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Annals of Mathematics, 118 (1983), 349-374

Sharp constants in the
- Hardy-Littlewood-Sobolev and related
inequalities

By EvrLiorT H. Lies*

Abstract

A maximizing function, f, is shown to exist for the HLS inequality on R™:
| 12| ~** fll, < N, » .lIfll,» with N being the sharp constant and 1/p + A/n =
1+1/q, 1 <p,q,n/A<oo. When p=¢q" or p=2or q=2, fand N are
explicitly evaluated. A maximizing f is also shown to exist for other inequalities:
(i) The Okikiolu, Glaser, Martin, Grosse, Thirring inequality: K,, ,|| Vf|l; =
x|~ 2fll,, n=3,0<b <1, p=2n/(2b + n — 2). (This was known before,
but the proof here has certain simplifications.)
(ii) The doubly weighted HLS inequality of Stein and Weiss:
“fV(x, y)fly) dy

= Pa,B,p,)\,n”f”p
q

with V(x,y) = |x| Plx —y| My|™% O<a<n/p, 0<B<n/q, 1/p+
A+a+B)/n=1+1/q.

(iii) The weighted Young inequality: |||x|"f||" = Q, n ollf"™ > Where
f(™)(x) is the m-fold convolution of f with itself, m > 3, m/(m — 1) < p <m,
vy/n+1/p=(m—1)/m. When p=m/(m — 1) or p=2, f and Q are ex-
plicitly evaluated.

1. Introduction

A classical inequality, due to Hardy and Littlewood [15], [16] and Sobolev
[26] (see also [11]) states that

(L) [ [ = v elu) ded| < N, o el

for all fe LP(R"), g€ L'R"), 1<p, t<oo, 1/p+1/t+A/n=2 and
0 < A < n. (By notational definition, N, , , is the best, or sharp constant in
(1.1).) '

*Work partially supported by the U.S. National Science Foundation under grant no. PHY-
8116101.
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The main purpose of this paper is two-fold. In Section II, it is shown that a
maximizing pair f, g exists for (1.1), i.e., a pair that gives equality in (1.1). This
will require the use of two rearrangement inequalities and a new compactness
technique (Lemma 2.7) for maximizing sequences. From the point of view of
general methodology, this is perhaps the most interesting part of this work. In:
Section III, N and f, g are explicitly computed for the case ¢t = p and, as a
corollary, for the cases t = 2 or p = 2. This part is amusing for the following
reason: one can guess what the pair f, g ought to be and verify that they satisfy
the integral equations (Euler-Lagrange equations) for (1.1). But these equations
are nonlinear and it is far from clear that this choice is actually maximal. The
proof that it is so requires use of stereographic projection from R" to the sphere
S$" and exploitation of the symmetry of f, g given by the rearrangement inequali-
ties used in Section II.

Additional examples are given of the techniques of Section II. Section IV
contains a comparatively simple proof of the existence of a maximizing f for the
Sobolev inequality

(1.2) K.l Vf”z Ifllznpn-2 123

and its generalization due to Okikiolu [21], Glaser, Martin, Grosse and Thirring
[14]:

(1.3) K, Il Vflle = |12 °fll,, n=3

for 0<b <1 and p =2n/(2b + n — 2). Of course (1.2) has been treated
before by Aubin [2] and Talenti [31] and (1.3) in [14], but the directness of the
proofs given here may be of some value.

Section V uses the techniques of Section II to prove the existence of a

maximizing f, g for the doubly weighted HLS inequality of Stein and Weiss [29]:

(1.4) I [ [ex)V(x, v)f(y) dxdy| < B, 5,5 1f 1, llEll,

with V(x,y) = x| Plx —y| My|™ 0<a<n/p, 0<B<n/t’, 1/p+
1/t + (A + a + B)/n = 2. Finally, the weighted Young inequality is shown to
have a maximizing f:

(15) Qp.m.al F ™l < x1FIT,  m >3

where f(™)(x) is the m-fold convolution of f with itself and m/(m — 1) < p < m,
y/n+ 1/p=(m — 1)/m. Moreover, Q can be evaluated in two cases:
p = m/(m — 1) and p = 2. The latter case turns out, by Fourier transformation,
to be (1.1) in disguise with p = ¢. Thus, the evaluation of the sharp constant in
(1.5) for p = 2 brings the work full circle.
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My indebtedness to Alan Sokal is profound. He stimulated this investigation
by suggesting that (1.5) was true for m = 4, p = 2, a case which arose in his
study of quantum field theory [27]. Later he proposed the general case of (1.5).
He also suggested that the techniques of Section II would work for (1.4).
Throughout the course of this work he was a constant source of encouragement
and stimulation. I am also indebted to Henri Berestycki for his encouragement. I
thank Haim Brezis for pointing out the last part of Lemma 2.7 and I thank the
referee for many helpful remarks, in particular for drawing my attention to [3]. I
am most grateful to the Institute for Advanced Study for its support and
hospitality.

A technical remark can be made about (1.1) in the context of weak L”
spaces, |x|~* € Ly/N(R"). There are two definitions of what is meant by ||h||, ,,
for 1 < g < 00. One is

(1.6) A2, = (n/0,)" supap (| h(x)|> a}

a>0

where o, is the area of the unit sphere, (2.13), and p is Lebesgue measure. This is
not a true norm (the triangle inequality is not satisfied), but it is convenient and
it is equivalent to the following, due to Calder6on, which is a true norm:

(1.7) IBlIz%, = (1/')(n/0,)" " supp(A) ™7 [ |h(x)) dx
A A

for 0 < p(A) < 0. Clearly |x|~* has unit norm in both definitions (g = n/A).
The generalization of (1.1) is

(1.8) ‘ [ [f@)h(x ~ y)e(y) dx dyl <N, s U lel Bl .

withg=n/A,1/p+1/t+1/q=2,1<p,t q < oo, and the same N, , , is
sharp in (1.8) as in (1.1). Either one of the two definitions, (1.6) or (1.7), may be
used in (1.8), and the same N is sharp for both.

The justification for (1.8) is the following: if we replace f, g, h by their
symmetric decreasing rearrangement, f*, g*, h* (see Section II), the left side of
(1.8) does not decrease. All the norms on the right side of (1.8) are invariant. The
maximizing f, g for (1.1) satisfies f = f*, g = g* (Section II). We note that
|x| ~* = sup{ h(x)| |||} , < 1, h = h*}. Thus, (1.8) holds with (1.6). The proof
for (1.7) is trickier. Let b = f* g. Clearly, b = b* since f = f*, g = g*. Thus,
b(x) = [§° da x,(x) where X, is the characteristic function of T, = {x|b(x) >
a}, which is a ball of some radius R,. Assume that ||h||**%, = 1. The left side of
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(1.8) is

0

[b(x)h(x) dx = ["da [x,(x)h(x) dx < [“da q'(c,/n)" "L,

[ "daq'(o,/m)B; ™ = [“da fx,(x)}xI " d

= fb(x)|x|"‘dx.

I1. Existence of a maximizing function

Here we shall establish the existence of a maximizing pair of functions f, g
giving equality in (1.1). This means finding f€ L?, p~ ' +'A/n=1+q "},
such that if

(2.1) R(F) = ||x|~**F||,/IF||,,  F+0,then
(2.2) R(f) =N, , . = sup{R(F)|F € L?, F # 0}.

Some remarks might be helpful to explain the difficulties to be faced in
finding this f. First, the usual way to find f is by a compactness argument. But
R(F) is not upper-semicontinuous in the L? weak topology. Second, R(F) is
invariant under the conformal group of dilations, rotations and translations,
namely,

(2.3) F(x) > F(y#x +y), v>0, 2€0(n), y €R".

Furthermore, if g = p’, a case for which we shall explicitly find £, an inversion
symmetry also exists, i.e.,

(2.4) F(x) = |x[* 2 F(x|x|~2).

The existence of this large invariance group means that a maximizing f cannot be
unique and also that it is easy for a weakly convergent maximizing sequence
{ f.} to converge to zero.

Third, if the kernel [x — y| ~* is changed slightly, a maximizing f need not

exist. Explicitly, let K(r), for r > 0, be any positive function such that r*K(r) is

~ strictly monotone increasing. Consider K(|x — y|) in place of |[x — y|~* as a
kernel in (2.1). The Fourier transform of the Bessel potential, (1 + |x — y|%) =/,
is a good example; it is even positive definite. For any f € L?, let F(x) = | f(x/2)|.
It is easy to check that R(F) > R(f), and hence, that no maximum can exist.

One of the key tools we shall use (several times, in fact) is Riesz’s
rearrangement inequality [24] (for a generalization see [7]) in the strong form
given by Lieb [20]. It is recalled in Lemma 2.1.
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Definition 1. Let f: R* — C satisfy p(a) = p{x||f(x)| > a} < oo for all
a > 0. (Here, p is Lebesgue measure.) f*: R" — [0, c0) is a symmetric decreasing
rearrangement of f if f*(x) depends only on |x|, and f*(x;) > f*(x,) > 0 if
|x,| < [x,], and pp(a) = pg(a), for all a > 0.

It is easy to check that f* always exists and it is defined uniquely almost
everywhere (see [20]). Henceforth, notation will be abused in the sense that any
function f(x) that depends only on |x| will sometimes be written as f{|x|).

It is convenient to introduce the following sets of functions from R" — [0, o)
(where T denotes “translate”):

SD = { f|fis symmetric decreasing, i.e., f = f*};

SSD = { f|f € SD and fis strictly monotone decreasing};

TSD = { f|f,(x) = f(x + y) and £, € SD for some y € R”}

TSSD = { f|f € TSD and f, € SSD}.

Lemma 2.1. Let f, g, h be functions on R" satisfying the conditions of
Definition 1 and let

I(f.e.h) = [ [f(x)e(x — y)h(y).dxdy.

Then (i) I(f*, g*, h*) 2 |I(f, g, h)|-
If, in addition, g* € SSD then

(i) I(f*, g* h*)>|I(f, g, h)| unless f(x) = f*(x+y) and h(x) =
h*(x + y) for some (common) y € R".

The first part of this lemma has been generalized to more than three
functions and more than two variables in [7].

Another closely related fact that will be needed later is Lemma 2.2. We omit
the easy proof (which mimics the proof of Lemma 2.1); it can also be obtained
from Lemma 2.1 by suitable choice of h.

LemMma 2.2. Let g = g*, f = f*. Suppose the convolution k = g * f satisfies
k(x) < oo forall x # 0. Then

(i) k = k* and

(ii) k € SSD if g € SSD.

The existence theorem to be proved is

THEOREM 2.3. Let 1/p+ A/n=1+1/qwith0 <A <n,1 <p,q < o0.
Then
(i) N p A n 0 (2.2) is finite and there exists an f € LP that maximizes R, i.e.,

R(f) p)\n
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(ii) After multiplication by a suitable complex constant, every maximizing f
is in TSSD and satisfies the pair of equations

(2.5) x| Pxf=g'"t x| rxg=f""
for some g € L' and g € TSSD. (Here t = q' = q/(q — 1).) After a common
translation, f, g € SSD.

(iii) When q’ = p = t, then g = f.

(iv) Let ¢’ = p = t and let f be translated so that f = f*. Then, possibly
after a dilation f(r) — y"/Pf(yr), f has the inversion symmetry of (2.4):

(2.6) f/r) = r2/°f(r).

In the following, irrelevant positive constants will all be denoted by the
common symbol C. ’

Proof of (ii) and (iii): These two parts are easy in view of Lemma 2.1. N in
(2.2), which is here assumed to be finite, can be written as

@7 Ny [ [A=)e(w)K(x = y) dx dy /1 £, ligll
> 8

where f€ L?, g € L' and K(x) = |x|"* and 1/t + 1/p + A/n = 2. Since the
rearrangements f — f*, g — g* do not change the norms lf1,, lgll;> and since
K = K* € SSD, Lemma 2.1 (ii) shows that f, g € TSD (possibly after the
multiplication by constants). The equations (2.3) are then easy to derive by
letting f — f + ep, g > g + 8¢ and setting the derivatives at ¢ = § = 0 equal to
zero. (Again, it may be necessary to multiply f and g by constants to get unity on
the right side of (2.5).) By Lemma 2.2, equations (2.5) imply that (after a
translation), f, g € SSD. (iii) follows from (2.7) and the fact that K(x — y) is

positive definite. In fact, [x| ~* = C|x|~(**1/2 x |x| 7("*})/2 (See (3.6).) O
Note that (2.7) implies
2.8 Ni,i.=N,. 1/p+1/t+A/n=2.
P, A, t,A,n

Beginning of Proof of (i). Let {f;} be a maximizing sequence, i.e.,
R(f) = N. Assume ||f]|, = L. Since f;€ LP, f* exists and [|f'|[, = 1. By
Lemma 2.1 (see the proof of (ii)), R(f*) > R(f)), so we can henceforth assume
. that f; = f]“‘ Now

29) 1= cfowr"-lf,(r)”dr > C[)Rr"‘lﬁ(r)pdr > CR"f(R)"
~0<f(r)< G,

By passing to a subsequence, we can then assume

(2.10) f(r) > f(r) and 0<f(r)<Cr "/
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for all rational r. Since f(r) is non-increasing in r, it is easy to see that f(r)
converges for almost all r > 0 and therefore that f= f*. (This is essentially
Helly’s theorem.) By Fatou’s lemma, f € LP.

The problem we face is that f could easily be zero because of the dilation
subgroup mentioned in (2.3). Even if f # 0 it is not obvious that R(f) > N, , ,,
but this fact will be proved with the help of the following lemma.

LemMma 24. Let 1/p+A/n=1+1/q, with 0 < A <n. Suppose f €
LP(R™) is spherically symmetric and |f(r)| < er ~"/? for all r > 0. There is a
constant, C,, independent of f and € such that |||x|~* * f||, < C,|| f||5/%€' ~*/4.
(Note that p < q.)

Remarks. (i) Lemma 2.4 and (2.9) obviously imply that N < oo.

(ii) Lemma 2.4 follows from known results about the Lorentz spaces L(p, q)
(see [22], [9], [28]). We give our own proof, which is based on a transformation to
logarithmic radial variables, for two reasons: (a) In conjunction with Lemma 2.1
it provides an alternative strategy for proving many known facts about L(p, q)
spaces; (b) The formulation given in our proof will be needed later in order to
establish (and hence to exploit) the inversion symmetry for ¢ = p’ given in
Theorem 2.3 (iv).

Proof. Define F: R — R by

(2.11) F(u) = e“"/?f(e*), whence
(2.12) onl/p”F”L"(n) = ”f"L”(R")‘

Here, o, is the area of the unit sphere in R",

(2.13) 0, = 27"2/T(n/2).

Without loss of generality, we can assume f(r) > 0. Define h = |x| ~* * f, which
is spherically symmetric, and H: R — R by H(u) = e“"/%h(e*). As in (2.11),
0,”?||H||, = ||hl|,- An explicit form for H, which is easily obtained by integrating
d"x over angles in R", is the following:

(o]
(2.14) H(u) =/ L, (u— v)F(v)dv, where

— o0

(2.15) L,(u) =27"%xp{u(n/q - A\/2)}Z,(u),
(2.16) Z (u)= o,,_lfw[coshu — cos 8] M%(sin6)""%d0, n>2,
0

= [coshu + 1] ™V2 +[coshu — 1] V2,  n=1.

Now, L, € L'R) and F € L?(R) and ||F||, < e. (Note that [n/q — A/2| < A\/2,
since p > 1, and that the singularity, if any, in Z (u) for u near zero is no worse
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than |u| ~*/".) By Young’s inequality, || H||, < C||F||, and || H||,, < C||F]|,, < Ce.
Since g > p, the lemma follows from Holder’s inequality. 0O

Before returning to the proof of Theorem 2.3(i), let us draw two conclusions
from the construction, (2.11)—(2.16).

First, the original problem (2.2) is equivalent to the one-dimensional prob-
lem

2.17) N, , . =0Y9"V?sup{||L,* F||,/|IF|,|0 # F € L(R)}.

In particular, L, * is a bounded operator from LP(R) to L(R).
The second conclusion is

Proof of Theorem 2.3 (iv). Make the change of variables given in (2.10) and
note that n/q — A\/2 = 0 in (2.14) when q = p’. Thus, L, = K, € SSD(R).
From (2.17) and by the same proof as for Theorem 2.3(ii)), F € TSSD(R).
Translating F, namely F(u) = F(u + y), is the same as dilation of f. With
F € SSD(R), inverting (2.11) gives the desired result. O

It is worth noting that the strong rearrangement inequality had to be used
twice to prove Theorem 2.3(iv).

Lemma 2.4 and (2.9) not only imply that N < oo, they also imply that, after
a suitable j-dependent dilation, we can assume that the limit, f, in (2.9) is not
zero. To see this, let

= /
a;= 5111pr" Pf(r).

By Lemma 2.4, a; + 0, for otherwise |||x| = * £]|, = 0 while || f}|, = 1, which
would mean that { f;} is not a maximizing sequence. Thus, a ; > 28 > 0. Replace
f{r) by y]"/ Pf{v,r), which does not change the norm of f, We can now choose v;
so that f(1) > a;/2 > B > 0. Therefore, f(l) > B and, since f € SD, f(r) > ,B
for r < 1. Thus, f is not zero.

Let us briefly review the situation about Theorem 2.3(i). We have a
maximizing sequence { f;} of non-negative symmetric decreasing functions which
converge pointwise, almost everywhere to f# 0. By Fatou’s lemma, || f]|, <
_ lim||f}], = 1; therefore f will be maximizing if I( ;) — I(f), where
(2.18) I(g) = lllx|~* * gll,-

The convergence of I( f;) to I( f) will be proved, but only after we first prove that
R(f) = R(f) and |If]l, = 1. Before doing so let us first consider a related
problem which is interesting in its own right, for which it is easy to establish that

I(f;)) > I(f). This other problem and its solution are stated as the following
theorem.
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THEOREM 2.5. Let 1/p+1/t+A/n=2 with 0 <A <n and 1<p,
t < oo as before, and consider the ratio in (2.6) but with g restricted to be f; i.e.,

(2.19) N = sup [ [£x)f(w)lx = v dx du/IfIl A1,

with f € L? N L and f # 0. (Naturally, N < Nand N = N whent = p = g’ as
stated in Theorem 2.3(iii).) Let t + p. Then there exists a maximizing f for N.
Furthermore, after multiplication by a constant, a dilation and a translation
(i.e., f(x) = cf(yx + y) this fis in SSD and satisfies

(2.20) x| A f=frt 4 L

Proof. All of the argument is as before, but with one additional fact at our
disposal. We can (after dilation and multiplication by a constant) assume that
I fll, = I £]l, = 1. From (2.9) the limit f satisfies f(r) < Cr~"/® and f(r) <
Cr~"/* (same C). Let h(x) = Cmin{ |x|~"/?, |x|~"/*}. Although h is neither in
L? nor in L, the function h(x)h(y)|x — y|~* € LYR" X R"). (To see this, note
that h € L° when min(¢, p) < s < max(¢, p). Choose s so that 1/s + 1/s +
A/n = 2. But we already proved that h — |x| ~* * h is bounded from L* to L*".)
Therefore, if I( f) denotes the integral in (2.19), we have that I( ) = I(f) by
dominated convergence. O

Returning to Theorem 2.3(i), we see that establishing the convergence of
I(£) to I(f) is more delicate than in Theorem 2.5, even if p # ¢, because all we
know is that f € L?, and not necessarily in L‘. Therefore, the dominated
convergence argument cannot be used.

To control the convergence of R(f)) to R(f), the following lemma due to
Brezis and myself [8] is useful.

LeEmMa 2.6. Let 0 < p < oo. Let (M, 2, ) be a measure space and let { f;}
be a uniformly norm-bounded sequence in LP(M, Z, p.) that converges pointwise,
almost everywhere to f. (By Fatou’s lemma f € L?.) Then the following limit
exists and equality holds.

lim [P = 1£(x) = £(x)P = 1) du(x) = 0.

Remarks. Lemma 2.6 says more than that ||£lI7 — ||f — £l — I flI5. It
improves Fatou’s lemma which says that iminf|| £]|7 > || f||5. In [8] a similar
theorem is proved for functionals of the form f — [J(f) dp. The conclusion of
Lemma 2.6 does not hold (except when p = 2) if pointwise is replaced by weak
convergence. Note that the lemma holds even for 0 < p < 1. Lemma 2.6 can be
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proved simply without using the general results in [8]. Note that
AP = 1f = FF = 1£P7]
2|f|p’ 0< p < 1
p2* HIfF = fP A+ IF = FIFPY), 1<p < oo,

The lemma follows from the first inequality for 0 < p < 1 by dominated conver-
gence; for 1 < p < oo it follows from the second by Egorov’s theorem.

The utility of Lemma 2.6 for problems in the calculus of variations is given
in the next lemma.

LEmma 2.7. Let (M, Z, p) and (M’, 2, u’) be measure spaces and let X
(resp. Y) be L°P(M, Z, p.) (resp. L4 M', 2', W')) withl <p < q < 0. Let Abea
bounded linear operator from X to Y. For f € X, f # 0 let

R(f) = |Aflly/Iflix and N =sup{R(f)|f+ 0}.

Let { f;} be a uniformly norm-bounded maximizing sequence for N and suppose
that f; > f # 0 and that Af, > Af pointwise almost everywhere. Then f maxi-
mizes, i.e., R(f) = N. Moreover, if p < q and if lim| f]|x = C exists, then
| fllx = C, and hence || Afjly = I|Aflly.

Proof. By Lemma 2.6, || fll% = IIf — fil% + I fll% + o(1)” (where o(1) de-
notes something that goes to zero as j— oo) and ||Af|l} = ||Af — AfjI +
|Af11% + 6(1)%. If a, b, ¢ > O, then (a + b7 + c9)P/9 < a” + b? + c”. Thus,

R(£)" < {IAFIE + 1A(F = AIE + o)} /{IFIZ + 11f = AIE + 6(1)7 ).

Now [|ACf = )lly < NIIf — f]ix for every j, and o(1), 6(1) = 0, and R(f))” —
N?. Since f# 0, we must have that ||Af||y = N||f||x, and hence ||Af||y =
N||fllx- We also have that im||A(f — f)Ily — N||f — f]lx = 0. For the last part,
let p < g and lim||f}|x = C. Then 0 < ||| f]|x < C. Suppose 0 < ||f]|x =D < C.
Then lim|| f — £} = C? — D? > 0. However, (a? + b?)?/% < a? + b? unless
a=0orb=0. Thus, lim R(f;)? < N”, which is a contradiction. O

The last sentence of Lemma 2.7, and the proof, were pointed out to me by
Haim Brezis.

Conclusion of Proof of Theorem 2.3(i). Let us return to the one-dimensional
equivalent formulation given in (2.11)—(2.17). Given the maximizing sequence
f; € SD with ||f]l, =1, (2.11) defines a sequence F;i R — R with NEl,
=0, /7 and ||F||oo < C by (29). Also, f;—> f+0 pomtvmse, so F;—> F+0
pointwise.
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Lemma 2.7 can now be applied to finish the proof provided the operator
A =L, *: LP(R) —» LYR) satisfies AF; — AF pointwise. But since L, € LYR)
and since ||F; — F||,, < C, L, *(F; — F)(x) — 0 everywhere by dominated con-
vergence. The fact that I(f;) — I(f) is contained in the last sentence of Lemma
2.7. In our case, p < g since \/n < 1. a

III. The maximizing function whenp’ = gorp = 20rq = 2

In certain cases the equations (2.5) for the maximizing f can be solved and
the constant N computed explicitly. In these cases a solution to (2.5) can be
easily guessed and verified. The difficult part will be to prove that this f is
actually maximizing. To prove this it will be necessary to use stereographic
projection to recast (2.5) as an equation on the sphere S". :

Recall that 1/p+1/t+A/n=2or 1/p+A/n=1+1/q with t=
9 =q/(g—1Dand0<A<n, 1<t pqg< .

TuEOREM 3.1. When t =p = 2n/(2n — N), g = 2n/A (or p’ = q), the
maximizing f for (2.1) is (after multiplication by a constant and dilation)

uniquely H
(3.1) flx) = (L+x)™™" and

_ 2nT(/2=0/2) [T(n/2) """
(52) VLSS v o b U

CoroLLARY 3.2. (i) Let g =t = 2 and p = 2n/(3n — 2)), which requires
n < 2XA < 2n. The maximizing f for (2.1) is (after multiplication by a constant
and dilation) uniquely

(33) f(x)=@1+x2)""" and

_ aalln/2=0/2) [ T = n/2) | Tin/2)) "
B4) Nono=m =05 {T(3n/2—)\)} {Tn)} |

(ii) Let p=2, t=2n/(3n — 2X), q =2n/(2\ — n), which requires
n < 2\ < 2n. The maximizing f for (2.1) is (after multiplication by a constant
and dilation) uniquely

(3.5) F=1lx17 (1 +12?) ™"
and N, , , is given by the right side of (3.4).
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Proof of Corollary 3.2. Note that for 0 <A,y <nand A + y > n,
(3:6) x|~ % |x| 7Y = D(A, y) x|~ 77,
(8.7) D(A,y)=a"T(n/2 — A/2)T(n/2 — v/2)T(A/2 + v/2 — n/2)
X {T(A/2)T(v/2)T(n - A/2 = v/2)} ",

This follows from the fact [28, Theorem IV. 4.1] that the Fourier transform
wy(k) = [|x| " texp(ik - x) dx is

(3.8) wi(k) = [k}~ "7"/22" AT (n/2 — A/2) /T(A/2).
When g = 2,
N2 = [llx]~** fII3/IF1; = DN, A)(F, 11"~ = £) /I FIIE.

But this maximization problem is, by Theorem 2.3(iii) and (2.7), the same as in
Theorem 3.1 (but with A = 2\ — n). When p = 2 the proof is similar, using
(2.5). See (2.8). m]

Beginning of Proof of Theorem 3.1. By Theorem 2.3, the f we seek must
have (after dilation, etc.) two properties:

(a) The inversion symmetry f(1,/r) = r2"/?f(r) and

(b) It satisfies (2.5) up to a constant, namely
(3.9) |x|~** f=Bfr~ L.
Clearly, (a) holds for (3.1). The fact that (3.1) satisfies (3.9) can be seen in several
ways. One way is to note that
(3.10) filx) = (L+x) "

has the Fourier trahsform
B.11)  £(k) = (27)™* jo (KIr) ™2 =y oIkIr) £(r) dr

= w291k /T () kK, oK.

Here, K is a Bessel function and satisfies K, (x) = K_ (x). f we set p = n/p =
n — A/2 and use (3.8), we find that

- (3.12) x| 2+ £, ,, = Bxfa e = Ba(£, )"
(3.13) B, = 7"2T(n/2 — A/2)/T(n — A/2).
It follows that R(f, ,,) in (2.1) is
(3.14) %1~ * £l /N fsll, = Ba[£,(0)] /9717

= right side of (3.2).



HARDY-LITTLEWOOD-SOBOLEV INEQUALITIES 361

The calculation just given is slightly formal, but it can easily be made
rigorous. The real problem that faces us, however, is this: (3.12) shows that fin
(3.1) (hereafter we shall denote f, ,, by f) satisfies (3.9). It also has the correct
inversion symmetry. Is this f maximizing? Is it the unique maximizer (up to a
constant)? We do not know that (3.9) has an (essentially) unique solution—even
if we restrict to the SSD category—and we shall offer no proof of this kind of
uniqueness. This is an open problem! But it will be shown that f is (essentially)
unique in the category of maximizers. In the course of this proof, (3.12)—(3.14)
will be rederived in a simpler way. For the proof, a change of variables will be
required, namely stereographic projection.

Stereographic Projection. Consider the sphere S$" in R"*!, §" =
{® € R**!| Q| = 1}. Consider the invertible map : R" - §" \ (0,...,0, —1)

(315)  Z(x) = (p,§) = (2x/(1 +x*), (1 = |x*) /(1 + |x]*))
where p € R". Conversely, if p € R*, ¢ € (—1,1] and (p, &) € S",

(3.16) 27 ((p, €)) = p/(1 +£).

Apart from trivial constants this is the usual stereographic projection with
0 € R" - “north pole”.
Let x,, x, € R" and @, = 2(x;) with €, = (p,, §;). Then

(8.17) [x, — x| = |2 — Qzl{(l + &)1 + 52)}_1/2'

Here, |, — Q,| means Euclidean distance in R"*?, not geodesic distance on S".
Let dQ be the rotation invariant measure on S" with the normalization

(3.18) j dQ =o,,, = 20"+ D/2 (n + 1) /2) "

which is the area of the unit sphere in R**! (see (2.13)). Then the Jacobian of =
is given by

(3.19) dQ =dp/§|=2"(1 + |x|2) "dx = (1 + &)" dx.
With any f: R" —» C we associate F: S" — C (denoted by f « F) by
-(3.20) F(Q)=(1+¢)"f=-Y(Q)),

fx) = 27"(1 + [xP)"F(3(x)),
with p = n/p = n — A/2. (A enters at this point.) Clearly,
(3.21) IEN, = 1A,
In particular, f given by (3.1) corresponds to F(f2) = constant = 2~ *,
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From (3.15)—(3.18) we have that when f « F,
(3.22) {Ix|] **F}(x) & (1 + £)A_"{|Q|"‘ +F}(Q), where

(3.23) (191 *+F)(%) =fdsz'|sz — Q|7 F(Q).

(Again, note that Euclidean distance in R"*! is used.) Equation (3.9) then takes
the following simple form (with the same B):

(3.24) |2]~** F = BFP~1,

This, together with (3.20), (3.21), gives another equivalent form for N (cf. (2.17)):
(3.25) N, x.n = sup{ |2~ = F||,/IIF||,|F € L?(S"), F # 0}.

As stated before, F = 27* & fin (3.1). To check (3.12)-(3.14) we must
compute )

(3.26) I f e — >

o”/"dﬂ(sin 8)""'(2 — 2cos ) V?

0

= 0n2"‘*f"/2d<p(cos 9)" (sing)" ' "
0

=0,2" """ I(n/2)T(n/2 — A/2)/T(n — \/2).
Thus, B = I2*~" = B, in (3.13). Furthermore,
(3.27) 191> * Fll /I Fll, = BF?~%0,{9™ /7
= right side of (3.2),
if we use the duplication formula for the gamma function.

Equation (3.24) has one very great advantage over (3.9). The O(n + 1)
rotation invariance of (3.24) allows us to generate new solutions from old ones.
This fact will eventually permit us to conclude that (3.1) is the (essentially)
unique maximizer.

As an interesting aside before returning to the proof of Theorem 3.1, let us
consider some other solutions to (3.9) and (3.24). (Irrelevant constants will be

suppressed here.)
' (a) We have f(x) = (1 + |x|>) * & F(Q) = 1. However, by translation and
dilation of fin R", there is an n + 1 parameter family of solutions as follows:

(3.28) flx) = [B* +|x = 2] " & F(2) = [1 +(w, Q)] ",

where b € R, z € R", w € R"*1, All b, z and w are allowed, except for the
condition |w| < 1. The SSD category corresponds to z2 = 0 and w = (0,...,0, c)
with |c] < L.
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These other solutions are interesting for the following reason. Since F =
const. satisfies (3.24) and since this solution has the maximum possible O(n + 1)
symmetry, it might have been supposed that F = const. is the unique maximizer.
But we see from (3.28) that there are other equivalent solutions with less
symmetry. This is indeed surprising.

(b) f(x) = |x — z| ~* with z € R" also satisfies (3.9). It is not allowed since it
is not in L?. This is an n parameter family and the correspondence is

(3.29) fx)=lx—z|* o F(Q)=(1+§) "0 -+

with €’ = 3(z). Even more solutions can be obtained from (3.29) by applying an
O(n + 1) rotation to € and Q’. The function 2(1 + §) becomes |2 — "), with
Q # Q. Thus we have a 2n parameter family of solutions:

(3.30) F(Q)=12 - Q|72 - Q"™ & f(x) = |x — 2| *|x — 2" 7"

with &, Q”, z’, 2" arbitrary except that @’ # Q” and z’ # z”. This is amusing
because the rotation invariance of (3.24) allowed us to generate a nontrivial 2n
parameter family of solutions starting from |x| ~*.

Conclusion of Proof of Theorem 3.1. The f given in (3.1) satisfies (3.9) and
we want to show that it maximizes and that it is (essentially) unique.

Let f be any maximizer. By Theorem 2.3 we can assume three things (after
translation and dilation): (a) f satisfies (3.9). This means, in particular, that f{x) is
defined for all x by the left side of (3.9), not for just almost every x; (b) f € SSD;
(c) f(1/r) = rf(r). Let F © f. By (b), F(Q) depends only on & F(Q) = ¢(£).
By (), ¢(§) = ¢(—§). Thus, f(x) = (L + [x[2) #p((L — [#|)/(L + [x|2)). Let
R € O(n + 1) be the following rotation:

R:(pys-.sp,, &) = (pycos @ — &sin b, p,,...,p,, Ecos @ + p,sinf).
By the rotation invariance of (3.24),

fa(x) = (1 + |2|?) "F(RZ(x))
= (14 212) "o([(1 = |x[2)cos 8 + 2x,sin 8] /[1 + |x?])

also maximizes. Therefore, by Theorem 2.3, there exists a unique y € R" such
that fz(x + y) € SSD. This y is the unique solution to fz(y) = max, fz(x). By
the O(n — 1) rotation invariance of f; in (x,,...,x,) we see that y, = --- =
y, = 0. Since fp(x + y) € SSD(R"), g(x,) = fa(x, + ¥y, %5,---,%,) € SSD(R!)
for any fixed x,,...,x,. But fz((1,1,...,1)) = fo((—1,1,...,1)). Therefore y, = 0
also, and y = 0. This means that ¢([ ]/[ ]) is spherically symmetric in x for all
and I claim that ¢ must then be a constant. To see this, let u_, u_€ [—1,1] and
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let x ,= (£b,0,...,0). Since fz(x,) = fr(x_), we shall have p(u,) = @(u_) if
we can find b and 8 such that u_= [(1 — b®)cos 6 + 2bsin 0]/[1 + b?]. Let
b = —tan(y,/2). These equations then read u , = cos(¢ + ), and we see that a
solution is trivial. a

It should be noted that the proof above used the strong rearrangement
inequality (Lemma 2.1) and Lemma 2.2 twice: Once to show that any maximizer,
f, is in TSSD and once to show that f(1/r) = r2*f(r). For the latter, the
formulation in (2.17) was essential.

The following is another way to conclude the proof of Theorem 3.1. It uses
the rearrangement inequality on S" of Baernstein and Taylor [3] which is a
generalization of the inequality on S' of Friedberg and Luttinger [13]. The
inequality is:

(3.31)

f f F(Q)K(Q - 2)G(Q) dQdQ < f f F*(Q)K(Q - 9)G*(2) dQ d,

where K: [—1,1] > R is non-decreasing, and where F* is equimeasurable with
F, F*(p, £) depends only on £ and is non-increasing in £ (and likewise for G*).
Unfortunately, Baernstein and Taylor do not prove a strong inequality analogous
to Lemma 2.1 (ii), which, it may be conjectured, exists. If it did hold, then the
proof could be simplified.

In our case K(Q - Q') = |2 — ©’|~* which is strictly increasing. Let F(Q) =
@(£) be the maximizer that satisfies p(£) = @(—£). If the strong version of (3.31)
held, we could immediately conclude that ¢(§) is either non-increasing or
non-decreasing, in which case @(£) = constant and the proof would be finished.
In the absence of this fact let F*(Q) = ¢(£) with ¥(£) non-increasing. By (3.31),
F* also maximizes. Using (3.20), F* & h with h(x) = h(|x]). By the strong
rearrangement inequality on R", for some y >0, h(x)= h(yx) satisfies
h(1/r) = r2h (7). In general (without assuming any symmetry) if F & f, then
F of, where F(p, &) = F@Ap/w,v/w) with w =1+ §+ Y¥(1 — §) and

=1+§- 72(1 — £). In our case (F*),(R) = ¢,(§) = ¥(v/w) and
¢Y(§) ¥,(—§). Setting £ = 1 we conclude that ¥(1) = Y(—1). Since ¢ is
non-increasing, ¥ = constant and the proof is completed.

IV. The Sobolev inequality

As another application of the method of Section II, we shall prove here the
existence of a maximizing function f on R" for the sharp constant in the Sobolev
inequality

(4.1) K.V £ll = [ fllgss *=2n/(n—-2), nx3.



HARDY-LITTLEWOOD-SOBOLEV INEQUALITIES 365

I thank H. Brezis and P. L. Lions for suggesting to me that there should be a
simple, direct “rearrangement inequality proof’ of the existence of this f.
Existence proofs already exist, of course (see [2], [31] and also [25]). (A generali-
zation of (4.1) using Lorentz space norms was given by Alvino [1].) What is
offered below, it is hoped, is a more direct and simpler argument.

A generalization of (4.1), useful in the theory of the Schroedinger equation,
was given in [14] for n = 3:

(4.2) K, IIVflle = lx1~*fll,, n=3,

forO<b <1landp=2n/2b + n — 2).

In [14], an interesting extension of (4.2) is also given. If 1 — n/2 <b < 0,
no inequality of this type is possible for all f. But if f is restricted to be
spherically symmetric (not necessarily symmetric decreasing), then a bound as in
(4.2) holds and there is also a maximizing f. This is also given in Theorem 4.3.

Generalizations of (4.2) can be found in [12] and [21]. Flett [12] gives [21],
Theorem 6.5.8, as the earliest reference to (4.2). Glaser, Martin, Grosse and
Thirring [14] were unaware of this, but seem to have been the first to compute
the sharp constant in (4.2). Generalizations of (4.1) can be found in [32], [33].
See also [5], [16].

It will be recalled that the rearrangement mequahty, Lemma 2.1, was used
twice in the proof of Theorem 2.3. First, it was used to show that a maximizing
sequence could be sought in the SD(R") category. Second, when p’ = q, it was
used in the one-dimensional formulation (2.11)—(2.17) to deduce (2.6). The dual
usage will also be needed here because we are faced with the same problem as
that outlined in the beginning of Section II: The variational problem posed by
(4.1) and (4.2) is invariant under the same conformal group (including inversion).

We begin with the fact that for f € W1?(R") = { f|f and Vf € L?(R")},
IVf£ll, = IVf*||, where f* is the symmetric decreasing rearrangement of |f/|.
This fact has been known for a long time (see [10], [23], for example), but all
proofs of it seem to be complicated. There is one case, suitable for our purposes
here, in which the following simple proof can be given [20], and it would be
desirable to be able to extend this argument to the W7 case, p # 2. It would
also be desirable to have a strict inequality as in Lemma 2.1(ii).

LemMma 4.1. Let f € WH2(R") = HY(R"). Then f* € H'R") and || Vf]|, =
19 g

Proof. Let t >0 and g,(x — y) = e*(x,y) be the kernel of the heat
equation semigroup. Let fe€ L% It is easy to see that if A(f, t)=

A/ONIfIz = (f. g * f)), then lim, ,A(f,t) = || Vfl|5 or +oo according as
Vf € L? or not. (See [20] for a proof of this fact.) For each ¢t > 0, g,(+) is a
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Gaussian and hence in SSD(R"). Therefore, (£, g, * f) < (f*, g, * f*) by Lemma
2.1. Since | f]lz = || f*||5, the lemma is proved. a

With this preparation we can now prove the following about R!:

TueOREM 4.2. Let F € H'(R) and 2 < p < o0. For F + 0 let

(4.3) T(F) = ||FIIZ/{IIF"I3 + IFlI3} = {”F”p/”F“H‘}z,
(4.4) M, = sup{T(F)|F € H', F # 0}.

Then M,, is finite and there exists a maximizing F € SD N H', i.e., T(F) = M,
This F is unique (up to a constant and to translation). With r = 2/(p — 2),

(4.5) F(x) = (const.) {cosh(x/r)} ",

(4.6) M, = {(2r + )T (2r)/rT(r)2) " (r/2)%7(r + 1),

Proof. By Lemma 4.1, T(F*) > T(F), so henceforth we can restrict atten-
tion to F € SD. Then F € L* since F(x) > 0 as x > —o0 and F(x)% =
2/% F(y)F(y) dy < 2||F’||,||F||;- Let { F,} be a maximizing sequence for T
and we can assume ||F,||2 + ||F,/||? = 1. By (2.9), F,(x) < C|x| /2 By the L®
bound just given, F,(x) < C. Therefore,

F,(x) < h(x) = min(C, C|x|"/2) € L?
since p > 2. As in Theorem 2.3, we can assume F, — F € SD pointwise. We can

also assume (Banach-Alaoglu theorem) that F! — G’ and F, —» G weakly in L2
Clearly, G = F. Then

lim inf || F;|13 + |F,[I3 = ||F’|I3 + ||FII3-
It remains to show that M,, = lim||F, ||, = ||F||,,, which will also prove the crucial
fact that F # 0. This follows by dominated convergence since F,(x) < h(x).

This maximizing F can easily be found as follows: By letting F — F + g,
@ € C&, and equating the derivative at ¢ = 0 to zero,

(4.7) F"=F-F*"'/M,

in the distributional sense. By standard ODE methods, there is only one solution
. to (4.5) that vanishes as |x| = co. (Recall that F(x) = F(—x) and ||F||, = 1.)
This solution is (4.5), (4.6). 0O

It should be noted that the last step—the calculation of F and M,—was
very easy compared to the proof of Theorem 3.1. Here, it is easy to verify that
(4.5) is the (essentially) unique positive solution to (4.7). In Theorem 3.1, on the
other hand, it was difficult to verify that (3.1) is the desired maximizing solution
to (3.9); the apparatus of stereographic projection had to be used.
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Next we turn to the problem posed by (4.1) and (4.2).

TaEOREM 4.3. Let n > 3 and let f € WE(R") = HY(R"). Let 1 — n/2 <
b<landp=2n/(2b+ n — 2), so that 0 > p > 2. Let

(4.8) , R(f) =llx1"*All,/19fllss  £#0,
(4.9) K, , =sup{R(f)|f€ H', f + 0}.

@) If 1>b>0, K, , is finite and a maximizing f € SD exists, i.e.,
R(f) =
(4.10) fx) = {1+ |x27) "
(4.11) K, , =0, Y2t1/pe-12-1mp 12,
withr=2/(p — 2),t = —1 + n/2, M, in (4.6), 0, in (2.13).

K, , = [7n(n — 2)] "V*[T(n)/T(n/2)]"",  whenb = 0.

(i) If 1 — n/2 < b < 0, R(f) is unbounded on H*, but R(f) restricted to
spherically symmetric functions (not necessarily decreasing) in H' (denoted by
Hy) is bounded. If K} , = sup{ R(f)|f € H}, f # O} then there is a maximizing
f € SD, R(f) =K} ,, given by (4.10) and K[ , is given by the right side of
(4.11).

Note. When n > 4, the f in (4.10) is in H'(R"). When n = 3 or 4, this
f & HYR") but R(f) is well defined.

Proof. (i) Since |x|~® € SD, we have that |||x| "°f||, < |||x|~®f*||,. By
Lemma 4.1, || Vf||; = || Vf*||,. Thus, we can henceforth restrict our attention to
f € SD. As in (2.11), let F: R — R be given by

(4.12) F(tu) = e*“f(e*)

witht = —1 + n/2 > 0. Then

(4.13) (0./t) |l = x| ~*Fll,»
- (4.19) (0,8)I(F" = F)lly = | V£l

where o, is given by (2.13). Since f € L?, as in (2.9) we have F(u) < Ce ~*/!.
Now assume f &€ L* in addition to f€ H! N SD, whence F(u)<
Cexp(—|ul/2t). Then [F'F = 0, and thus

(4.15) R(f)? = o, 1+2/P¢ ~1-2/PT(F),
with T(F) given by (4.3). Since | Vf]|, < oo, F € HY(R!). Thus, for f € L,
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Theorem 4.2 completes the proof. (Note that (4.5) and (4.12) are consistent with
fe L) For f & L we use the fact that L* N H' is dense in H'. Thus, there
exists a sequence {g,} in L* N H' such that || vg,|l; = || Vfll; and ||g,ll; =
| flls- By passing to a subsequence, g, — f pointwise almost everywhere and
hence, |||x| ~®f||,, < liminf|||x| ~°g,]|,,- Therefore,

R(f) < sup{R(f)|fe L* N H, f+ 0}.

(ii) If b < 0 we cannot say that we can restrict our attention to f € SD. But
for f € HA(R") we can make the same change of variables as in (4.12)—-(4.14).
The proof proceeds essentially as before. O

It is worth remarking about Theorem 4.3 as b — 1 and p — 2. From (4.11)
we are led to believe that K, , is finite, but that there is no maximizing f since
(4.10) tends to unity as p — 2. This is indeed correct (see [19, Lemma 2.7] where
the authors attribute the result to Karlson [18] and to Herbst [17]), and K|, , is
given by the limit of (4.11) as p — 2, namely

(4.16) (=1 +n/2)lllx| " flly <IIVflls, n=3,

and this constant is the best possible.

Another remark concerns the relation of Theorem 4.3 with b = 0 and
Corollary 3.2. With p = 2n/(n = 2), [I£ll, < K, I VFllz = K, ,I(~8)/2fll,
Formally, this is equivalent to ||(—A)~/?g||, < K, ,l|gll;- But

2r V2~ A) g = T(n/2 — 1/2)|x| **¢
with A = n — 1, [30, p. 117]. Thus, we should have
(4'17) 27T(n+l)/2Kn,2n/(n—2) = F(n/2 - 1/2)N2,n—1,n’
which is confirmed by (3.4) and (4.11).

V. Doubly weighted HLS inequality and weighted Young inequality

Two more illustrations will be given of the use of the methods of Section II.
The first is the doubly weighted Hardy-Littlewood-Sobolev inequality [15], [29]
" which generalizes the HLS inequality considered before.

Tueorem 5.1. Let 0 <A <n, 1<p<g<oo, 0<a<n/p (with
1/p+1/p'=1),0<B<n/qandl/p+(A+a+pB)/n=1+1/q. Let

(5.1) V(x,y) = |x| " Flx = y| "Myl
be an integral kernel on R". Then f— Vf, (Vf)(x) = [V(x,y)[y)dy, is a
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bounded map from LP(R") to LYR"). Moreover, if p < q,

(5.2) R(f) = IVAl NI fll,»  f#0, and
(5‘3) Pa,B,p,)\,n = sup{R(f)lfe Lp(Rn),f;e O}
then there is a maximizing f € SD N L?, i.e., R(f) = P, .o\ ne

Remarks. (i) In [29] the condition 0 < a, B is relaxed to @ + 8 > 0. How-
ever, the stronger condition is needed here in order to use rearrangement
inequalities.

(ii) Obviously, (5.2), (5.3) are equivalent to

(54) P.gprn=supf [e(x)lx =yl Ay) dx dyllixI*Fl, IIx| s,

(iii) When p = q a maximizing f cannot be expected to exist. See the remark
at the end of Section IV which corresponds to the case p =g =2, A =n — 1,
B=1 a=0,n> 3. See also [17].

An extension of Lemma 2.4 is needed.

LemMmA 5.2. Let the hypothesis be the same as in Theorem 5.1 except that
the condition 0 < a, B is eliminated. Let f € LP(R") be spherically symmetric
and |f(r)| < er="" for all r>0. Then |Vf||, < C,|IflI5/%"' /9 for some
C.., o p independent of f and «.

Proof. This is the same as the proof of Lemma 2.4 except that (2.15)
changes to

(5.5) L, ,p(u) =27 %xp{u(n/q — A\/2 — B)}Z,(u).

The hypothesis guarantees that |[n/q — A /2 — B| < A/2 so that L, . € L'(R).
O

Proof of Theorem 5.1. Since |x|~* and |x| # € SD (here we use the fact
that a, 8 > 0) the generalization of the Riesz inequality given in [7] implies that
a maximizing sequence { f;} can be taken in SD. Lemma 5.2 implies that R( f) is
bounded if we take || f]|, = 1 so that f(r) < Cr~"/” as in (2.9). As in (2.10), we
can assume f(r) = f(r) < Cr~"/? almost everywhere. If ¢ > p we can use
Lemma 5.1 to dilate each f; so that f # O (see the remarks after the proof of
Theorem (2.3)(iv)). The final step is as in the conclusion of the proof of Theorem
(2.3)(i), using Lemma 2.7. O

The second illustration is what A. Sokal has called the weighted Young
inequality. Let f: R* > R* and let

(5.6) f™=f*xfx ... xf  (mfactors)
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be the convolution of f with itself m times. We consider m > 3. Now f™(0)
makes sense, even if fis defined only almost everywhere, because

(5.7) F0) = A2 ) AF 1 = %)

o flxg — %) fx,) dxy oo dx,, g
Let p and v satisfy the conditions
58 m/(m-1)<p<m and y/n+1/p=(m—-1)/m=0.
Our interest will be in the ratio
(5.9) R(f) = 1f™O)/="fll;,  f#0,
(5.10) Qp.m.n = sup{ R(f)||x["f € LP(R"), f # 0}-

By the generalization of the Riesz rearrangement inequality in [7],
F(x) < (£5(0) and |||x|"F*|l,, < |l|x]"f]|,- Thus,

(511) Qo = sup{ IF™llo/lxl'fIl} | 1xI'f € LP(R"), f # 0.

The idea that R(f) should be bounded was suggested to me by A. Sokal
Initially, he was interested in the case p =2, m =4, y = n/4 for use in a
problem in quantum field theory [27]. As will shortly be seen, the p = 2 case
reduces to the HLS inequality itself (with p = 2). But that is a case for which the
sharp constant was derived in Section III, and thus we shall be able to compute
Q when p = 2. Another case for which Q can be found is p = m/(m — 1) and
this is given in (5.12).

THEOREM 5.3. Assuming (5.8), Q, ., < o for all p,n and m > 3. More-
over, if m/(m — 1) < p <m, there is a maximizing function, f € SD, i.e.,

R(f) = Qp,m,n‘

Remarks. (i) When y = 0, p = m/(m — 1), (5.9) is one of the generalized
Young inequalities treated in [6]. The ordinary Young inequality shows that R( f)
is bounded. In [6] it was shown that a maximizing f exists and that it is a
Gaussian, f(x) = exp(—|x|2). Then Q,. m, » can be easily computed in this case:

 (5.12) Qpomin = (P 1/m}™%  p=m/(m—1).

An alternative derivation [6] of (5.12) can be obtained from the sharp constants
in the ordinary Young inequality, which was also derived in [4]. If that inequality
is iterated (m — 2) times, one obtains Q, ,, , < (right side of (5.12)). However,
the explicit choice of a Gaussian for f gives a lower bound which establishes
(5.12).
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(i) A generalization of Theorem 5.3 (at least the first part) is obviously
possible, namely

(fixfox - = £)(0) < le:[llllxl*fﬂll,,,,

iyt n/pj=n(m—1) and v; > 0, p; < m, for all j. This can easily be
proved by imitating the following proof.

Proof. Let { f;} be a maximizing sequence and let g {x) = |x|"f(x). The
denominator in R( f) is llg/ll;. Then ﬂm)(O) is an integral over a product of
g{x; —x;) and |x; — x| 7" factors By the general rearrangement inequality in
[7] the numerator does not decrease if we replace g ;by g} Henceforth, assume
g;=8g; and llg,l, = 1. As in (2.10), we can assume g(r) - g(r)y< Cr—n/»
almost everywhere and g(r) < Cr~"/?. Let g(r)=r “"Ph(r), so that
lhjl, < Cand A; = fh(x)"|x|‘"dx <C.

First we show that R(f)) is bounded. Substitute f(x) = h(x)|x|"*~"/? in
(5.7). By Holder’s mequahty, f710) < TR Iy (h )™ where I k(h) is (5.7) with
h x)™|x| """ in the kth position and |x| Y~ "7 in the other (m—-1)
positions. It is easy to do the trivial integrals and one finds that all I, have the
common value Cfh(x)™|x| ~" dx < CA ||kl . This shows not only that £(0)
is ‘bounded but it also shows that when p < m, llAll,, cannot go to zero as
j = . Therefore there are dilations of g, j so that g # 0 (see the remarks after
the proof of Theorem (2.3)(iv)).

It remains to show that f(r) = r ~"g(r) maximizes. Write fj=f+ b; with
b — 0 almost everywhere. I claim that

(5.13) £m(0) = £(0) + B{™(0) + o(1)

when p < m. This will complete the proof (using Lemma 2.6) by the strategy of
Lemma 2.7. One merely sets p/q = p/m in the last part of the proof of Lemma
2.7.

To prove (5.13), we have to show that when f + b; is inserted in (5.7) and
expanded out into 2™ terms, those terms that contain at least one f and one b,
factor vanish as j — co. Write f = r “**"/P)p and b; = r~(**"/?)8,. We shall use
a Holder inequality as in the proof that f(™)(0) is bounded but with a slight
change. Consider a term, I, in £{"(0) that has ¢ m, times and B; m, times with
m; + my =m and 0 < m; < m. All orderings of these functions give the same
integral (by changing variables). Let a = (m — p)/(m — 1) > 0. Then I <
- I/™I3e/™ where I, has @ once, ¢® (m, — 1) times and B¢ m, times. I, has ¢°
m, times, B7 once and B (m, — 1) times. First consider I,. We know that ¢ and
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B; are bounded by a constant C (since f;r*/?*") is so bounded). Suppose the
integration variable of @” is x,. Then do all the other (m — 2) integrations and
call the result z(x,). If we replace all the other (m — 1) functions by C, the
(m — 2) integrals are finite for all x;, # 0, namely |x,| ™ ". Therefore, by dominated
convergence, z (x;) = 0 as j = oo for every x; # 0. (Note: It is important that
there is at least one factor of B} and that a > 0.) Furthermore, z (x,) has the
form |x,| " "w(x,) with w{x,) uniformly bounded (in x, and j). Thus, the final
integral is I, = f(x,)?|x,| ~"w(x,) dx;. Since |x] ~"p(x)” € L' and wx) < C,
I, - 0 as j = oo by dominated convergence. I, is uniformly bounded since

I, < C[B(x)"1x| " dx < Clig I3 = C.
Therefore I — 0 as j — oo and (5.13) is proved. O

The value of Q, ,, , has already been given in (5.12) when p = m/(m — 1).
Let us conclude by evaluating Q when p = 2. The function g(x) = |x|"f(x) is in
L% Let G be the Fourier transform of g. Then ||g|l; = (27)~ "/?||G||,. The
Fourier transform of |x| =7 is w, (k) in (3.8) and has the form E_ ,|k|*~". Thus,
the Fourier transform of f is F= (2w) "E, k| "*G and fU™(0) =
(27) " "[F(k)™ dk. Hence :

1/m
Jlkr==c1" /iGlle.

Comparing this with (2.1) (withp = 2,9 =m, A =n — yand f - G), we see
that apart from a constant, the two expressions are almost the same. The one
difference is that || |k| ~* * G|, is replaced by the integral in (5.14). However, the
maximizing f for (2.1) is non-negative by Corollary 3.2(ii). It can be used as G in
(5.14) and the two expressions are then the same. The maximizing G is thus

(5.14) R(f)l/m — (27)—n(1/2+1/m)Ey’n

(5.15) G = k" "*(1+ k)"

This is unique (up to dilations, etc.).

This paper is thus brought full circle by the identification of the HLS
problem and Theorem 5.3 for p = 2. The maximizing f for (5.9) is unique (up to
dilations, etc.) and is

~ (5.16) flx) = 121K (1x),  p=2,

where K is a Bessel function (see (3.11)). Equation (5.16) should be compared
with the p = m/(m — 1) case in which f is a Gaussian (see (5.12)). Q can be
computed from (5.14), (3.4) and (3.8).

e (ria)

m/2—1
G17) Q=7
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