Speeding up the product estimator using random temperatures

Mark Huber¹ and Sarah Schott²

¹Department of Mathematics and Computer Science, Claremont McKenna College

²Department of Mathematics, Duke University

5 Aug, 2009

Given ingredients....

- Large set *B* containing smaller set *B'*
- Ability to generate samples uniformly from B

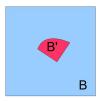
The goal

- Approximate $A = \mu(B)/\mu(B')$
- Create (ϵ, δ) randomized approximation algorithm:

$$\mathbb{P}((1+\epsilon)^{-1} \leq A/\hat{A} \leq 1+\epsilon) \geq 1-\delta.$$

Simple Monte Carlo

- Draw X_1, \ldots, X_N iid from B
- Let \hat{A} be $\#\{i: X_i \in B'\}/N$



Problem

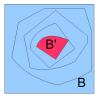
• Want
$$\mathsf{SD}(\hat{A})/\mathbb{E}[\hat{A}] \leq \epsilon$$

The basic product estimator

Accelerating the schedule

Use of telescoping products for estimate

- Algorithm: Jerrum, Valiant, Vazirani (1986)
- Name "product estimator" Fishman (1996)
- Idea: insert sequence of regions between B and B'



Index sequence of regions by "cooling schedule" β₀, β₁,..., β_k

Product Estimator

• Estimate $Z(\beta_i)/Z(\beta_{i+1})$ for all *i*

Let

$$\frac{\widehat{Z(\beta_0)}}{Z(\beta_k)} = \frac{\widehat{Z(\beta_0)}}{Z(\beta_1)} \frac{\widehat{Z(\beta_1)}}{Z(\beta_2)} \cdots \frac{\widehat{Z(\beta_{k-1})}}{Z(\beta_k)}.$$

Running time

- If $Z(\beta_i)/Z(\beta_{i+1}) \leq c$ for all *i*...
- ...then $k \ge \ln A / \ln c$.
- Needs $28ck^2\epsilon^{-2}\ln(\delta^{-1})$ samples...
- ...at least

$$28 \frac{c}{(\ln c)^2} (\ln A)^2 \epsilon^{-2} \ln(\delta^{-1})$$

A B F A B F

The basic product estimator

Sac

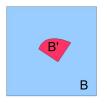
∃ ► < ∃</p>

< 17 ▶

The classic question of the Tootsie Pop

Tootsie Pop

- Similar to $B' \subseteq B$
- A hard candy lollipop filled with a chocolate chewy center



- "How many licks does it take to get to the center of a Tootsie pop?"
- Tootsie Pop Algorithm = TPA

- 4 B M 4 B M

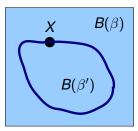
Outline of TPA

Requirement

- Say temperature β indexes set $B(\beta)$
- Require: $\beta > \beta' \Rightarrow B(\beta) \subset B(\beta')$

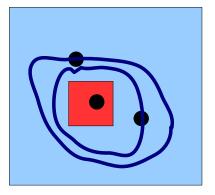
Approach

- Draw X ~ Unif(B(β))
- Let $\beta' = \sup\{b : X \in B(b)\}$



∃ ► < ∃</p>

Repeat several times



After 3 moves, went from B to B'

< 47 ▶

DQC

Theorem

Draw $X \sim \text{Unif}(B(\beta))$, let $\beta' = \sup\{b : X \in B(b)\}$. Then

$$rac{Z(eta')}{Z(eta)}\sim {\sf Unif}([0,1]).$$

Notes

- Ex: $\mathbb{P}(Z(\beta')/Z(\beta)) \le 0.3$ is $\mathbb{P}(X \in B(b))$ where *b* satisfies $Z(b)/Z(\beta) = 0.3$
- On average, cuts partition function in half

・ 同 ト ・ ヨ ト ・ ヨ ト

So far:

$$Z(\beta') = Z(\beta)U, \ U \sim \text{Unif}([0,1])$$

Working in log space:

$$f(\beta) := \log(Z(\beta))$$

Products change to additions:

$$f(\beta') = f(\beta) + E, \ E \sim \mathsf{Exp}(1).$$

DQC

э

イロト イロト イヨト イヨト

Result

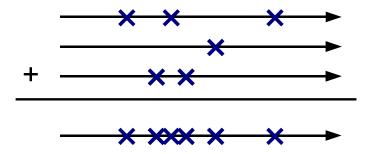
- Obtain sequence of temps: β_0, β_1, \ldots
- *f*(β_i) forms Poisson process
- For $B' \subset B$, say $B(\beta_{B'}) = B'$
- Let $N = \max\{i : f(\beta_i) > f(\beta_{B'})\}$
- Then *N* ~ Pois(In *A*)

크 > 《 크

Advantages to Poisson process

Repeat k times

- Originally has Poisson process rate 1
- Restart k times from B, run until reach B'
- Result: Poisson process rate k



How to set k?

- Let N^k ∼ Pois(k ln A)
- Then $\mathbb{E}[N^k/k] = \ln A...$
- ...and $SD[N^k/k] = \sqrt{(\ln A)/k}$
- Want $SD[N^k/k] \le \epsilon$
- Set $k = e^{-2} \ln A$
- Total number of samples: $\epsilon^{-2}(\ln A)^2$

Two phases

- First phase set $k = \ln(2\delta^{-1})$
- Returns estimate of ln A (call estimate $\hat{\ell}$)
- With probability $1 \delta/2$, $\hat{\ell} > \ln A \sqrt{\ln A}$
- Second phase use $k = \epsilon^{-2}(\hat{\ell} + \sqrt{\hat{\ell}} + 1)$

Compensated Poisson process

- $A_t = N_t^k kt$ is a martingale
- A_t close to 0 means N_t close to $f(\cdot)$
- Has right continuous sample paths
- So use approach of Doob's maximal inequality:
- Bound $\mathbb{P}(\sup\{A_t : t \in [\beta_B, \beta_{B'}]\} \le \epsilon)$

Using Chernoff Bounds to bound entire path

Exponentiate and use Strong Markov Property

• For all $\alpha > 0$, $\exp(\alpha A_t)$ is a nonnegative submartingale

$$T := \inf\{t : A_t > \epsilon\}$$
$$\exp(\alpha A_t) \geq \exp(\alpha \epsilon) \mathbb{P}(T \le t)$$

- Set $\alpha = \ln A / \epsilon \dots$
- Resulting bound:

$$\mathbb{P}(T \le t) \le \exp(-(1/2)k\epsilon^2(1-2\epsilon)/\ln A)$$

• Set
$$k = 2(\ln A)e^{-2} \ln \delta^{-1}$$

∃ ► ∢

The basic product estimator

2 "Tootsie Pop Algorithm"

3 Accelerating the schedule

크 > < 크

Beating the $(\ln A)^2$ bound

- Suppose $Z(\beta) = \sum_{i=0}^{m} a_i \exp(-\beta i)$
- Equivalent: $w(x; \beta) = \exp(-\beta H(x))$, call H(x) the Hamiltonian
- Then can do better than Bernoulli random variables with importance sampling
- Estimate Z(β)/Z(β') by drawing X ~ w(·; β), using exp(-βH(X))/exp(-β'H(X))

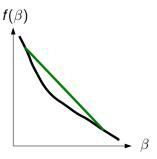
Drawback

- Not easy to find good cooling schedule for problem
- SVV uses 10^8 samples to get β_i 's.

・部・・モ・・モ・ 日

Takes advantage of form of $f(\beta) = \ln Z(\beta)$

- Convex function
- In many places, almost concave



Hard to find those places in f

- Relatively complex procedure
- SVV uses 10⁸ samples as preprocessing step

Our goal:

- Before used random changes in temp
- Are there random moves for temperature...
- ...to find these places in *f* automatically?

Summary: accomplishments and future goals

Fixed temp cooling schedule at least

$$28 \frac{c}{(\ln c)^2} (\ln A)^2 \epsilon^{-2} \ln(\delta^{-1})$$

• Returns single estimate

The TPA:

$$[(\ln A)(\ln A + \sqrt{\ln A})\epsilon^{-2} + \ln A]\ln(2\delta^{-1})$$

• Estimate good for all β

Next step:

• $\Theta(\ln A)$ for problems with Hamiltonian

・ 同 ト ・ ヨ ト ・ ヨ ト

M. L. Huber and S. Schott A product estimator for all temperatures preprint, 2009

		s	

M. Jerrum, L. Valiant, and V. Vazirani Random generation of combinatorial structures from a uniform distribution. *Theoret. Comput. Sci.*, **43**, 169–188, 1986

D. Štefankovič, S. Vempala, and E. Vigoda. Adaptive simulated annealing: A near-optimal connection between sampling and counting. arXiv:cs/0612058v1[cs.DS], 2006

Sac

< ロト < 同ト < ヨト < ヨト