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Water, Markov chains, and NPWater, Markov chains, and NP

Q: What do they have in common?
A: All three exhibit phase transitions

Water:  Liquid-gaseous form at temperature
MC:  Some parameters fast-others slow
NP:  Approximate within 20% fast
within 19.9999999% slow

Linked through simple physical models



Example:  Hard Core Gas ModelExample:  Hard Core Gas Model

Very simple model of gases:

The rule:  no two adjacent sites occupied
CS version:  Occupied sites an independent set



Adding a temperature...Adding a temperature...

Probability distribution on independent sets

    known as “activity” or “fugacity”
      unknown normalizing constant
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High ActivityHigh Activity

As     changes, distribution shifts:

    large gives checkerboard pattern
Long range behavior

x i ={10
 x=∑ x
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Low ActivityLow Activity

Probability distribution on independent sets

    low, no pattern
Short range behavior

x i ={10
 x=∑ x
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The phase transitionThe phase transition

 does not change analytically in
(discontinuities in derivatives)
Effect:  correlations decline polynomially

instead of exponentially

Z 



The complexity connectionThe complexity connection

Linked to maximum independent set
       complete problem
for fixed        and         (max degree of graph) 
sampling gives an approximation algorithm
known that cannot approximate within a con-
stant factor (Dyer, Frieze, Jerrum '98) when

unless 

 

NP

≥25


RP=NP



Markov chainsMarkov chains
Widespread use for Monte Carlo algorithms

Often only method available 
Simple Example:  Shuffling Cards
Idea:  take lots of small random moves
Under simple conditions (connectness, aperi-
odicity) converges to stationary distribution
Drawback:  do not know mixing time of chain
For (unknown) reasons, mixing time can be 
slow at phase transitions



Standard Gibbs samplerStandard Gibbs sampler
At each step, make small random change:

Step 1:  Choose     uniformly from nodes
Step 2:  Choose         from distribution

conditioned on 

i
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A more interesting example...A more interesting example...
Example 2
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A more interesting example...A more interesting example...
Example 2
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The Markov chain approachThe Markov chain approach
1) Start with a configuration
2) Take “lots” of steps in the Markov chain
3) Output final state      as random sample 

x0

x t

The Good News:
Can design a chain for nearly all distributions

The Bad News:
Don't know what “lots” is



Mixing TimeMixing Time
Markov chain approach often rediscovered

(right along with its problems)

Mixing TimeMixing Time

Initialization TimeInitialization Time

Warm-up TimeWarm-up Time

Burn-in TimeBurn-in Time

Dememorization TimeDememorization Time

While mixing time unknown, MCMC 
heurestic rather than algorithm



Bounding chain ideaBounding chain idea
Huber '98, Haggstrom & Nelander '99

Idea:  Don't need to know state of chain in  
order to take steps

Requires:  Implementation of chain on   
computer (formally: complete coupling)

Perfect Sampling:  (CFTP Propp Wilson '95)
Start chain in unknown stationary state, 
run chain forward hoping state becomes known



Computer implementationComputer implementation
Choose      uniformly from

Choose      uniformly from

If                  or    neighbors   and

Let            

i V

U [0,1]

U≤ 1
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j i x i =1

x i 1



Bounding chainBounding chain
Introduce new value for         means unknown         

   

x i 
x i=?

Consistent with           

...



Bounding chainBounding chain
Can have mix of known and unknown           

Consistent with           

...
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Bounding chainBounding chain

U≤ 1
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Bounding chainBounding chain
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Formal definitionFormal definition

x t∈{0,1}V
In General Independent Sets

x t∈CV

y t∈2
C V

y t∈{ {0}
{1}
{0,1}

x t i ∈ y t i   ∀ i x t1i ∈ y t1i   ∀ i

    is a bounding chain if Markovian and{y t}



OverallOverall
Start

Unknown
Sample

Take Fixed 
# of Steps

...

Hopefully 
State Ends 

Known



A nagging question...A nagging question...
Q: What do we do if the sample is still unknown?

A: Use Coupling from the past (Propp/Wilson '96)

CFTP(   )
Set      to unknown state
Take     steps    

    If state known, output single
Else

Set 
Output         

T
y0  y0i =C  ∀ i 

T
xT∈ yT

x0=CFTP T 
xT



““from the past” point of viewfrom the past” point of view
Alternate way of looking at CFTP:

t
t=0−T



““from the past” point of viewfrom the past” point of view
Alternate way of looking at CFTP:

t
t=0−T−3T

Keep going back in time until succeed



ResultsResults

Theorem:  Expected running time for 
this procedure is              whenO n ln n

≤ 1
−3

Proof Idea:  Number of      decreases 
on average at each step when     small

(note      only created next to    )




More complex chainMore complex chain

Dyer and Greenhill '00 created improved chain:

Swap Move
If exactly one neighbor occupied

(and roll to add node to ind set)
Swap with probability p

swap



Works well for bounding chainWorks well for bounding chain

(Huber '99)

swap

swap



Better ResultsBetter Results

Theorem:  Expected running time for 
this procedure is              whenO n ln n

≤ 2
−2

(about 3 or 4 times as fast in practice 
as previous method)



Other approachesOther approaches

Other perfect sampling methods
CFTP like algorithms
(Fill, Machida, Murdoch, Rosenthal '99)
(Read once CFTP Wilson '99)
The Randomness Recycler
(Fill, Huber '99)
All provably polynomial when

=O 1




ConclusionsConclusions

The problem:
Phase transitions appear in unlikely situations
Of practical importance to try to eliminate

What bounding chains give:
Avoids the mixing time question for Markov chains
Allows use of perfect sampling protocols like CFTP
Delivers samples exactly from desired distribution
Cannot beat the underlying Markov chain
Still a gap between where we can efficiently sample and

where we can't unless P = NP


