Bounding Chain Techniques for Perfect Sampling

Mark Huber Dept. of Mathematics and Institute of Statistics and Decision Sciences Duke University mhuber@math.duke.edu www.math.duke.edu/~mhuber

Water, Markov chains, and NP

- Q: What do they have in common?
- A: All three exhibit phase transitions
- Water: Liquid-gaseous form at temperature
- MC: Some parameters fast-others slow
- NP: Approximate within 20% fast within 19.999999% slow

Linked through simple physical models

Example: Hard Core Gas Model

Very simple model of gases:

The rule: no two adjacent sites occupied CS version: Occupied sites an independent set

Adding a temperature...

Probability distribution on independent sets

 $x(i) = \begin{cases} 1 & \bullet \\ 0 & \bullet \end{cases}$ $\pi(x) = \frac{\lambda^{\sum x}}{Z_{\lambda}}$

 λ known as "activity" or "fugacity" Z_{λ} unknown normalizing constant

High Activity

As λ changes, distribution shifts:

 λ large gives checkerboard pattern Long range behavior

Probability distribution on independent sets

 $x(i) = \begin{cases} 1 & \bullet \\ 0 & \bullet \end{cases}$ $\pi(x) = \frac{\lambda^{\sum x}}{Z_{\lambda}}$

 λ low, no pattern Short range behavior

The phase transition

 Z_{λ} does not change analytically in λ (discontinuities in derivatives) Effect: correlations decline polynomially instead of exponentially

The complexity connection

Linked to maximum independent set

- ♦ NP complete problem
- for fixed λ and Δ (max degree of graph) sampling gives an approximation algorithm
- known that cannot approximate within a constant factor (Dyer, Frieze, Jerrum '98) when

$$\lambda \ge \frac{25}{\Delta}$$

unless RP = NP

Markov chains

Widespread use for Monte Carlo algorithms

- Often only method available
- Simple Example: Shuffling Cards
- Idea: take lots of small random moves
- Under simple conditions (connectness, aperiodicity) converges to stationary distribution
- Drawback: do not know mixing time of chain
- For (unknown) reasons, mixing time can be slow at phase transitions

Standard Gibbs sampler

At each step, make small random change: Step 1: Choose i uniformly from nodes VStep 2: Choose x(i) from distribution conditioned on $x(V \setminus \{i\})$

Example 1

The Markov chain approach

Start with a configuration x₀
 Take "lots" of steps in the Markov chain
 Output final state x_t as random sample

The Good News: Can design a chain for nearly all distributions

The Bad News: Don't know what "lots" is

Mixing Time

Markov chain approach often rediscovered (right along with its problems)

Mixing TimeWarm-up TimeInitialization TimeBurn-in TimeDememorization Time

While mixing time unknown, MCMC heurestic rather than algorithm

Bounding chain idea

Huber '98, Haggstrom & Nelander '99

Idea: Don't need to know state of chain in order to take steps

Requires: Implementation of chain on computer (formally: complete coupling)

Perfect Sampling: (CFTP Propp Wilson '95) Start chain in unknown stationary state, run chain forward hoping state becomes known

Computer implementation

Choose *i* uniformly from *V* Choose *U* uniformly from [0,1] If $U \le \frac{1}{1+\lambda}$ or *j* neighbors *i* and x(i)=1

Let $x(i) \leftarrow 1$

Bounding chain

Introduce new value for x(i) means unknown

x(i) = ?

Consistent with

Bounding chain

Can have mix of known and unknown

Consistent with

• • •

Formal definition

In General

 $x_t \in C^V$ $y_t \in (2^C)^V$

Independent Sets $x_t \in \{0,1\}^V$ $y_t \in \begin{cases} \{0\} & \bigcirc \\ \{1\} & \bigcirc \\ \{0,1\} & \bigcirc \end{cases}$

 $\{y_t\}$ is a bounding chain if Markovian and $x_t(i) \in y_t(i) \quad \forall i \rightarrow x_{t+1}(i) \in y_{t+1}(i) \quad \forall i$

Overall

Start Unknown Sample

Take Fixed # of Steps

Hopefully State Ends Known

A nagging question...

Q: What do we do if the sample is still unknown?

A: Use Coupling from the past (Propp/Wilson '96)

CFTP(T) Set y_0 to unknown state $(y_0(i)=C \ \forall i)$ Take T steps If state known, output single $x_T \in y_T$ Else Set $x_0 = CFTP(T)$ Output x_T

"from the past" point of view

Alternate way of looking at CFTP:

"from the past" point of view

Alternate way of looking at CFTP:

Keep going back in time until succeed

Theorem: Expected running time for this procedure is $O(n \ln n)$ when

Proof Idea: Number of O decreases on average at each step when λ small (note O only created next to O)

More complex chain

Dyer and Greenhill '00 created improved chain:

Swap Move

If exactly one neighbor occupied (and roll to add node to ind set) Swap with probability *p*

Works well for bounding chain

(Huber '99) swap swap

Better Results

Theorem: Expected running time for this procedure is $O(n \ln n)$ when

$$\lambda \le \frac{2}{\Delta - 2}$$

(about 3 or 4 times as fast in practice as previous method)

Other approaches

Other perfect sampling methods

- CFTP like algorithms
 (Fill, Machida, Murdoch, Rosenthal '99)
 (Read once CFTP Wilson '99)
- The Randomness Recycler (Fill, Huber '99)
- All provably polynomial when

$$\lambda = O\left(\frac{1}{\Delta}\right)$$

Conclusions

The problem:

Phase transitions appear in unlikely situations Of practical importance to try to eliminate

What bounding chains give:

Avoids the mixing time question for Markov chains Allows use of perfect sampling protocols like CFTP Delivers samples exactly from desired distribution Cannot beat the underlying Markov chain Still a gap between where we can efficiently sample and where we can't unless P = NP