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The Problem
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Autonormal (Ising) model

Besag [1974] modeled soil plots as good (green) or bad (red)

d(x) = 11
(number of adj nodes that disagree)

Model:

P(X = x) =
exp(−βd(x))

Z (β)
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Basic inference

Data
d(x) = 11

What is best estimate of β?

Posterior

fpost,β(b) ∝ fprior,β(b) exp(−11b)/Z (b)
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Finding Z (·)

Need Z (·) to have posterior density

Brute force computation long (curse of dimensionality)
Brute force for Ising model takes 2# of vertices time
In denominator, so need relative (not additive) accuracy

Also need Z (·) for computing Bayes factors

Again, for Bayes factors relative accuracy essential
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Z (β): The Partition Function
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Partition function of Gibbs distribution

Ingredients:

State space Ω ⊆ Rn

Nonnegative function H(x)
Parameter β

Then the goal is to approximate:

Z (β) =

∫
x∈Ω

exp(−βH(x)) dx
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Discrete version

Ingredients:

State space Ω ⊆ {1,2, . . . , c}n
Nonnegative function H(x)
Parameter β

Then the goal is to approximate:

Z (β) =
∑
x∈Ω

exp(−βH(x))

M. Huber, CMC Approximating partition functions 8/24



Terminology

Definition (Gibbs distribution)
X has a (discrete) Gibbs distribution πβ if for all x ∈ Ω,

P(X = x) =
1

Z (β)
exp(−βH(x)).

Definition (Partition function)
The partition function of a Gibbs distribution is

Z (β) =
∑
x∈Ω

exp(−βH(x)).
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Today’s result

An approximation algorithm where
Given ε > 0
Given the ability to sample from π′β for β′ ∈ [0, β]

Outputs Ẑ (β) so that

P

(
1

1 + ε
≤ Ẑ (β)

Z (β)
≤ 1 + ε

)
≥ 3/4

Let q = ln(Z (β)). Method requires a number of samples

O(q ln(M)(ln(q) + ε−2)), M = max
x

H(x)
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Is that good?

Why is problem hard?
Typically Z (β) is exponential in n, the input size of problem

Many methods for lowering variance
Multistage Sampling [Valleau Card 1972]
Bridge Sampling [Meng Wong 1996]
Nested Sampling [Skilling 2006]

The above are not approximation algorithms
No guarantee on quality of estimate obtained
(But they could be faster in practice)
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Approximation Algorithms

Let q = ln(Z (0)/Z (β))...

Self-reducibility [Jerrum, Valiant, Vazirani 1986]
O[q2ε−2] time under best conditions

TPA [H., Schott 2010]
O[q2ε−2], simpler, constant ∼ 20

SVV [S̆tefankovic̆, Vempala, Vigoda 2009]
O[q(ln(q) + ln(M))5ε−2] (constant ∼ 1010)

Paired Product Approximation Algorithm [H. 2012]
O[q ln(M)(ε−2 + ln(q))] (constant < 50)
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The algorithm
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New algorithm

Importance sampling

Multistage sampling

TPA

Paired Estimator
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Importance Sampling

Usually Z (0) easy to find, so need to estimate

Z (β)

Z (0)

For X ∼ π0, set W = exp(−βH(X ))

E[W ] =
Z (β)

Z (0)

Relative variance (square of coefficient of variation)

Vrel(W ) =
V(W )

E[W ]2
=

Z (2β)Z (0)

Z (β)
− 1
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The relative variance picture

Take the log: z(b) = ln(Z (b)), ln
(

Z (β)
Z (0)

)
= z(β)− z(0).

b
0 2ββ

δ

Want to
estimate

Vrel(W ) = exp(2δ)

Only care about 0 to β, harder to sample at 2β!
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Paired Estimator

Solution to 2β problem: use two estimators

X ∼ π0, Y ∼ πβ

W := exp(−(β/2)H(X )), V := exp((β/2)H(Y ))

W estimates
Z (β/2)

Z (0)
, V estimates

Z (β/2)

Z (β)
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The relative variance for paired estimator

0 β/2 β

δ

ln(E[W ])

ln(E[V ])

Vrel(W ) = Vrel(V ) = exp(2δ)

But what to do about δ being too large?
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Multistage sampling
Breaking the interval into pieces [Valleau and Card 1972]

0 ββ1 β2

Z (β)

Z (0)
=

Z (β1)

Z (0)

Z (β2)

Z (β1)

Z (β)

Z (β2)
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Relative variance of product estimator

Relative variance of
∏

Wi (and
∏

Vi )

−1 + exp

(∑
i

δi

)

New question:
How do we make

∑
i δi small without using too many intervals?
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Making
∑

δi small

Fact (Lemma 3.3 of H. 2012)∑
δi is small if the vertical drop in z over each interval is small.

Call such a set of intervals well balanced
To get well balanced intervals use TPA [H. Schott 2010]
Time to get/number of such intervals O(q ln(M) ln(q))

Once have intervals, O(q ln(M)ε−2) time to approximate∏
Wi and

∏
Vi

Well balanced schedules also good for Markov chains
Necessary for fast parallel tempering
(see [Woodard, Schmidler, H. 2009])
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The Algorithm

1 Obtain an initial estimate of q with TPA
2 Obtain a well balanced set of intervals with TPA
3 Use the well balanced schedule to get W̄ , V̄
4 Final estimate W̄/V̄
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Conclusions

Most important thing
Previous practical methods quadratic in q (roughly the
dimension), new method nearly linear

Uses some old ideas
Importance Sampling, Multistage Sampling, Product Estimator

Add some new ideas
Paired Product Estimator, Well-balanced schedule through TPA

The resulting approximation algorithm
Simple to implement, guaranteed quality of estimate

M. Huber, CMC Approximating partition functions 23/24



References

M. Huber
The Paired Product Estimator approach to approximating Gibbs partition
functions
arXiv:1206.2689, 2012

M. Huber and S. Schott,
Using TPA for Bayesian inference
Bayesian Statistics 9, 257–282, 2010

J.P. Valleau and D.N. Card,
Monte Carlo Estimation of the Free Energy by Multistage Sampling
J. Chem. Phys. 57, 5457–5462, 1972

M. Huber, CMC Approximating partition functions 24/24


