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A simple logic puzzle

Results for the Putnam Mathematical 
Competition in 2000

Harvard

MIT

1 2 3 4
Facts:
•Harvard came in 3 
(or better)

Duke

Caltech

•Caltech came in 2 
(or better)
•Duke came in first
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Permutations

Simple idea can form the basis for algorithms 
for generating weighted permutations

Each permutation     given weight

Goal generate random variates from

x  x

x= x
∑y

 y 
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In this talk

➢A weighted permutation problem
➢Perfect sampling with CFTP
➢Time dependent update functions
➢Bounding chains
➢BC for weighted permutations
➢does not work with original CFTP

➢Solving the permutation problem
➢A continuous example
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A permutation problem

The Goal

Generate uniformly from the set of 
random linear extensions of a poset

x={1  if x  is a linear extension
0  otherwise                        



6

Linear Extensions

A partial order     on    is
1) Reflexive
2) Antisymmetric
3) Transitive

A linear extension is a permutation    where 

Suppose throughout             is a linear ext.

Let N={1, 2, ... , n}

 N
aa

ab  and ba  implies a=b
ab  and bc  implies ac

ab  implies x ax b
x

1,2, , n
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Example

n=5

1

2 3

4

5

Some Linear Extensions
1 23 45
13 2 45
1 235 4
13 25 4
1 253 4
135 2 4
⋮

Say item 3 is in position 2
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Questions

Question:  How many linear extensions?
Bad news:  #P complete 

[Brightwell, Winkler 1991]
Good news:  selfreducible so generating
samples leads to efficient (approx) counting 

[Jerrum, Valiant, Vazirani 1986]

Question:  Average # of inversions?
Variant of nonparametric Kendall's tau test

[Efron, Petrosian 1999]
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Markov chain approach

f :×[0,1 ]

Describe Markov chain via update function

X t1= f X t ,U t1

U 1, U 2,. ..~Unif [0,1 ]     (iid)

Computer simulation of Markov chains 
(use pseudorandom numbers)

Also known as
transition function
stochastic recursive scheme



10

Markov chain approach

One step in linear extensions chain

1] Choose  uniformly from
2] Choose  uniformly from
3] Let
4] If                  do nothing
   Else 

i {1, 2, ... n−1}
y= f x ,U 

x i x i1  or B=0
y x

y i1 x i  , y i  x i1

B {0,1}

(Pick random position, flip fair coin,
if coin heads and does not violate partial order
then swap items at position and one to the right)
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Example steps

1  2  5  3  4 i=2, B=1

1  5  2  3  4 i=3, B=1

1  5  2  3  4

State

i=1, B=0

1

2 3

4

5

Randomness

1  5  2  3  4
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What's known

[Bubley, Dyer 1999] Different Markov chain 
mixes                    steps

[Wilson 2004] Original chain mixes

[Felsner, Wernich 1997] Perfect sampling 
when poset two dimensional

This work:  perfect sampling arbitrary poset

O n3 ln n /

O n3 ln n /

O n3 ln n
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Perfect Sampling Algorithm

P T2 kE [T ]1/2k

A perfect sampling algorithm has 3 properties:

1) Generates exact random variates from the 
target distribution

2) Running time is random with exponential tails

3) No knowledge of the normalizing constant
(good since we do not know        )
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Comments

1) Usually samples are only approximately from 
target distribution

2) Running time very unlikely to be much larger
than expected value (otherwise Dyer showed 
any approximate sampler is a perfect sampler)

3) When         known it is a direct sampler
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The Good News

■ Generates exactly from desired distribution

■ Can be used for continuous or discrete

■ True algorithms
(Markov chain methods are not algorithms unless 
the mixing time is known)

■ Useful even if running time unknown
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The Bad News

■ Not a magic solution to slow Markov chains

■ Requires more effort than Metroplis-Hastings

■ Methods more complex
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Coupling From the Past

CFTP [Propp, Wilson '96]
Ingredients:  update function for chain,

 
1) pretend have unknown stationary rand. var.
2) run chain forward fixed number of steps
3) if state becomes known, output
4) else call CFTP recursively
5) run chain forward fixed number of steps

... ,U−2 ,U−1 ,U 0~Unif [0,1]  (iid)
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An example

Example
Start T = -5
If had
then

output  

X −5~
X −4= f X −5 ,U−4
X −3= f X −4 ,U−3

X −2= f X −3 ,U−2
X −1= f X −2 ,U−1

X 0  = f X −5 ,U 0

X 0~
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First level of CFTP

Example
Start T = -5
Suppose I do not know
let

if
else ....  

X −5~ ,  set Z−5=
Z−4= f Z−5 ,U−4  and X −4∈Z−4

Z 0={x}, X 0=x

Z−3= f Z−4 ,U−3  and X −3∈Z−3

Z−2= f Z−3 ,U−2  and X −2∈Z−2

Z−1= f Z−2 ,U−1  and X −1∈Z−1

Z 0  = f Z−1 ,U 0   and X 0∈Z 0
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Second level of CFTP

Go back farther in time...
Start T = -100
Do not know
find 

if

else ....  

X −100~ ,  set Z−100=

Z−5={y}, X −5= y
Z−5  using U−99 , ... ,U−5

X 0= f  f  f  f  f X −5 ,U−4 ,U−3 ,U−2 ,U−1 ,U 0
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Third level of CFTP

Go back farther in time...
Start T = -1000
Do not know
then find 

if
find 

else [keep going back in time until success] 

X −1000~ ,  set Z−1000=

Z−100={y}, X −100= y

Z−100  using U−999 , ... ,U−100

X 0  using U−99 , ... ,U 0
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Techniques

Monotonicity [Propp, Wilson 1996]

Multigamma coupling [Murdoch, Green 1998]

Bounding chains [Häggström, Nelander 1999],
[H. 1999, 2004]

Multishift coupling [Wilson 2000]

How to keep track of Z t
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Time dependent update functions

Original CFTP
Use same update function every time

(is a Markovian coupling)

Time dependent CFTP
Let update function change each step

(non-Markovian coupling)

X t1= f X t ,U t1

X t1= f X t ,U t1 ,U t ,U t−1 ,
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Sufficient conditions on f

Our requirement
Suppose                        , then

for all values of

Proof that Time dependent CFTP works 
essentially same as original proof  

P X t1∈A∣X t=x=P  f x ,U , u1, u2,∈A

U~Unif [0,1]

u1, u2,
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Bounding Chains

Bounding chains
Is itself a Markov chain
Bound each dimension separately
Keeps set of possible values at each coordinate
For permuations, keep interval for each item

1  5  2  3  4

bounded by

{1,2,3,4} {1, 2,3, 4,5} {1,2} {1, 2,3, 4,5} {1, 2,3, 4}
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Pictorially

1  5  2  3  4
{1,2,3,4},{1, 2,3, 4,5},
{1,2},{1, 2,3, 4,5},

{1, 2,3, 4}
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Trick from beginning

When bounding state

has               all different

{1, , a1}, ,{1, , an}

a1, , an Z t={x}
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Running the bounding chain

Suppose bounding state

want to run the chain forward so that if 

then

Y t={1, , a1}, ,{1, , an}

X t i ∈{1, , ai} for all i

X t1i∈{1, , ai} for all i
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Active items

Call item    active if

or
ai∉{a1, , ai−1 , ai1 , , an}

ai=n  and ai∉{a1,ai−1}

i

item }active items {1, 2,3}

position
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Why look at active

When all items active
Z t={x}



31

Example starting bounding chain

Since item 1 preceeds 3 items,

1

2 3

4

5

X t 1≤2
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Case by case

Choose 
Choose B~Unif {0,1}

i~Unif {1,2,n−1}

Case I:  no active items at position i  or i1
i   i1

Action
bounding state unchanged 

Y t1Y t
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Case II
Case II:  one active item    at position i

i   i1

Worst case 



j

j

Could be 

j

j 

B=1
j
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Case II continued

Worst case 
j

i   i1

Action
If B=1

Y t1 j Y t  j 1
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Case III
Case III:  one active item    at position i1

i   i1


j

j

Note:  any other active item       with

has

j '
j ' j

Y t  j ' ≤Y t  j −2

Action
If B=1

Y t1 j Y t  j −1
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Case IV
Case IV:  active items         at positions i , i1

i   i1


j , j '

j
i   i1

j
j j '

4 subcases when 
i   i1

j
j '

i   i1 i   i1
j ' j

i   i1
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Case IV continued

See what happens in each subcase

Action
If                          do nothing
else 

B=0  or j ' j
Y t1 j Y t  j −1
Y t1 j ' Y t  j ' 1
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Time dependent

This update function is time dependent

The update depends on the state of the
bounding chain

The bounding chain state depends on
U t ,U t−1 ,U t−2 ,
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Analysis

Key fact:  The number of active states can only 
stay the same or increase

Call position    a hole if i Y t  j ≠{1, , i} for all j

item }active items {1, 2,3}

hole hole
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Analysis
Roughly speaking:  clear positions take a simple 

random walk on 
hole

{1, , n}

hole hole
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Analysis
When a hole reaches    it creates a new active item n

Time for algorithm is time for all holes to 
reach state n
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Analysis continued
A hole needs      moves in expectation to reach nn2

A hole is moved one in every        stepsn /2

There are at most     holes at the start
                                                              

Expected Running time

n

O n3 ln n
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A potential proof
Create a potential function

Y t= ∑
i  is a hole

[n2−i2]

Can show

E [Y t1∣Y t ]≤Y t[1− 2
n3 ]



CREDIT: Sloan Digital Sky Survey at 
Apache Point Observatory 
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A related problem
[Efron, Petrosian 1999] Quasar luminosity data is 

doubly truncated, making testing correlation 
difficult.  They suggest nonparametic test:  to find 
p-value, need samples from interval permutations
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Analysis difficult
Unfortunately, holes cannot move freely in this 

example, and so currently no a priori estimates on 
the running time of this algorithm are known

On the other hand:  who cares?  Run the algorithm, 
if it's fast use it.  
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What are update functions?
Update functions are examples of couplings

A coupling runs two processes simultaneously
Marginally, each process looks like the original chain
Their moves can be dependent

A coupled process             is faithful if

The coupling lemma says that the time until coupling 
is a bound on the mixing time of the Markov chain

{At , Bt}

At=Bt  implies At1=Bt1  for all t
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Continuous problems

Time dependent couplings have already been used 
for continuous problems
Used for proving mixing times
Not for perfect sampling

time

coupling 1 coupling 2
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Continuous Coupling

Type 1 coupling brings the states “close”
Type 2 coupling finishes the job

[Wilson 1999] Multishift coupling for type 2 
works for unimodal distribution on moves

With time dependent CFTP, need much 
weaker type 2 coupling
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Example

Continuous random walk on [0, n]

X t1~Unif [max {X t−1,0}, min {X t1, n}]

b=min {X t1, n}
a=max {X t−1,0}

f  x , u=u b−aa

Type 1 update function
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Type 1 in action

0

2

4

6

8

10

12

14

16

18

20

time

st
at

e

Starting difference: 5 on [0,20]
Number of steps:  500
Final difference: 0.000000078
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Type 2 coupler

Idea:  Distribution of                 overlaps once    
            close

At1 , Bt1
At , Bt

At Bt

A draw that lands in shared density region 
works for both processes
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Multishift and time dependent

To perfectly sample
Use type 1 update function in time [-T,1]
Use type 2 update function at time 1 to finish

For most problems, this idea makes 
continuous no more difficult than discrete
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Highlights

Adding time dependent update functions increases 
the power of CFTP for perfect sampling

For linear extensions, provides fastest known 
method of generating samples

Also works for interval permuations

Considerably simplifies algorithms for 
continuous problems

O n3 ln n
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