Adaptive Monte Carlo Methods for Numerical Integration

Mark Huber1 and Sarah Schott2

1Department of Mathematical Sciences, Claremont McKenna College
2Department of Mathematics, Duke University

8 March, 2011
Integration
Numerical integration

The central problem: Approximate

\[I = \int_{\vec{x} \in \Omega} f(\vec{x}) \, d\mathbb{R}^n, \quad f(\vec{x}) \geq 0 \]
Applications

Statistical Physics
- Ising model, Potts model, Gibbs distributions
- Dimension = number of interacting particles

Statistics
- Frequentist p-values
- Bayesian posterior normalizing constant
- Dimension = number of data points

Combinatorial optimization
- Counting matchings in graph
- Counting independent sets
- Dimension = number of edges or nodes in graph
1-D: easy

Fortunately, in 1-D numerical integration easy

- Use rectangles, trapezoidal rule, Simpson’s rule, et cetera
1-D: easy

Fortunately, in 1-D numerical integration easy

- Use rectangles, trapezoidal rule, Simpson’s rule, et cetera
Higher dimensions, not so easy

In 1-D, k intervals

In 2-D, k^2 squares
Running time exponential in number of dimensions

In d dimensions, need k^d evaluations
- Exponential growth in d
- Called “The curse of dimensionality”

Monte Carlo Methods
- Use randomness to approximate integral
- Converge slowly: error = $1/$square root of evaluations
- Error independent of # of dimensions!
Many ways to go from samples to integrals

Some Monte Carlo methods:
- (Sequential) Importance sampling
- Bridge sampling
- Path sampling
- Nested sampling
- Harmonic mean estimator

Problem: these methods have unknown variance!
- SIS and HME variance can easily be infinite
- Estimated variance itself has unknown variance
Our result

We have a new method for approximating

\[I = \int_{\vec{x} \in \Omega} f(\vec{x}) \, d\mathbb{R}^n, \quad f(\vec{x}) \geq 0 \]

with \(\hat{I} \) such that

\[\mathbb{P} \left(\frac{1}{1 + \epsilon} \leq \frac{\hat{I}}{I} \leq 1 + \epsilon \right) > 1 - \delta \]

in time

\[O((\log I)^2 \epsilon^{-2} \ln \delta^{-1}) \]
Classic Monte Carlo Methods
Create measure of a set A using integral:

$$\mu(A) = \int_A f(\vec{x}) d\vec{x}$$
Acceptance/Rejection

Finding the measure of a set

Green area = \(B \)

Black area = \(A \)

\[\mu(B) = \mu(A) \frac{\mu(B)}{\mu(A)} \]
Acceptance/Rejection a.k.a “Shoot at it randomly”

Best estimate:

$$\hat{\mu}(B) = \frac{7}{2}\mu(A), \quad A = \text{black rectangle inside region}$$
Analysis of Accept/Reject

Algorithm

- Fire \(n \) times at box
- Say you hit \(H \) times
- Estimate: \(\hat{a} = \mu(A)n/H \)
How well does it work?

True answer: 3.0933...

- After 10 iterations 5.04
- After 10^3 iterations 2.8656
- After 10^5 iterations 3.0870
- After 10^7 iterations 3.0935

About a factor of 100 per extra digit
How well does it work?

True answer: 3.0933...

- After 10 iterations 5.04
- After 10^3 iterations 2.8656
- After 10^5 iterations 3.0870
- After 10^7 iterations 3.0935

About a factor of 100 per extra digit
How well does it work?

True answer: 3.0933...

- After 10 iterations 5.04
- After 10^3 iterations 2.8656
- After 10^5 iterations 3.0870
- After 10^7 iterations 3.0935

About a factor of 100 per extra digit
How well does it work?

True answer: 3.0933...

- After 10 iterations: 5.04
- After 10^3 iterations: 2.8656
- After 10^5 iterations: 3.0870
- After 10^7 iterations: 3.0935

About a factor of 100 per extra digit
How well does it work?

True answer: 3.0933...

- After 10 iterations 5.04
- After 10^3 iterations 2.8656
- After 10^5 iterations 3.0870
- After 10^7 iterations 3.0935

About a factor of 100 per extra digit
Get relative error below ϵ with probability at least $1 - \delta$:

- Need to analyze tails of binomial distribution to show:

$$n \approx \frac{2(1 + \epsilon)}{p} \cdot \frac{1}{\epsilon^2} \cdot \ln \frac{1}{\delta}, \quad p = \frac{\mu(A)}{\mu(B)}$$

- The $(1/\epsilon^2) \ln(1/\delta)$ often called “Monte Carlo” error
- Best you can do in general
- So concentrate on improving $1/p$ part
When p small, runtime large

Usually p exponentially small in dimension of problem
Running times

Acceptance/Rejection:

\[2 \cdot \frac{1}{p} \cdot \]

Product Estimator [1]:

\[192 \cdot \left[\log \frac{1}{p} \right]^2 \cdot \]

New method

- TPA: \(2[\log 1/p]^2 \)
TPA
Idea

- Product estimator...
- ...plus idea from Nested sampling

Result

- Product estimator with random cooling schedule
- Output can be analyzed exactly (like A/R)
What is a Tootsie Pop?

- Hard candy lollipops with a tootsie roll (chewy chocolate) at the center

In 1970, Mr. Owl was asked the question:

- How many licks does it take to get to the center of a Tootsie Pop?
List of ingredients of TPA

(a) A measure space \((\Omega, \mathcal{F}, \mu)\)

(b) Two measurable sets: the center \(B'\) and the shell \(B\) with \(B' \subset B\)

(c) A family of sets \(\{A(\beta)\}\) where
 1. \(\beta' < \beta\) implies \(A(\beta') \subseteq A(\beta)\),
 2. \(\mu(A(\beta))\) is continuous in \(\beta\)

(d) Two special values \(\beta_B\) and \(\beta_{B'}\) with \(A(\beta_B) = B\) and \(A(\beta_{B'}) = B'\).
Example of nested sets

\[A(\beta) = \text{all points within distance } \beta \text{ of center} \]
Idea behind TPA

\[\beta \leftarrow \beta_B \]

Repeat

3. Draw \(X \leftarrow \mu(A(\beta)) \)

4. \(\beta \leftarrow \inf\{\beta' : X \in A(\beta')\} \)

5. Until \(\beta \leq \beta_{B'} \)
Idea behind TPA

1. $\beta \leftarrow \beta_B$
2. Repeat
3. Draw $X \leftarrow \mu(A(\beta))$
4. $\beta \leftarrow \inf\{\beta' : X \in A(\beta')\}$
5. Until $\beta \leq \beta_{B'}$

<table>
<thead>
<tr>
<th>Step</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Idea behind TPA

1. $\beta \leftarrow \beta_B$
2. Repeat
3. Draw $X \leftarrow \mu(A(\beta))$
4. $\beta \leftarrow \inf\{\beta' : X \in A(\beta')\}$
5. Until $\beta \leq \beta_{B'}$

<table>
<thead>
<tr>
<th>Step</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>1.72</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Idea behind TPA

1. $\beta \leftarrow \beta_B$
2. Repeat
3. Draw $X \leftarrow \mu(A(\beta))$
4. $\beta \leftarrow \inf\{\beta' : X \in A(\beta')\}$
5. Until $\beta \leq \beta_{B'}$

<table>
<thead>
<tr>
<th>Step</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>1.72</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Idea behind TPA

1. \(\beta \leftarrow \beta_B \)
2. Repeat
3. Draw \(X \leftarrow \mu(A(\beta)) \)
4. \(\beta \leftarrow \inf\{\beta' : X \in A(\beta')\} \)
5. Until \(\beta \leq \beta_{B'} \)

<table>
<thead>
<tr>
<th>Step</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\infty)</td>
</tr>
<tr>
<td>1</td>
<td>1.72</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Idea behind TPA

1. $\beta \leftarrow \beta_B$
2. Repeat
3. Draw $X \leftarrow \mu(A(\beta))$
4. $\beta \leftarrow \inf\{\beta' : X \in A(\beta')\}$
5. Until $\beta \leq \beta_{B'}$

<table>
<thead>
<tr>
<th>Step</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>1.72</td>
</tr>
<tr>
<td>2</td>
<td>0.92</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Idea behind TPA

<table>
<thead>
<tr>
<th>Step</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>1.72</td>
</tr>
<tr>
<td>2</td>
<td>0.92</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

1. $\beta \leftarrow \beta_B$
2. Repeat
3. Draw $X \leftarrow \mu(A(\beta))$
4. $\beta \leftarrow \inf\{\beta' : X \in A(\beta')\}$
5. Until $\beta \leq \beta_{B'}$
Idea behind TPA

<table>
<thead>
<tr>
<th>Step</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>1.72</td>
</tr>
<tr>
<td>2</td>
<td>0.92</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

1. $\beta \leftarrow \beta_B$
2. Repeat
3. Draw $X \leftarrow \mu(A(\beta))$
4. $\beta \leftarrow \inf\{\beta' : X \in A(\beta')\}$
5. Until $\beta \leq \beta_B'$
Idea behind TPA

1. \(\beta \leftarrow \beta_B \)
2. Repeat
3. Draw \(X \leftarrow \mu(A(\beta)) \)
4. \(\beta \leftarrow \inf\{\beta' : X \in A(\beta')\} \)
5. Until \(\beta \leq \beta_{B'} \)

<table>
<thead>
<tr>
<th>Step</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\infty)</td>
</tr>
<tr>
<td>1</td>
<td>1.72</td>
</tr>
<tr>
<td>2</td>
<td>0.92</td>
</tr>
<tr>
<td>3</td>
<td>0.09</td>
</tr>
</tbody>
</table>
Idea behind TPA

<table>
<thead>
<tr>
<th>Step</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>1.72</td>
</tr>
<tr>
<td>2</td>
<td>0.92</td>
</tr>
<tr>
<td>3</td>
<td>0.09</td>
</tr>
</tbody>
</table>

1. $\beta \leftarrow \beta_B$
2. Repeat
3. Draw $X \leftarrow \mu(A(\beta))$
4. $\beta \leftarrow \inf\{\beta' : X \in A(\beta')\}$
5. Until $\beta \leq \beta_{B'}$
How much is shaved off at each step?

Notation: $Z(\beta) := \mu(A(\beta))$

Lemma
Say $X \sim \mu(A(\beta))$ and $\beta' = \min\{\beta' : X \in A(\beta')\}$. Then

$$\frac{Z(\beta')}{Z(\beta)} \sim \text{Unif}([0, 1])$$

Proof by picture:
Let b satisfy $Z(b)/Z(\beta) = 1/3$
Then

$$\mathbb{P}\left(\frac{Z(\beta')}{Z(\beta)} \leq 1/3\right) = \mathbb{P}(X \in A(b))$$
Each step removes on average 1/2 the measure

Continue until reach center

- Original measure \(\mu(B) = Z(\beta_B) \)
- After \(k \) steps measure \(Z(\beta_k) = Z(\beta_B)r_1r_2\cdots r_k \), where \(r_i \overset{iid}{\sim} \text{Unif}([0,1]) \)
- Recall \(\beta_B' \) index of center
- Let \(\ell \) be number of steps until hit center

\[
\ell := \min\{k : Z(\beta_B)r_1\cdots r_k < Z(\beta_B')\} - 1
\]

Question: what is the distribution of \(\ell \)?
Recall if $U \sim \text{Unif}([0, 1])$,

$$-\ln U \sim \text{Exp}(1)$$

Since

$$\frac{Z(\beta_k)}{Z(\beta_B)} \sim r_1 r_2 \cdots r_k, \text{ where } r_i \overset{\text{iid}}{\sim} \text{Unif}([0, 1]),$$

Consider the points

$$P_i = -\ln \left(\frac{Z(\beta_k)}{Z(\beta_B)} \right) \sim e_1 + e_2 + \cdots + e_k, \text{ where } e_i \overset{\text{iid}}{\sim} \text{Exp}(1)$$
The Poisson point process

\[\ln Z(\beta B) \]

Better to work in \(\ln Z(\beta_i) \) space

Recall: \(U \sim \text{Unif}(0, 1) \Rightarrow -\ln U \sim \text{Exp}(1) \)

In log space, each step moves down \(\text{Exp}(1) \)

Result: a Poisson point process from \(\ln Z(\beta_B) \) to \(\ln Z(\beta_{B'}) \)
The Poisson point process

- Better to work in $\ln Z(\beta_i)$ space
- Recall: $U \sim \text{Unif}(0, 1) \Rightarrow -\ln U \sim \text{Exp}(1)$
- In log space, each step moves down $\text{Exp}(1)$
- Result: a Poisson point process from $\ln Z(\beta_B)$ to $\ln Z(\beta_{B'})$
The Poisson point process

\[\ln Z(\beta_B) \]

\[\ln Z(\beta_1) \]

\[\ln Z(\beta_2) \]

\[\ln Z(\beta_{B'}) \]

Better to work in \(\ln Z(\beta_i) \) space

Recall: \(U \sim \text{Unif}([0, 1]) \Rightarrow \) – \(-\ln U \sim \text{Exp}(1) \)

In log space, each step moves down \(\text{Exp}(1) \)

Result: a Poisson point process from \(\ln Z(\beta_B) \) to \(\ln Z(\beta_{B'}) \)
The Poisson point process

\[\ln Z(\beta) \]
\[\ln Z(\beta_1) \]
\[\ln Z(\beta_2) \]
\[\ln Z(\beta_3) \]
\[\ln Z(\beta_{B'}) \]

Better to work in \(\ln Z(\beta_i) \) space

- Recall: \(U \sim \text{Unif}(0, 1) \) \(\Rightarrow \) \(-\ln U \sim \text{Exp}(1) \)

- In log space, each step moves down \(\text{Exp}(1) \)

- Result: a Poisson point process from \(\ln Z(\beta_B) \) to \(\ln Z(\beta_{B'}) \)
The Poisson point process

\[\ln Z(\beta_B) \]
\[\ln Z(\beta_1) \]
\[\ln Z(\beta_2) \]
\[\ln Z(\beta_3) \]
\[\ln Z(\beta_{B'}) \]

- Better to work in \(\ln Z(\beta_i) \) space
- Recall: \(U \sim \text{Unif}([0, 1]) \Rightarrow -\ln U \sim \text{Exp}(1) \)
- In log space, each step moves down \(\text{Exp}(1) \)
- Result: a Poisson point process from \(\ln Z(\beta_B) \) to \(\ln Z(\beta_{B'}) \)
The result

Output of TPA:
\[\ell \sim \text{Pois}(\ln(Z(\beta_B)/Z(\beta_B'))) \]

Output of A/R:
\[H \sim \text{Bin}(n, Z(\beta_{B'})/Z(\beta_B)) \]
Suppose run the Poisson point process twice

- Result also Poisson point process rate 2 instead of rate 1

Now run \(k \) times

- Result also Poisson point process rate \(k \) instead of rate 1
- Final answer \(\text{Pois}(k \ln(Z(\beta_{B'})/Z(\beta_B))) \)
- Divide by \(k \), result close to \(\ln[Z(\beta_{B'})/Z(\beta_B)] \)
- Exponentiate, result close to \(Z(\beta_{B'})/Z(\beta_B) \)
- Can use Chernoff’s Bound to choose \(k \) large enough
Bounding the tails

Theorem
Let $p = Z(\beta_{B'}) / Z(\beta_B)$. For $p < \exp(-1)$ and $\epsilon < .3$, after

$$k = 2 \left[\ln \frac{1}{p} \right] \left(\frac{3}{\epsilon} + \frac{1}{\epsilon^2} \right) \ln \frac{1}{2\delta}$$

runs, each of which uses on average $\ln(1/p)$ samples, the output \hat{p} satisfies:

$$\mathbb{P}\left((1 + \epsilon)^{-1} \leq \frac{\hat{p}}{p} \leq 1 + \epsilon\right) > 1 - \delta.$$
Bonus: Approximate for all parameters simultaneously

Can cut Poisson point process at any point:

Right half still Poisson point process
Yields omnithermal approximation

- Approximate $Z(\beta)/Z(\beta_{B'})$ for all $\beta \in [\beta_{B'}, \beta_B]$ at same time
- Number of runs still same:

$$k = 2 \left[\ln \frac{1}{p} \right] \left(\frac{3}{\epsilon} + \frac{1}{\epsilon^2} \right) \ln \frac{1}{2\delta}$$
Proof idea:

Poisson process

- Let \(N(t) \) be rate \(r \) Poisson process
- \(N(t) - rt \) is a right continuous martingale
- Omnithermal approximation valid means did not drift too far away from 0
Examples
Example 1: Mixture Gaussian Spikes

Multimodal toy example

- Prior uniform over cube
- Likelihood mixture of two normals
- Small spike centered at $(0, 0, \ldots, 0)$
- Large spike centered at $(0.2, 0.2, \ldots, 0.2)$

$$p_\theta \sim \text{Unif}([-1/2, 1/2]^d)$$

$$L(\theta) = 100 \prod_{i=1}^d \frac{1}{\sqrt{2\pi}u} \exp\left(-\frac{(\theta_i - 0.2)^2}{2u^2}\right) + \prod_{i=1}^d \frac{1}{\sqrt{2\pi}v} \exp\left(-\frac{\theta_i^2}{2v^2}\right)$$
Parameter truncation

Create family by limiting distance to center of small spike
Running time results

Problem: $d = 20, u = .01, v = .02$
True value: $\ln(1/p) = 115.0993$
Algorithm (10^5 runs): $\ln(1/p) \approx 115.10321$
Example 2: Beta-binomial model

Hierarchical model

- Data set: free throw numbers for 429 NBA players ’08-'09
- Example data point: Kobe Bryant made 483 out of 564
- Model: number made by player \(i \) is \(\text{Bin}(n_i, p_i) \)
- \(n_i \) are known, \(p_i \sim \text{Beta}(a, b) \)
- Hyperparameters \(a \) and \(b \), \(a \sim 1 + \text{Exp}(1) \), \(b \sim 1 + \text{Exp}(1) \)
Again use parameter truncation

Goal: find integrated likelihood

- Use β to limit distance from mode
- 2-D Unimodal problem so sampling easy
- True value (via numerical integration) -1577.250
- After 10^5 runs -1577.256
Example 3: Ising model

Besag[1974] modeled soil plots as good (green) or bad (red)

\[h(x) = 13 \text{ (# adj like colored plots)} \]

\[\pi(x) = \frac{\exp(2\beta h(x))}{Z(\beta)} \]

parameter \(\beta \) is inv temp
Parameter space one dimensional

\[Z = \int_0^\infty p_\beta(b) \frac{\exp(2bh(x))}{Z(b)} \, db, \]

easy to do numerically if you know \(Z(\beta) \) over \((0, \infty)\).
Use omnithermal approximation

\[\ln(Z_\beta) \]

One run of TPA

\[
\begin{aligned}
\beta \\
0 & 1 & 2
\end{aligned}
\]
Use omnithermal approximation

\[\ln(Z_\beta) \]

Sixteen runs of TPA
Connection to MCMC

Several sampling methods use temperatures

- Simulated annealing
- Simulated tempering

TPA easy for these problems

- Can speed up chain by giving well balanced cooling schedule
Future directions

Improvement for Gibbs distributions

- A Gibbs distribution:

\[\pi(\{x\}) = \frac{\exp(-\beta H(i))}{Z(\beta)} \]

- Can improve algorithm running time for Gibbs:

\[O^*((\ln(1/p))\epsilon^{-2} \ln \delta^{-1}) \]
Randomized adaptive cooling schedules

- Guaranteed performance bound for MC integration
- (No variance estimate or unknown derivatives appear)
- Speed: $2[\ln(1/p)]^2$ much better than previous methods
- Speed: $O^*([\ln(1/p)])$ even better for Gibbs distributions

Future directions

- Extend $\ln(1/p)$ method to non-Gibbs distributions
- Remove extra $\ln(n)$ factors
References

M. Jerrum, L. Valiant, and V. Vazirani,
Random generation of combinatorial structures from a uniform distribution

M. Huber and S. Schott,
Using TPA for Bayesian inference
Bayesian Statistics 9

J. Skilling,
Nested sampling for general Bayesian computation,
Bayesian Anal., **1**(4), 833–860, 2006

D. Štefankovič, S. Vempala and E. Vigoda,
Adaptive Simulated Annealing: A Near-Optimal Connection between Sampling and Counting,
J. of the ACM, **56**(3), 1–36, 2009