = R:®( f,.]) if R, = 1, by (11.4) above.

We take F'(x, t) to be the same as (9.4) above.

Next we use (11.6) above to duplicate the argument given by (9.6). Let
us now consider (9.7). An argument similar to the argument given above,

shows that
2| @B, Tor,, (f0@) hdm < e

and hence, Zntb(Rnl T,.7,,(f)(@) |) < oo, for almost every = e M.

Now since ®(f) = t*®(1), (see (11.5)) if 0 =t <1, we obtain that
2. | BT, (f)®) [P < oo, for almost every x € M.

Using this, we see, as before, that Tm(F(ac, t)) has as a function of ¢,
for almost every x, an expansion as a Rademacher series given by

T, F(x,t)=3 ()R, T, (8)() .
The rest of the proof is then like that of Theorem 1.

12. Remarks. Before we come to our main applications, we wish to
clarify some points concerning the above results. First, the theorems
above are formulated for a discrete (denumerable) family of operators
T,,. However, in some applications one must deal with a family of operators
which depend on a parameter with a continuous range. For example, let

(T../)(x) = (1/h) S f(x + t)dt, h > 0 be the example discussed in the intro-

duction. Let us observe that for every x, T,(f)(x) is continuous in 4,
h > 0. Hence sup,s,| T,f(x)| = sup,| T, f(x)|, where h, is any enu-
meration of the positive rationals. Also lim,_,(T,f)(x) exists, implies
lim sup,, oo | T, f(®) | < . This simple device (which is used again in
§ 15 below) allows us to apply the above results even to certain cases
where the auxiliary parameter is continuous.

Another remark, although not so trivial, is the following. The above
theorems are formulated for linear operators. We want to show, by an
example, how these results may be carried over to a large class of non-
linear operations which occur in Analysis. This example will also illus-
trate Corollary 3 of Theorem 1.

Let f(0) be integrable on (0, 27) and let it be of power series type, that

f(é’)e“""de =0 if »<0. Let S denote the closed subspace of
L’(O 2m) consisting of functions of power series type. Note that S is
invariant under translations (S is usually referred to as H'). The func-
tion g*(f) is of importance in the theory of H! spaces.’ It is defined as
follows. Let S,(6) and ¢,(0) denote respectively the partial sums and

¢ For a discussion of the function g*(9), see [11, Ch. 15] (where g*(8) is denoted by 7).
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Cesaro means of the Fourier series of £(6). Then

g*(0) = (E | Su(6) — 0.,(0) )1/2 .

n

We can consider the non-linear mapping () — g*(d). We shall prove:
THEOREM: Let o > 0, E, = {0|9*(0) > a}. Then

m(E) = -7 7(0)1d0, fOeH,

where A 1s a constant independent of a or f.

Proor. In fact let a™ be an enumeration of the countable collection of
all sequences satisfying the following.

(i) Each a7 is a complex number whose absolute value is rational, and
whose argument is a rational multiple of 2x.

(ii) For each m, a = 0 if n is large enough.

(iii) For each m, 3~ |am['/n < 1. Now for each m, define

T.(10) = 2, {20 %O L oy

n
(this is a finite sum), and
(T*f)0) = sup, | T, f(0)] .

It is easily verified that T* £(6) = g*(0).

Now it is known that g*(d) < oo, for almost every 6, if f(0) € H*. An
application of Corollary 8 of Theorem 1, then, completes the proof of the
theorem.

We wish to show now that the theorems above, formulated for
1 < p < 2, cannot be extended to p > 2. We argue as follows.

Let h(6) = | 0 ["*(log (27/|6]))", |6 | < . Then h(d) € L*(—=, x), but
h(0) ¢ L*(—mx, ), if ¢ > 2. Now A(0) ~ 3 c,e™®, with 3 |¢, | < oo. It
is known that there exists a sequence ¢,, of +1, so that

FO) ~ 2 e cee L7, every p, p < oo .

We let T be the bounded operator on L*(—=, 7) which is of multiplier
type and which consists of multiplication of the Fourier coefficients by ¢,.
Let T,, = 0,,- T, where o,, = Cesaro means of order m. Hence, whenever
felLr, p=2 lim,..T,(f)0 = (Tf)(0) exists almost everywhere. Sup-
pose now that Theorem 1 had an extension to » > 2. Then it would follow
that || Tf ||, < e, whenever 2 < q < p, if fe L?(—=, ). Now take
J~ 28,0, then Tf ~ Y c,e' = h(0), and we obtain a contradiction,
since h(9) ¢ L9, if q > 2.

10 See footnote 2.
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III. Applications

13. Double conjugates of Fourier series. We begin by considering a
special case which already contains the essence of the general result given
below in Theorem 5.

Let f(x, y) ~ X a,.e"e™ be integrable over |z | < 7, |y | < 7, and let
(18.1)  f(r,@;0,9) = — 3 @y sign (n) sign (m)r'neinzpimiginy |

be the Abel means of the ‘‘double conjugate’’ series. Then, as is well-
known

82 Forwion =2 |" Q02— 060,y —5)7¢, 9drds

7:2
where
13.3 ) = rsin¢ .
,( ) e, 1) 1 —2rcost + r?
We have:

THEOREM 4. There exists an f e L', so that lim,_, f(r, z; r, Y) exists
only in a set of measure zero.

ProoF. We shall show that there exists an fe L so that
limg, o f (P @, 7, Y) eXists only in a set of measure zero where P =
1 —(1/m). Assume the contrary. The operators T,, T, :f(x, y)—
F (o, @; 7., y) satisfy the conditions of Theorem 2 in § 10 above. We apply
the maximal inequality (10.1) to the case where dy = Dirac measure,
(that is the measure of mass one, which is entirely concentrated at the
origin).

Notice

| T*d () | = SuPma,

L)

= 20100, 9 v = L et L+ cot ¥ |z A
T 47T 2 2

| wy |

if |x| =7, |y|= 7. Nowtheset(in|z| <7, |y| =< x)where (4/|zy)| > a,
has measure of the order (B/a)log a, as & — . This is not O(1/), as
& — . This contradicts (10.1) and proves the theorem. ,

Without going into detail, we mention that the above argument, with
certain changes, proves that the following limits do not exist (except in
a set of measure zero) for some f € L.

. 1 t s
(a) lim,., — SK,”(R SKMQ cot <-2—> cot <?)f(x t,y — s)dtds,
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(b) lim,., ; S:’"Sf"P(r, HQr, ) f (& — s,y — t)dids .

2

Here P(r, t) is the Poisson kernel = 1/2-(1 — 7%)/(1 — 2rcost + 7?) .

() limg, ... Gl(®, ¥) — ful®, ¥)-
Here ¢,(z, y) = (1/7%) Sgl?m(t)ﬁm(s) f(z —t, y — s)dtds; K,(t) are the con-
jugate Fejer kernels; and f.,(x, ) is the integral in (a) with e = 1/(m + 1).

The limit (a) represents another possible approach to the double conju-
gate. Limit (b) corresponds to the Abel means of a single conjugate. An
incorrect statement of the existence of limit (c) is given, without proof,
1in [8].

Theorem 4 may be refined.

THEOREM 5. Let ¢ > 0. Thez‘e exists an f so that | f|(og + | )¢ is
integrable, and so that lim,., f(r, x; r, y) exist only in a set of measure
zero.

Proor. We argue again by contradiction, this time using Theorem 3
of §11. Fix ¢ > 0, and let ®,(¢) = t(logt)'°. Notice that if ¢ is large
-enough, say ¢t = t,, then ®,(¢) is convex, increasing, and ®,(t') is concave.
Now let ®() = ®,(t + t;) — ®.(t,). Then ®(t) has these properties for
0<t¢t< o, and ®0) = 0. Also obviously ®(2t) < M®(t). We consider
the Orlicz space L, of functions so that SS(ID(I fDdxdy < . This is easily

seen to be identical to the class of functions for which | f| (log* | f])*~¢ is
integrable.
We consider the sequence of operators T,,:f (%, ¥) — f (T €; Ty ¥),
where r,, = 1 — 1/m. Each T, satisfies an inequality of the form,
| | @ Tarpdedy = |7 |7 0 4, rDdady

as an elementary application of Jensen’s inequality to (13.2) shows.

Under our assumptions, lim,,_.. T, f exists almost everywhere for every

f € Lo, and therefore the conditions of Theorem 3 are satisfied. Hence if

F@, y) = SuDpsi | f(*my ; 7, ¥) |, then there exists a constant A so that

m(E) = | | o4l 7@, v J0dedy where, B, = (@, 1) |7 (2, 9) > a).
We now takér

cos N = sin nx
~ 3 05 L ~ , ) .
fo(@) ~ 32 (log n)® ’ fo(x) ~ 32 (log n)’ >0
‘Then, as is known, (see [11, p. 189, I]),
—1-5
fiw) = 0( 2| (log—) ), as |z]|—0
(13.4) ’ < < E l) )

= bounded elsewhere in |z | =< 7,
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while
~ 1\~8
(13.5) @) = Alw |‘1<log——~) , as|z|—0.
x
Let fi5(x, ¥) = fs(x) fs(y). Then if & > ¢, fi(x, y) € Lo, as a simple calcu-

lation shows. We further specify 8, by 6 < 1.
Now

F@, 9) = T*(fs(@, 9) = limy e | F (0, 25 Ty 9) |

= 17w = Al (g =) vl (log o)

if both x and y are small enough. Hence

{(x,y)lf(w,y)>a}C{(w,y)|lwléxo, Y| =9,
and
1 1\, 1\
Alz) <l°g|m—|) v <l°gm> >al.

A straight-forward, although cumbersome, calculation yields that the
latter set has measure =(B/a)-(log @)*~°, as & — 0. Thus

(13.6) m(E,) = g . (log @)=, as @ — oo .

Now the conclusion of Theorem 3 implies, as we have mentioned,

m(E,) < SS @(Lf%g”ﬁl)dxdy :

-

However, due to the convexity of @,

[|o(AEED ) dray < ({41 5w, ) ) dedy

Q|-

’ lfagl.

R >

This shows that m(£,) = O(1/a) as @ — o, which contradicts (13.6), if
6 < 1, and concludes the proof of Theorem 5.

Similar results may be obtained for the limits (2), (b), and (c) discussed
above, but the argument is somewhat more delicate. We mention also
that Theorem 5 has a straight-forward extension to higher dimensions.™

14. Divergence of Fourier and Walsh series. We consider first Fourier
series of one variable. We shall denote by S, (x) = S,.(x, f) the partial
sums of the Fourier expansion of f(x), 0 < 2 < 27, and more generally,

11 The condition then is that | f| (log* | f|)¥~1~¢ is integrable over the k-torus, where ¢ > 0.
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S,(x) = S,(x, dy) will denote the partial sums of the Fourier-Stieltjes
expansion of a Borel measure dy. Our result is as follows.

THEOREM 6. Let M(n), be any sequence, decreasing to zero, as m — oo.
Then there exists an integrable function f(x), so that the restriction

Sn(:"» f) - Sm(xr f) = O()"(m - n) IOg (m - ’ﬂ))

18 false for almost every x.
PRrOOF. Let us consider the countable family of operators A,, defined by

| _ Su@, f) = Sul®, f) _
A(f)x) = o — ) Tog (m — 1) r=(m,mn).

The operators A, satisfy condition (a’) and (b’) of § 10. Hence in view
of Theorem 2, it will be sufficient to prove the following lemma.

LEMMA. There exists an absolute constant A > 0, with the following
property. Let k be an integer. Then there exists a measure dt, Szzl dyl =
1, so that if A} (x) = SUDn m. | Sa(x, dr) — S,(x, dp) |, then '

=k
(14.1) Af(x) = Alogk, for almost every x .

Proor. We set dp= (1/N)3_¥ dp,, where dy, is the Dirac measure
translated to the point x,, and where the points x,, -+, £, are not yet

‘speciﬁed. Clearly S%[ dr| = 1. An easy calculation shows

cos-l—(x — ) sin%(x — )

14.2)  S,(x, dp) — S, (x, dp) = = ¥
(142) Sy, dp) — Sula, dp) = - 57, P
2

whose k =n — m,andl =n 4+ m + 1.

Now k is fixed; but [ is at our disposal: it is any integer larger than k,
subject only to the condition that if k is odd, ! must be an even integer,
and if k is even, [ must be an odd integer. Let us assume that k is odd.
We now choose the «; so that they are linearly independent over the ra-
tionals, and so that the x, are close (in a manner to be specified) to
j2n[N. As is easily seen, almost every 2 has the property that x — z,,
X — X, *++, X — Xy, are irrational mod 27z, and linearly independent over
the rationals.

For such x, we apply Kronecker’s theorem' to the right side of (14.2)

12 For Kronecker’s theorem see [4, Ch. 23]. We have been informed by A. Zygmund that
J. P. Kchane has also independently applied these notions to the problem of divergence of
Fourier Series. His work will appear elsewhere.
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and obtain,

SUDPs,m
n—m

| S dp) — Sular dp) | = & T |sin (k[2)(@ — @) |

J=1 _
'sin (x — =)
2

=k

Now if the x, were chosen close enough to j27/N and N large enough,
then the sum on the right would exceed half of its integral-analogue.
Hence

Supr:‘.lnm:kl Sn(x7 d)a) - Sm(x’ d#) I

2
gL.LS
2 2T Jo

sin (k/2)(z — y) ‘dy > Alogk.
. rx—y -
sin (———2 )
This proves the lemma.
The lemma shows that the operator

Se(x, dp) — S, (x, dp)

d - m.,n ’
f= 5P, Mm — n) log (m — n)

cannot satisfy the maximal inequality (10.1). Thus Theorem 6 is proved.

We now consider divergence of Walsh series. As will be seen, the
argument that we shall give will, in many ways, be similar to the proof
of Theorem 6 above. First we need to consider some preliminary matters.

The Walsh-Paley functions are obtained by completion of the Rade-
macher functions 7,(t), (which we have considered in § 7 above). In fact
we define the Walsh-Paley functions V,(t) by ¥,(f) =1, and V¥,(f) =
T ()T u(t) +++ 7, (t), where m = 2" + 2™ ... 4 2%, Since the work of
Fine [3], we know that the Walsh-Paley functions are most properly con-
sidered as the characters of a compact commutative group G, the so-
called dyadic group.

G is the infinite direct product of the group of the elements, 0 and 1,
in which the group operation is addition mod 2. Hence G may be con-
sidered as the totality of sequences ¢,, n = 1,2, --- where ¢, = 0 or 1.
It is possible to set up a measure-preserving map from G to a full subset
on the interval [0, 1], with Lebesgue measure. The mapping consists in
assigning to each sequence {¢,} the number x = 3~ ¢,/2". If x and y
are two numbers of [0, 1], we denote by x + y the result of mapping x
and y to the group G, performing the group addition in G, and then taking
the inverse map back to [0, 1]. Hence = + y is defined for almost every
pair (x, ) and is again a number in the interval. If V¥, is a Walsh-Paley
function, then

V(@ + y) = V(@)W () -



SEQUENCES OF OPERATORS 163

Considering the above, we identify Lebesgue measurable functions on
[0, 1] with (Haar) measurable functions on G, and thus also L'(0, 1) with
LYG).

Now let f(x) € L', and let its Walsh-Paley expansion be f(x)=Y_ a,¥,(x),
where a, = S f(@)¥,(x)dx. Consider the operation of partial sums

0

Sul@, ) = T, 0, ¥,(®) = | Duler, S @)y -

Here D,,(x, y) = 3.7 W.(x)¥,(y), is the analogue of the Dirichlet kernel.
Now if D,(x) = 3" W,(x), then D,(x, y) = D,(x + y). Hence,

(14.9) Sul@, ) = | Dulo + 97wy .

It is therefore clear that each operator, f — S,.(f), commutes with the
group operation (of G). Our result is

THEOREM 7. There exists an f € L', so that the sequence S, (x,f) di-
verges (as m — ), for almost every .

PrROOF. We begin by recalling some facts. First, lim,_.. Sy(x, f) exists
for almost every x. This makes our problem somewhat different from
that of Fourier series. Next we quote the following identity for the
‘‘Dirichlet kernel.”

(14.4) D,(x) = Dye(x) + ¥,(2"2)D,(x)

where k is the largest integer so that 2* < m, and n = m — 2¢.
(14.5) lim supwgll Dy(@)|de = oo
0

In view of what has been said about the convergence of the sequence
S, f), we consider the family of operators

(14.6) An(x, f) = Sulx, f) — Sw(®, )

where k is the largest integer so that 2 < m. It is therefore sufficient
to show the existence of an f € L', so that the sequence A, (z, f) diverges
almost everywhere (as m — ).

Because of Theorem 2, § 10, we consider A, (x, dz) where dy is a Borel
measure on G. (d¢ may be considered as a Borel measure on [0, 1], whose
mass is concentrated at the points of the interval which correspond to
points of G.) We shall consider in particular

1
dp = N & dy

13 For the statements contained in (14.4) and (14.5) see [3].
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where dy, has its total mass, equal to 1, concentrated at the point &,
the points &, to be specified later. On account of (14.5) and (14.6), we
obtain

(14.7) A, dpr) = &ka) S W@, Dy + hy) .

Let us now fix n. Then it is possible to choose N large enough, so that
if |y — (JIN)| = 1/2%, then

1

148 LT DE+h) 2zl Dt la.

For fixed n, (14.8) follows merely by a simple argument of approxi-
mating integrals by finite sums, when one observes that D, is a step
function.

Having fixed n, we now fix an N for which (14.8) holds. The require-
ment on each k, is that | h; — j/N| < 1/2¥. This requirement can certain-
ly be met by specifying each &, appropriately in the first N places of its
dyadic expansion. We then still have freedom to choose the entries in the
dyadic expansion of each h,, after the N™ place, in a perfectly arbitrary
manner. We do this as follows.

We enumerate all the N-tuples, whose entries are +1. There are 27
such N-tuples. We choose the N + 1 place in the dyadic expansion of 4,
by specifying that

Wy(2¥ 1 hy), W27 hy) + e W27 hy)

is the first N-tuple of +1. That is, we choose the N + 1 place in the
dyadic expansion of %, to be 0 or 1, depending whether we wish ¥,(2¥*h,)
to be 1 or —1. Similarly we choose the N + 2 place, etc. We continue
this way until the N + 2% place. We then complete the dyadic expansion
of each &, (after the N + 2" place) in an arbitrary way, but so that &, is
not a dyadic rational—that is, so that h, corresponds to a unique element
of G, which is the image of a point in (0, 1).
Let us now go back to (14.7). Then

(14.9) SuDn | An(®, dft) | = 2 37, | Dall + By |
for m of the form m = 2*¥ + n, with » fixed. (Recall that for the right

choice of k, ¥,(2%h,) are arbitrarily +1.) Combining this with (14.8) we
obtain

SUD,, | Az, d) | = %S | D,(t) | dt .
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If we now use (14.5) above, we see that we have obtained the following
conclusion:
Let p be any constant, no matter how large; then there exists a Borel

measure d on G, so that S |dpt| =1, and so that
G

sup,, | An®, dp) | = p, forallz e G.

This shows that the sequence of operators A, cannot satisfy the con-
clusion (10.1) of Theorem 2. Hence there exists an fe L', so that
lim sup,,... | A, (2, f) | = oo, almost everywhere, that is

lim SUDp, »0 l Sm(x’ f) - S2"(x’ f) I = ©,
almost everywhere. This proves our theorem.

15. Multiple Fourier series. Let f(x) = f(x,, +++, ;) be a function
defined on the k-torus, — 7 <z, <m, 9=1, -+, k, and integrable with
respect to k-dimensional Lebesgue measure dx = dx, -+« dx,. Consider
the Fourier expansion of f

(15.1) f@ ~ T aen, a, = —1_ S F@)e-redz
(2m)

where n = (n,, +++, n,) ranges over the lattice points. We form the
Bochner-Riesz means of order (k — 1)/2, of the expansion,

2\ (k—1)/2
Se(x, f) = Elnlqe (1 - |-RLZI> a,e’m"?

(15.2) 1
= —_— D — d ,
G | Pae = D@y
where Dy, is the kernel corresponding to summability of order (¢ — 1)/2.
2\ (k—1)/2
(15.3) Dylw) = Em@(l — Iz | ) ines

A similar formalism holds for Borel measures dy(x) instead of the case
f(x)dx, where f is integrable. The importance of the critical index
(k — 1)/2 of summation for multiple Fourier series was first stressed by
Bochner in [1]; see also [9].

Our aim is to prove the following:

THEOREM 8. There exists an f(x) € L, so that lim sup,._... | Se(x, )| =
oo, for almost every x.

PROOF. Let S*(x, f) = SUDws gz | Se(%, f)|, for f e L. Similarly, let
S*(x, dft) = supys rzo | Sp(x, d2) |, for a Borel measure dyt. Let R,, be any
enumeration of the rational in [0, «o]. Then S*(x, dy) = SUDy, | Sg, (%, dp) |.
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This follows by observing that for every x, Sk(x, dy) is continuous in R,
0 < R < . We therefore consider the family of operators T,,, defined
by T.(f)(@) = Sk, («, f), and apply Theorem 2 of § 10.

Let us assume, contrary to the conclusion of the present theorem, that
for every f € L, lim supg-.. | Sg(®, f)| < o for some set of x of positive
measure. A simple argument then shows that lim sup,,..|Sg (2, f)| < o,
for the same set of 2’s. The conclusion (10.1) of Theorem 2 would then
imply that if dz is any Borel measure

(15.4) SUDy<p<w | Se(@, dpt) | < oo, for almost every « .

Now let us choose in particular the Dirac measure dy. Then Sg(x, dyt) =
Dp(x) (see (15.3), and (15.2).) If we know that

(15.5) lim supg... | Dp(x) | = o , for almost every « ,

then we would have a contradiction with (15.4), thus proving our theorem.

However, Bochner has shown (see [1, p. 192]) that lim supg... | De(%) | =
o, whenever x satisfies the following condition: the countable collection
{|2z — 27n |}, (n ranges over the lattice points) is linearly independent over
the rationals. (|z — y [P = (x, — ) + (@ — ¥)* +++ + (@ — ¥2)".)

We need, therefore, only observe that the set of ’s for which the col-
lection {|x — 27n |} is linearly dependent over the rationals is of measure
zero. Bochner shows that this set is nowhere dense, and the same argu-
ment also proves the fact that the set is of zero measure. In fact, con-
sider a typical relation of linear dependence

(15.6) 2V asle —2mn,|=0.

Here, a, are integers, and we may assume that a, # 0. Since | — 27n,|=
(3=, (@ — 27n,..)°)"?, the sum on the left side of (15.6) is real-analytic in
x = (2, Tyy +++, 4,), for & # 27n,. Since a, # 0, it has a singularity at
27n,, and hence is not identically zero. Hence the zeros of such a func-
tion must be of measure zero. Finally, the set of all 2’s is a countable
union of such sets, and therefore must be of measure zero. This proves
(15.5), and hence our theorem.

16. Multiplier transformations. We consider Fourier expansions in
one variable

(16.1) f(@) ~ 2 et .

The class of multiplier transformations is defined as follows. Suppose \,
is a given two-way infinite sequence. We say that ), is of type (L?, L?),
if whenever (16.1) is the Fourier series of an f € L?, then
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(16.2) Tf ~ 3 eohne™

is the Fourier series of a function in L?, and the mapping f— Tf is a
bounded transformation of L* to L”. An important problem is one of
characterizing the sequences \, of type (L?, L?). Without loss of gener-
ality, we shall assume )\, = 0, and that the )\, are bounded. We then form
the generating function K(x) given by,

(16.3) | K(x) ~ 2 .,

. einx
n
m

We shall seek to characterize the sequences )\, in terms of the function
K(x). Let us first recall a basic fact about multiplier transformation. It
is this: If a sequence )\, is of type (L9, L9), for some ¢, 2 < ¢ < o, then
it is also of type (L?, L*) for each p, ¢’ < r =< q; here ¢’ is the index conju-
gate to ¢, 1/¢’ + 1/q¢ = 1. There is a similar statement if 1 < q¢ < 2. See
[11, p. 177, I].

Let us now consider a class of measurable functions, which we shall
denote by V,, 2 < ¢ < «. A function K(x) belongs to V,, if and only if
K e L9, and

sup || 25 K(b, — #) — K(a, — ) ||, < o .

Here, the summation is taken over any finite collection of non-overlapping
intervals, and the “‘sup’ is taken over all such collections of intervals.
V. may be defined to be the class of function of bounded variation.
Obviously V,D V,D V., if 2 < ¢ < . We then have

LEMMA 1. A mecessary and sufficitent condition that the multiplier
sequence \, be of type (L=, L), (and hence of type (L", L"), for all r
1 < r £ =) s that the function K(x) defined by (16.3) belongs to V...
This is merely a re-phrasing of a well-known fact.

The following lemma is completely elementary, but seems to have es-
caped attention.

LEMMA 2. A necessary and sufficient condition that the sequence \, be
of type (L?, L?) (that is, \, are uniformly bounded) is that K(x) € V,.

ProOF. Suppose first that the sequence X\, is uniformly bounded
[A,| < M. Since K(x) ~ Y_' (\e""*)/(3n), then

Kb, —x) — K@, — ) ~ >/ 3—;(2 ek — e”‘“k) einr .

Thus by Parseval’s relation

14 The classes V, were first considered by Kaczmarz in [5], also in connection with multi-
plier transformations. Lemma 2 below can also be immediately deduced from his results.
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|22 Kb — ) — K(a, — @) ||
= o1 E-lli;/—nlf-l Eeinbk — ginag 12 < ZEMZZ: T:?/_lzl Ek ginde _ ginag 12

= M| T Kb — ) — Kifax — 9) |, < M27 || 1 Kb — o) — Kifaw — ) |[2
=M< o,

Here Ky (x) ~ Y_'e¢!"*[(in), and we have used the fact that K (2) is of
bounded variation. Thus K(x) € V..
Conversely, suppose K(x) € V,. Let f(x) be any trigonometric polynomial

and let Fi(x) = K*f = (1/271')8 K (@ —y)f(y)dy =22 \/(in)a.e', if f(v) =
3" aqe™. Note that if || ||, < 1, then

IEF(bk)—F(ak)lgzLﬂsupHEK(bk—x)—K(ak—x>|lzéA< o .

Therefore F' is of bounded variation, and its total variation does not
2r —

exceed 2A. Hence S | F'(x) |da < 2A. Let now f(x) = (1/1/2x)e*"*. Then
0

F(x) = 1V 27)-\,/(in) -, and hence |\, |(|n]|/|n]) V27 < 24. This
proves the lemma.
Our result is the following:

THEOREM 9. Let 2 < q < oo.

(a) Let the multiplier transformation (16.2) be of type (L”, L") for all
r, ¢ =r =q. Then the function K(x) given by (16.3) belongs to V,.

(b) Conversely, suppose that K(x) € V,, then the multiplier trans-
formation is of type (L7, L") for all r, ¢’ < r < q.

PrRoOOF. We consider first part (a), which is relatively trivial. We let
p=¢, thatis1/p + 1/¢ = 1. Define F'(x) = K(x)*f(x), whenever f(x) ~
> a.e™ e L. Then F(x) = Y \,/(in)-a.e*. If we designate by Tf,
Tf ~ 3 Mane™™, then Tf € L?, by assumption, and F(x) = S:(Tf) (t)dt.
Suppose now || f][, <1. Then |3° F(b,) — F(a,)| < || Tf I, < @) || TS, <
(271.')”"M,2 where M is the bound of 7T acting on L?. Therefore
|(1/2n') S Y (Kb, — ©) — K(an — ) f(x)dwl < M, whenever || f]|, < 1.
Hence || Y K(b, — ) — K(a;, — ) ||, < 27 M. This shows that K(z) € V,.

We now pass to part (b). As before, we let F(x) = Kxf, whenever
feLr. Let Fy(x) = m{F(z+ (1/m))— F(2)} = m{K(z+(1/m))— K (w)}*f ().
Since K(x) € L* by assumption, the mapping T, given by f — F,,, is for
each m a bounded transformation from L? to itself, which commutes with
translations. Notice also that if f € L?, the function F(x) is of bounded
variation. In fact,
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| FG) — Fag| = 2| (K. — ) - K@, — @)/ @d|

é%“EK(bk —z) — K(a, — x)”q”f“p <M< .

Thus lim,,-.. Tw(f)(@) = lim,, ... m{F(x + (1/m)) — F(x)} = F'(x) exists for
almost every z, whenever f € L?.

An application of Theorem 1, § 8, shows the mapping T: f— F'(x) is
of weak type (p, ). Now if K(x) € V,, then K(x) € V,. Hence the map-
ping T: f — F(x) is of type (L}, L?). Thus an application of the Marcin-
kiewicz interpolation theorem shows that the mapping T is of type (L", L")
if p <r =<2. Then mapping T coincides with the multiplier transfor-
mation (16.2) on all trigonometric polynomials, and hence by continuity,
on L". A well-known duality argument now proves T is of type (L", L")
if 2 < r < q. This concludes the proof of Theorem 9.*

Appendix: Further generalizations

We have shown in § 12 that the general theorems obtained could not
be extended as they stood, to L? spaces where 2 < p. It is possible,
however, to prove a partial extension of our results to a wide variety of
Banach spaces. This, we shall now describe.

Our compact homogeneous space M is as before, and we now consider
a Banach space B, with norm || - ||, satisfying the following conditions:

(a) every element f € B is a function in L'(M).

(b) There exists constant C, so that || f|l, = C||f]| for f e B, where
||+ |l, denotes the L' norm.

(¢) The space B is translation invariant, i.e.: if f(x) € B, then f, =
F(e@) € B, g € G, and [|f]| = [I£, |l
The class of such spaces includes the L? spaces, the C* spaces (when these
can be formulated), ete., and any of their closed translation-invariant
subspaces.

We now suppose we are given a sequence of operators T,,, which for
each m are bounded operators of B into itself, and which commute
with translations. Moreover we define, for every f e B, T*(f)(x) =
SUDpzo (Tw(f)(x)). The result then reads:

THEOREM 10. If for every f € B, T*(f)(x) < o for x in a set of posi-
tive measure, then

miz| T*(f)@) > a} < %Ilfll :

15 For the statement of Marcienkiewicz’s interpolation theorem see [11, Ch. XII]. For the
passage fromp < r<2to 2 =<7 < gsee[ll, p. 177, I].
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When B = L*(M), 2 < p < o, there is a refinement of this result
which may be stated as follows:

THEOREM 11. If for every f e L*(M), 2 < p < o, T*(f)(x) < o, for
x in a set of positive measure, then

A

a2

miz | T*(f)(x) > a} < A -
The proof of Theorem 10 is essentially the same as that of Theorem 1.
The proof of Theorem 11 is again similar to that of Theorem 1, but the
following extra argument is needed.

Let F(t) = Y_ b,r,(t), then SIIF(t) [rdt < A,31b, )72 if p < . (See
0
e.g., [11, p. 213, I]). From this, it follows that if

Fy (x,t) = 35071 R f(T,, (2))Ta8)
then

S Foe,t) = P t)rdedt < A2 Rufola) )

by Minkowski’s inequality, if 2 < p < . The rest of the proof is then
as before.
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