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Randomness can be used for good or evil

Saturday Morning Breakfast Cereal 17 February, 2007
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Numerical Integration
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Numerical integration

Not just for those who can’t master integration by parts
Many integrands have no elementary antiderivatives
Example: ∫ a

−∞

1√
2�

e−x2/2 dx

Some antiderivatives exponentially large in input
Example: ∫ a

0
x1000000 exp(−x) dx

Antiderivative has a million (and one) terms!
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1-D: easy
Fortunately, in 1-D numerical integration easy

Use rectangles, or trapezoidal rule, or Simpson’s rule
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Higher dimensions, not so easy

In 1-D, k intervals

 

In 2-D, k2 squares
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Growth in d dimensions

In d dimensions, need kd squares
Exponential growth in d
Called “The curse of dimensionality”

High dimensional integration arises often
In statistics, X1,X2, . . . ,Xn are data values
For A ⊆ ℝn, need to find ℙ((X1, . . . ,Xn) ∈ A)
In combinatorics/CS, #P complete problems
Graph with n nodes leads to n dimensional problem
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Solution: Shoot at it randomly
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Analyzing the algorithm

Algorithm
Fire n times at box
Say you hit H times

Analysis
Let p be chance hit green region
Then

p =
volume(region)

volume(box)

Estimate

p̂ =
H
n
, ˆvolume(region) =

H
n
⋅ volume(box).
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How well does it work?

True answer: 3.0933...
After 10 iterations 5.04
After 103 iterations 2.8656
After 105 iterations 3.0870
After 107 iterations 3.0935

About a factor of 100 per extra digit
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Probability explanation

Mean value = average = expected value

E[p̂] = p

Standard deviation

SD[p̂] =

√
p(1− p)

n

Relative error
SD(p̂)

p
=

√
1− p

np
≤ �
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Bounding error

Get relative error below �

n ≈ 1− p
p
⋅ 1
�2

The 1/�2 effect called “Monte Carlo” error
Best you can do in general
Independent of the dimension!

Solution: Use “interior” rather than “exterior” sampling
Need ability to sample from green region rather than box
The algorithm is called “TPA”
Combines “product estimator” [1] with “nested
sampling” [3]
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The Algorithm
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The Tootsie Pop Algorithm

What is a Tootsie Pop?
Hard candy lollipops with a tootsie roll (chewy chocolate) at
the center

In 1970, Mr. Owl was asked the question:
How many licks does it take to get to the center of a
Tootsie Pop?
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The chocolate chewy center

Area under .2 line
almost all green
That’s our chewy
center
Hard candy is
original green
region
Next question:
how do we lick?
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Only shoot at the green part

Don’t shoot
bounding box
Only shoot at
green region
Easier: don’t need
to maximize
function!
Usually done in
high dimensions
using Markov
chains
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Only consider region below point

A1 = 89%

Let A1 denote the percentage of green region below the point
Note ℙ(A1 ≤ 1/2) = 1/2
For all a ∈ [0,1], ℙ(Ai ≤ a) = a, call A1 uniform on [0,1]
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Keep on licking!

After choosing first
point
Draw next point
from region below
first point
Continue “licking”
until reach
“‘center”
In example, three
licks
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The number of licks

Let
N = the number of licks

Set

r =
volume(chewy center)
volume(green region)

, A1,A2, . . .
iid∼ Unif([0,1])

In terms of Ai :

N = smallest value of n such that A1A2A3 ⋅ ⋅ ⋅An ≤ r
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Multiplication to addition

Multiplication is hard:

N = smallest value of n such that ln A1 + ln A2 + ⋅ ⋅ ⋅+ ln An ≤ ln r

Note ln x < 0 for x ∈ (0,1)

N = smallest n such that (− ln A1)+(− ln A2)+⋅ ⋅ ⋅+(− ln An) ≤ − ln r
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A day at the races

0 − ln r

Roll A1, move horse forward (− ln Ai)

Count how many steps to reach − ln r

steps Ai − ln Ai
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A day at the races

0 − ln r

Roll A1, move horse forward (− ln Ai)

Count how many steps to reach − ln r

steps Ai − ln Ai
1 .23 1.469
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A day at the races

0 − ln r

Roll A1, move horse forward (− ln Ai)

Count how many steps to reach − ln r

steps Ai − ln Ai
1 .23 1.469
2 .48 .7339
3 .33 1.1086
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Poisson process

This particular “race” is called a Poisson Process
Very well studied process
Again let N be number of steps until reach center

ℙ(N = 1) = r , ℙ(N = i) = r
(− ln r)i−1

(i − 1)!

Average value of N is (− ln r) + 1
Standard deviation of N is

√
− ln r

Mark Huber and Sarah Schott, CMC,Duke Better Numerical Integration through Randomness 23/37



Want to estimate r , not − ln r

Repeat experiment k times

N1,N2, . . . ,Nk

Estimate r :

S =
N1 + N2 + ⋅ ⋅ ⋅+ Nk − k

k
, r̂ = e−S

For this estimate:

E[r̂ ] = r , relative error =
− ln r√

k
=

ln(1/r)√
k

.
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The result

Basic Monte Carlo

# of samples =
1
�2
⋅ 1− r

r

TPA

# of samples =
1
�2
⋅
(

ln
1
r

)2
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Applications
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The Autonormal model

Spatial model
Soil quality for
each square
Quality between 0
(blue) and 1
(green)
Want more likely
close squares
close quality
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Autonormal model assigns probabilities

For vector x⃗ ∈ [0,1]16:

ℙ({dx⃗}) =
w�(x)
Z (�)

dx⃗ , w�(x) =
∏

i,j adjacent

exp(−�(x(i)−x(j))2/2)

where

Z (�) =

∫ 1

0

∫ 1

0
⋅ ⋅ ⋅
∫ 1

0
w(x) dx(1) dx(2) ⋅ ⋅ ⋅ dx(16)

Goal: given data x , find � that maximizes w�(x)/Z (�)
(Called the maximum likelihood estimator.)
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TPA for Autonormal

Ingredients
Z (0) = 1 is hard candy shell (let �0 = 0
Z (�) is chewy center
Note Z (�′) shrinks as �′ grows
Gives nested volumes
At �i , sample X uniformly from volume
Let �i+1 be smallest �′ so X still in volume
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Bayesian inference

Theorem (Bayes’ Rule)

ℙ(A∣B) =
ℙ(B∣A)ℙ(A)

ℙ(B)

Basic outline
Parameters are themselves random variables with
probabilities
Take data
Use data + Bayes’ rule to update probabilities
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Bayesian Example:Autonormal

Initial probabilities (called prior)
Example prior: ℙ(� = 1) = 1/2, ℙ(� = 0) = 1/2
Data X = x , suppose w(x) = 4.523
Bayes’ Rule:

ℙ(� = 1∣X ∈ dx⃗) =
ℙ(X ∈ dx⃗ ∣� = 1)ℙ(� = 1)

ℙ(X ∈ dx⃗)

=
(w1(x⃗)/Z (1))(1/2)

(w1(x⃗)/Z (1))(1/2) + (w0(x⃗)/Z (0))(1/2)

Need to know Z (0) and Z (1)

Mark Huber and Sarah Schott, CMC,Duke Better Numerical Integration through Randomness 31/37



#P complete problems

Computational Complexity
Example: Traveling Salesman Problem
Problem in NP: Is there a TSP path of length ≤ 60?
Problem in #P: How many TSP paths of length ≤ 60?

Some #P problems where TPA is applicable:
Volume of a convex body
Counting linear extensions of a poset
Partition function for the Ising model
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How to generate samples from green region?

Markov chains
Take random steps
from starting state
Ex: Choose
random vertical
value
Then choose
random horizontal
value
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Raises further questions

For a Markov chain
How many steps until state close to random?
(How many times must a deck of cards be riffle shuffled?)
How best to design Markov chain?
Markov chain Monte Carlo (MCMC) most popular method,
there are others
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But a more important question...

How many licks does it take to get the center of a Toosie
Pop?

Purdue created a licking machine, 364 licks
Purdue also ran human experiments: 252 licks
U. Michagan created a licking machine, 411 licks
Swarthmore Junior HS ran human experiment: 144 licks
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Summary: results and future work

The Tootsie Pop algorithm
Interior rather than exterior sampling
No need for bounding box
Do need a chewy center (usually easy to find)
Many applications!

Open questions
Associated sampling problems
Exponential families need # of samples equal to

1
�2

(
ln

1
r

)
Can TPA match this?
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