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The basic Monte Carlo framework

Given ingredients....
∙ Large set B containing smaller set B′

∙ Ability to generate samples uniformly from B
The goal
∙ Approximate A = �(B)/�(B′)
∙ Create (�, �) randomized approximation algorithm:

ℙ((1 + �)−1 ≤ A/Â ≤ 1 + �) ≥ 1− �.
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Basic algorithm

Simple Monte Carlo
∙ Draw X1, . . . ,XN iid from B
∙ Let Â be #{i : Xi ∈ B′}/N

Problem
∙ Want SD(Â)/E[Â] ≤ �
∙ Need to take �−2A = �−2�(B)/�(B′) samples to do this!
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The product estimator approach

Use of telescoping products for estimate
∙ Algorithm: Jerrum, Valiant, Vazirani (1986)
∙ Name “product estimator” Fishman (1996)
∙ Idea: insert sequence of regions between B and B′

∙ Index sequence of regions by “cooling schedule” �0, �1, . . . , �k
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More on the product estimator

Product Estimator
∙ Estimate Z (�i)/Z (�i+1) for all i
∙ Let

Ẑ (�0)

Z (�k )
=

Ẑ (�0)

Z (�1)

Ẑ (�1)

Z (�2)
⋅ ⋅ ⋅

ˆZ (�k−1)

Z (�k )
.

Running time
∙ If Z (�i)/Z (�i+1) ≤ c for all i ...
∙ ...then k ≥ ln A/ ln c.
∙ Needs 28ck2�−2 ln(�−1) samples...
∙ ...at least

28
c

(ln c)2 (ln A)2�−2 ln(�−1)
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The classic question of the Tootsie Pop

Tootsie Pop
∙ Similar to B′ ⊆ B
∙ A hard candy lollipop filled with a chocolate chewy center

∙ “How many licks does it take to get to the center of a Tootsie pop?”
∙ Tootsie Pop Algorithm = TPA
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Outline of TPA

Requirement
∙ Say temperature � indexes set B(�)

∙ Require: � > �′ ⇒ B(�) ⊂ B(�′)

Approach
∙ Draw X ∼ Unif(B(�))

∙ Let �′ = sup{b : X ∈ B(b)}

X

B(�′)

B(�)
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Repeat several times

After 3 moves, went from B to B′
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Chopping the partition function in half

Theorem
Draw X ∼ Unif(B(�)), let �′ = sup{b : X ∈ B(b)}. Then

Z (�′)

Z (�)
∼ Unif([0,1]).

Notes
∙ Ex: ℙ(Z (�′)/Z (�)) ≤ 0.3 is ℙ(X ∈ B(b)) where b satisfies

Z (b)/Z (�) = 0.3
∙ On average, cuts partition function in half
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In log space

So far:
Z (�′) = Z (�)U, U ∼ Unif([0,1])

Working in log space:
f (�) := log(Z (�))

Products change to additions:

f (�′) = f (�) + E , E ∼ Exp(1).
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Poisson process

Result
∙ Obtain sequence of temps: �0, �1, . . .

∙ f (�i) forms Poisson process
∙ For B′ ⊂ B, say B(�B′) = B′

∙ Let N = max{i : f (�i) > f (�B′)}
∙ Then N ∼ Pois(ln A)

Mark Huber and Sarah Schott (CMC,Duke) Cooling the Product Estimator JSM 13 / 24



Advantages to Poisson process

Repeat k times
∙ Originally has Poisson process rate 1
∙ Restart k times from B, run until reach B′

∙ Result: Poisson process rate k

+
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Determining number of runs

How to set k?
∙ Let Nk ∼ Pois(k ln A)

∙ Then E[Nk/k ] = ln A...
∙ ...and SD[Nk/k ] =

√
(ln A)/k

∙ Want SD[Nk/k ] ≤ �
∙ Set k = �−2 ln A
∙ Total number of samples: �−2(ln A)2
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Determining number of samples

Two phases
∙ First phase set k = ln(2�−1)

∙ Returns estimate of ln A (call estimate ℓ̂)
∙ With probability 1− �/2, ℓ̂ > ln A−

√
ln A

∙ Second phase use k = �−2(ℓ̂+
√
ℓ̂+ 1)
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All temperatures

Compensated Poisson process
∙ At = Nk

t − kt is a martingale
∙ At close to 0 means Nt close to f (⋅)
∙ Has right continuous sample paths
∙ So use approach of Doob’s maximal inequality:
∙ Bound ℙ(sup{At : t ∈ [�B, �B′ ]} ≤ �)
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Using Chernoff Bounds to bound entire path

Exponentiate and use Strong Markov Property
∙ For all � > 0, exp(�At ) is a nonnegative submartingale

T := inf{t : At > �}
exp(�At ) ≥ exp(��)ℙ(T ≤ t)

∙ Set � = ln A/�...
∙ Resulting bound:

ℙ(T ≤ t) ≤ exp(−(1/2)k�2(1− 2�)/ ln A)

∙ Set k = 2(ln A)�−2 ln �−1
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Faster cooling schedule

Beating the (ln A)2 bound
∙ Suppose Z (�) =

∑m
i=0 ai exp(−�i)

∙ Equivalent: w(x ;�) = exp(−�H(x)), call H(x) the Hamiltonian
∙ Then can do better than Bernoulli random variables with

importance sampling
∙ Estimate Z (�)/Z (�′) by drawing X ∼ w(⋅;�), using

exp(−�H(X ))/exp(−�′H(X ))

Drawback
∙ Not easy to find good cooling schedule for problem
∙ SVV uses 108 samples to get �i ’s.
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Brief description of SVV

Takes advantage of form of f (�) = ln Z (�)

∙ Convex function
∙ In many places, almost concave

f (�)

�
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Where our work fits in

Hard to find those places in f
∙ Relatively complex procedure
∙ SVV uses 108 samples as preprocessing step

Our goal:
∙ Before used random changes in temp
∙ Are there random moves for temperature...
∙ ...to find these places in f automatically?
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Summary: accomplishments and future goals

Fixed temp cooling schedule at least

28
c

(ln c)2 (ln A)2�−2 ln(�−1)

∙ Returns single estimate
The TPA:

[(ln A)(ln A +
√

ln A)�−2 + ln A] ln(2�−1)

∙ Estimate good for all �
Next step:
∙ Θ(ln A) for problems with Hamiltonian
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