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The art of numerical integration

In every block of marble I see a statue as plain as
though it stood before me, shaped and perfect in
attitude and action. I have only to hew away the rough
walls that imprison the lovely apparition to reveal it to
the other eyes as mine see it.
-Michelangelo
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The integration problem
What is:

Volume of

Volume of
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My version of the block and sculpture

What is the measure of a set?

Green area = B

Black area = B′

µ(B) = µ(B′)
µ(B)

µ(B′)
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Example applications

Integration:

µ(B) =

∫
~x∈B

f (~x) d~x , where f (~x) ≥ 0

Volume of a convex set
Normalizing constant for unnormalized density

Summation:

µ(B) =
∑
i∈A

w(i), where w(i) ≥ 0

Normalizing constant for Ising model
Permanent of a matrix with nonnegative entries
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Bayesian statistical applications

posterior density ∝ prior density × likelihood

Normalizing posterior
B =parameter space, µ proportional to posterior
µ(B) is integration likelihood/evidence
Appears in Bayes Factors for model selection

Posterior mean of nonnegative parameter θ
A =parameter space, µ has density θ against posterior
µ(B) = E[θ]

Spatial statistics
For likelihoods like Ising model, need normalizing constant
before can build posterior
Often called doubly intractable
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Variance dependent methods

Classical approach: first write µ(B) = E[X ]

Draw X1, . . . ,Xn
iid∼ X

µ(B) ≈ X̄ = 1
n
∑

i Xi

E[X̄ ] = µ(B), V(X̄ ) = (1/n)V(Xi) could be huge
Today

Variance free estimation
No need to calculate or estimate a variance
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Variance Free Monte Carlo
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Randomized Approximation Algorithms

Definition
Let A∗ be the output of an algorithm when A is the true answer.
Then the algorithm is an (ε, δ)-randomized approximation
algorithm if

P((1 + ε)−1 ≤ A∗/A ≤ 1 + ε) ≥ 1− δ.

Goal is rand. approx. alg. for µ(A) for all positive ε and δ
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Acceptance/Rejection a.k.a “Shoot at it randomly”
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Acceptance/Rejection a.k.a “Shoot at it randomly”

Best estimate:

µ̂(B) =
7
2
µ(B′), B′ = black rectangle inside region
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Analysis of Accept/Reject

Algorithm
Fire n times at box
Say you hit H times

Analysis
Let p = chance hit center region B′

H ∼ Bin(n,p)

p =
µ(B′)
µ(B)

Estimate
p̂ =

H
n
, µ̂(B) =

n
H
µ(B′);
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How well does it work?

True answer: 3.0933...
After 10 iterations 5.04
After 103 iterations 2.8656
After 105 iterations 3.0870
After 107 iterations 3.0935

About a factor of 100 per extra digit
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Bounding error

Get relative error below ε with probability at least 1− δ:
Need to analyze tails of binomial distribution to show:

n ≈ 2(1 + ε)

p
· 1
ε2
· ln 1

δ

The (1/ε2) ln(1/δ) often called “Monte Carlo” error
Best you can do in general
So concentrate on improving 1/p part
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When p small, runtime large

Usually p exponentially small in dimension of problem

Mark Huber and Sarah Schott, CMC,Duke Random cooling schedules 14/54



Running times

Acceptance/Rejection:

2 · 1
p
.

Product Estimator [1]:

192 ·
[
log

1
p

]2

.

Goal for TPA:
Get [log 1/p]2 performance
With decent constant out in front
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Nested Sampling [Skilling 2007]

Nested sampling another approach to these integrals
Mix of product estimator-like algorithm and classical 1-D
numerical integration
Not quite approximation algorithm
Roughly speaking also [log(1/p)]2

Does introduce a nice idea
Combination nice idea + product estimator = TPA
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The New Algorithm
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TPA

Idea
Product estimator...
...plus idea from Nested sampling

Result
Product estimator with random cooling schedule
Output can be analyzed exactly (like A/R)
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The Tootsie Pop Algorithm

What is a Tootsie Pop?
Hard candy lollipops with a tootsie roll (chewy chocolate) at
the center

In 1970, Mr. Owl was asked the question:
How many licks does it take to get to the center of a
Tootsie Pop?
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List of ingredients of TPA

(a) A measure space (Ω,F , µ)

(b) Two measurable sets: the center B′ and the shell B with
B′ ⊂ B

(c) A family of sets {A(β)} where
1 β′ < β implies A(β′) ⊆ A(β),
2 µ(A(β)) is continuous in β

(d) Two special values βB and βB′ with A(βB) = B and
A(βB′) = B′.
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Example of nested sets

A(β) = all points within distance β of center
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Idea behind TPA

Step β

0 ∞
1
2
3

1 β ← βB

2 Repeat
3 Draw X ← µ(A(β))

4 β ← inf{β′ : X ∈ A(β′)}
5 Until β ≤ βB′
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How much is shaved off at each step?

Notation: Z (β) := µ(A(β))

Lemma
Say X ∼ µ(A(β)) and β′ = min{β′ : X ∈ A(β′)}. Then

Z (β′)

Z (β)
∼ Unif([0,1])

Proof by picture:
Let b satisfy Z (b)/Z (β) = 1/3
Then

P
(

Z (β′)

Z (β)
≤ 1/3

)
= P(X ∈ A(b))
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Each step removes on average 1/2 the measure

Continue until reach center
Original measure µ(B) = Z (βB)

After k steps measure Z (βk ) = Z (βB)r1r2 · · · rk ,
where ri

iid∼ Unif([0,1])

Recall βB′ index of center
Let ` be number of steps until hit center

` := min{k : Z (βB)r1 · · · rk < Z (βB′)} − 1

Question: what is the distribution of `?
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Logarithms

Recall if U ∼ Unif([0,1]),

− ln U ∼ Exp(1)

Since
Z (βk )

Z (βB)
∼ r1r2 · · · rk , where ri

iid∼ Unif([0,1]),

Consider the points

Pi = − ln
(

Z (βk )

Z (βB)

)
∼ e1 + e2 + · · ·+ ek , where ei

iid∼ Exp(1)
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The Poisson point process

ln Z (βB′)

ln Z (βB)
Better to work in ln Z (βi)
space
Recall: U ∼ Unif([0,1])⇒
− ln U ∼ Exp(1)

In log space, each step moves
down Exp(1)

Result: a Poisson point
process from ln Z (βB) to
ln Z (βB′)
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The Poisson point process

ln Z (βB′)

ln Z (β1)

ln Z (β2)

ln Z (β3)

ln Z (βB)
Better to work in ln Z (βi)
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− ln U ∼ Exp(1)

In log space, each step moves
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Result: a Poisson point
process from ln Z (βB) to
ln Z (βB′)

Mark Huber and Sarah Schott, CMC,Duke Random cooling schedules 26/54



The Poisson point process

ln Z (βB′)

ln Z (β1)

ln Z (β2)

ln Z (β3)

ln Z (βB)
Better to work in ln Z (βi)
space
Recall: U ∼ Unif([0,1])⇒
− ln U ∼ Exp(1)

In log space, each step moves
down Exp(1)

Result: a Poisson point
process from ln Z (βB) to
ln Z (βB′)

Mark Huber and Sarah Schott, CMC,Duke Random cooling schedules 26/54



The result

Output of TPA:
` ∼ Pois(ln(Z (βB)/Z (βB′)))

Output of A/R:
H ∼ Bin(n,Z (βB′)/Z (βB))
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Repeating the Poisson point process

Suppose run the Poisson point process twice
Result also Poisson point process rate 2 instead of rate 1

Now run k times
Result also Poisson point process rate k instead of rate 1
Final answer Pois(k ln(Z (βB′)/Z (βB)))

Divide by k , result close to ln[Z (βB′)/Z (βB)]

Exponentiate, result close to Z (βB′)/Z (βB)

Can use Chernoff’s Bound to choose k large enough
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Bounding the tails

Theorem
Let p = Z (βB′)/Z (βB). For p < exp(−1) and ε < .3, after

k = 2
[
ln

1
p

](
3
ε

+
1
ε2

)
ln

1
2δ

runs, each of which uses on average ln(1/p) samples, the
output p̂ satisfies:

P((1 + ε)−1 ≤ p̂/p ≤ 1 + ε) > 1− δ.
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Bonus: Approximate for all parameters simultaneously

Can cut Poisson point process at any point:

Right half still Poisson point process
Yields omnithermal approximation

Approximate Z (β)/Z (βB′) for all β ∈ [βB′ , βB] at same time
Number of runs still same:

k = 2
[
ln

1
p

](
3
ε

+
1
ε2

)
ln

1
2δ
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Proof idea:

Poisson process
Let N(t) be rate r Poisson process
N(t)− rt is a right continuous martingale
Omnithermal approximation valid means did not drift too
far away from 0
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Examples
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Example 1: Mixture Gaussian Spikes

Multimodal toy example

Prior uniform over cube
Likelihood mixture of two normals
Small spike centered at (0,0, . . . ,0)

Large spike centered at (0.2,0.2, . . . ,0.2)

pθ ∼ Unif([−1/2,1/2]d )

L(θ) = 100
d∏

i=1

1√
2πu

exp
(
−(θi − 0.2)2

2u2

)
+

d∏
i=1

1√
2πv

exp

(
−
θ2

i
2v2

)
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Parameter truncation

Create family by limiting distance to center of small spike
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Running time results
Problem: d = 20, u = .01, v = .02
True value: ln(1/p) = 115.0993
Algorithm (105 runs): ln(1/p) ≈ 115.10321

80 100 120 140 160

0.
00

0.
01

0.
02

0.
03

Running time for Example 1

Number of steps

F
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qu
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cy
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Example 2: Beta-binomial model
Hierarchical model

Data set: free throw numbers for 429 NBA players ’08-’09
Example data point: Kobe Bryant made 483 out of 564
Model: number made by player i is Bin(ni ,pi)

ni are known, pi ∼ Beta(a,b)

Hyperparameters a and b, a ∼ 1 + Exp(1), b ∼ 1 + Exp(1)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Density of percentage of free throws made

N = 429   Bandwidth = 0.02967

D
en

si
ty
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Again use parameter trunctation

Goal: find integrated likelihood
Use β to limit distance from mode
2-D Unimodal problem so sampling easy
True value (via numerical integration) −1577.250
After 105 runs −1577.256
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Example 3: Ising model

Besag[1974] modeled soil plots as good (green) or bad (red)

h(x) = 13 (# adj like colored plots)

π(x) =
exp(2βh(x))

Z (β)

parameter β is inv temp
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Integrated likelihood for Ising

Parameter space one dimensional

Z =

∫ ∞
0

pβ(b)
exp(2bh(x))

Z (b)
db,

easy to do numerically if you know Z (β) over (0,∞).
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Use omnithermal approximation

One run of TPA

0 21

ln(Zβ)

β

Mark Huber and Sarah Schott, CMC,Duke Random cooling schedules 40/54



Use omnithermal approximation

Sixteen runs of TPA

0 21

ln(Zβ)

β
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Connection to MCMC

Several sampling methods use temperatures
Simulated annealing
Simulated tempering

TPA easy for these problems
Can speed up chain by giving well balanced cooling
schedule
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Another approach: Likelihood truncation

Works well when slice sampler works well
Let T bound the likelihood

Z (T ) =

∫
π(θ) min{T ,L(θ)} dθ.

Starting point
Z (∞) = Z , that is the starting point
But where is the center?
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Locate center separately

Draw k samples from π

Get k different likelihood values
Let m be median of these values

Now draw k ′ samples θ1, . . . , θk ′ from π

Accept θi with probability min{1,L(θi)/m}
(Like Metropolis-Hastings)
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Getting the center

What is probability of accepting?∫
θ
π(θ) min

{
1,

L(θ)

m

}
dθ =

1
m

∫
θ
π(θ) min {m,L(θ)} dθ =

Z (m)

m

Idea:
Use this A/R method to estimate Z (m)

Since m was median, probability of acceptance at least
about 1/2
So can be used to get good approximation of Z (m) quickly
This way, Z (m) becomes our center
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Numerical example

Draw 11 random variates iid from π:

(θ1, . . . , θ11) = (.37, .27, .72, .52, .33, .90, .07, .52, .05, .03, .60)

Plug into L(θ):

(L(θ1), . . . ,L(θ11)) = ( .13 , .07, .52, .27, .11, .81, . . . , .36)

Repeat 1000 times:
Draw θ ∼ π, accept w/ prob. min{1,L(θ)/.13}

Suppose accept 650 times:
Z (.13) ≈ 650

1000(.13)
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Apples and Oranges
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Comparisons

TPA draws ideas from...
The Product Estimator
Nested Sampling
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Product Estimator
Cooling schedule fixed

βB′ = β0 < β1 < β2 < · · · < βk = βB

Make sure µ(A(βi))/µ(A(βi+1)) is bounded away from 0
Using basic A/R, find:

p̂i ≈
µ(A(βi))

µ(A(βi+1))

Take the product of individual estimates:

p̂ =
k−1∏
i=0

p̂i ≈
µ(A(β0))

µ(A(βk ))
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Example product estimator

Suppose

µ(A(β0))

µ(A(β1))
= .6,

µ(A(β1))

µ(A(β2))
= .4,

µ(A(β2))

µ(A(β3))
= .8,

Then
µ(A(β0))

µ(A(β3))
=
µ(A(β0))

µ(A(β1))
· µ(A(β1))

µ(A(β2))
· µ(A(β2))

µ(A(β3))

Mark Huber and Sarah Schott, CMC,Duke Random cooling schedules 50/54



Output of product estimator

Final estimate
Scaled product of binomial distributions
Finding std. dev. easy, bounding tails is hard

Cooling schedule
Need new schedule for every problem
Works best when µ(A(βi))/µ(A(βi+1)) same for all i
Difficult to do: if knew how to do that, wouldn’t need the
product estimator
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Comparison to nested sampling

Why use TPA instead of nested sampling?
Running time same order as nested sampling
Output distribution known exactly
Sets in nested sampling tend to exaggerate multimodality
TPA tends to remove it
Distributions usually easier (moving towards center) in later
steps
No unknown derivatives in error bounds
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Conclusions

New algorithm: TPA
Guaranteed performance bounds on Monte Carlo
integration
(No variance estimate or unknown derivatives appear)
Speed: 2[ln(1/p)]2 much better than product estimator

Future directions
Convex sets and exponential families ln(1/p) algorithms
exist
Convex sets: pedestal method
Exponential families: recursive adaptive scheduling
Account for Rao-Blackwell-ization of estimate
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