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Example

Example (Who is the best tennis player?)
Jelena, Serena, Dinara, or Elena?

Unfortunately, they only have time to play 3 games
@ Jelena beats Dinara
@ Serena beats Dinara
@ Jelena beats Elena

Who is most likely to be number 1?
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A simple model

Prior distribution: All rankings equally likely
Conditionon J<D,S=<D,J=<E
Posterior distribution uniform on

e JSDE

e JSED

e JESD

e SJDE

e SJED

Posterior probability of being in first place:

@ P(J =first) = 3/5,P(S = first) =2/5

@ P(D = first) = P(E =first) =0
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The problem

Posterior uniform over linear extensions of partial order

. #oflin. ext. o with o(1) = A
P(Afirst) = Total #of lin. ext. x

The bad news: counting linear extensions is # P-complete'

Solution: develop approximation algorithms

"Brightwell & Winkler 1991
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The results

Two main results
@ A new method for random generation of linear extensions
@ A new method for turning samples into counting algorithm
Improvement
@ Sampler: Can be much faster on sparse partial orders
@ Counting: ©(n/(In n)?) faster
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0 Applications of linear extensions
@ Machine learning
@ Convex rank tests

e Previous work
@ Approximating volume of convex bodies
@ Perfect simulation
@ The product estimator

e The new algorithm
@ Reducing # of levels in product estimator
@ Retooling perfect sampler to handle new levels
@ Results
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Partial orders

Notation:

[n] = {1,....n}
P = (=,[n]) is a partial order on [n]

A partial order has three properties:
@ Reflexive: a< a
@ Antisymmetric: a < band b < aimpliesa=»b
@ Transitive: a=< band b < cimpliesa=<rc¢c
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Linear extensions

A linear extension of a partial order is a permutation o of [n] that
respects the partial order, so

i <j—o(i) <a(j)ora(i),o(j) unrelated

Example: Suppose A < B then permutation must have the form:

*...*A*...*B*...*

Goal: count €, the set of linear extensions of P

Mark Huber (Duke University) Approximating # of linear extensions CASTA 2008 8/42



Challenges

Problem:
@ counting linear extensions is #P-complete
@ #P complete problems are harder than NP-complete
@ unlikely to find polynomial time algorithm
Solution:
@ Develop Monte Carlo approximation algorithm
@ Come within factor of 1 + ¢ with probability at least 1 — §
@ Want run time poly(n)[In(1/6)]/e?
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Machine learning?

Learning a binary relation
@ Example: Tennis example—ranked items with some order
@ Example query: Does A outrank B?
@ Goal is to predict answers from a few queries
@ Step 1: Use queries to create partial order
@ Step 2: Use random linear extension to make predictions
The problem here is to sample linear extensions

2Goldman, Rivest, & Shapire 1989
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Convex rank tests®

Nonparametric statistical model: all permutations equally likely
@ Rank tests used for ordered data
@ Tests can be viewed as partition of symmetric group S,
@ Find p-values by counting size of equivalence classes

@ Each equivalence class is set of linear extensions for a partial
order

The problem here is to count linear extensions

3Morton, Pachet, Shiu, Sturmfels, & Wienand 2008
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e Previous work
@ Approximating volume of convex bodies
@ Perfect simulation
@ The product estimator
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Linear extensions as convex bodies

Example: embedding linear extensions in continuous space

(XS7Xj’X67Xd) € [07 1]4

Xy XE XD

0(/>)<

SJED

Enforce A < B with x4 < xp
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Hit and run chain + fast product estimator

Hit and run chain
@ Choose random direction
@ Choose random point inside convex body
For any convex body:*
@ Steps per sample (amortized): O(n(In n)3)
@ Steps for approximately counting: O(n*(In n)”)
@ Each step: ©(#relations in partial order)
@ Total time: ©(n8(In n)")
@ Impractical: O(-) hides large constant (at least 1000)

“Lovéasz and Vempala 2006
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Bounding chains and coupling from the past (CFTP)

CFTP® is a perfect simulation protocol
@ Draws samples exactly from uniform distribution
@ Running time is a random variable

@ Requires extra construction such as: monotonicity, bounding
chains®

Bounding chain for linear extensions’
@ Uses adjacent transposition chain
@ O(n®In n) steps for sparse problems

SPropp & Wilson 1996
5H. 2004
"H. 2006
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Adjacent transposition chain

One step in chain
@ Stay at same state with probability 1/2

@ Otherwise choose i uniformly from {1,..., n}
swap items at position i and j + 1

Examples

SJUDE + position1 + move = JSDE
SJDE + position 3 + stay SJUDE
SJDE + position2 + move = SJDE (since J < D)
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Product Estimator

A
B
C
D

Total # of samples needed: Ck?/?
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Naive Product Estimator

At each level fix one element of permutation
Example (* = wildcard)

Hokkok
o

0 Jo
@ JS**
@ JSD* = JSDE
Parameters:
@ Number of levels: n
e C=n

@ Total # of samples: O(n®)
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Previous work versus today

Convex i
Bodies Discrete Today
) Adjacent Adj. Trans.
Hit and run Trans. Plus
Sampling O(n*(Inn)’)| | O(n’Inn) restri3ctions
O(n'Inn)
Advanced Naive prod. Improved
_ prod. est. estimator prod. est.
Counting . 0 . S ;
O(n'(Inn)) | O(n’Inn) O(n’(Inn)’)
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e The new algorithm
@ Reducing # of levels in product estimator

@ Retooling perfect sampler to handle new levels
@ Results
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Slicing state space more efficiently

Previously

@ Ratio between levels: C =n

@ Number of levels: k=n
Today

@ Ratio between levels: C =2

@ Number of levels: k = nlog, n

Mark Huber (Duke University) Approximating # of linear extensions CASTA 2008



Distribution of a maximal element

Stationary update function

@ Remove item A from permutation

@ Reinsert item A uniformly among available positions
Example: A<B,A=<C
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Probability max element in left half at least 1/2

In general
@ If no element precedes A
@ P(o—"(A) < [n/2]) >1/2
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How to slice the state space in half

Restricted linear extensions
@ Start with upper bound o="(A) = ny, ny = n
@ Next o= 1(A) = np, no = [ny/2]
@ Continues until n; = 1
Example
e AXB A=C
@ Current state x x xA* «B x xC
@ If A chosen, after one step A equally likely to be in first 6 positions
In general
@ If no element precedes A
@ P(c='(A) < [n/2])>1/2
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function n = product_estimator (A,epsilon,delta)

n = size(A); n = n(l); % Find side length of matrix A;
k = ceil(log(n)/log(2));
est = zeros(n-1,k);
num_per_level = 4% (n - 1)*k / epsilon”2 % log(l/delta);
for move_item = 1:(n-1)

move_from_loc = n;

move_to = 0;
while (move_from_loc > move_item)
move_to = move_to + 1;
move_to_loc = max (move_item,ceil (move_from_loc / 2));
for samples = l:num_per_level
x = gler (A,move_item - 1,move_item,move_from_loc);
est (move_item, move_to) = est (move_item,move_to) +
(sum(x (1l:move_to_loc) == move_item) > 0);
end
move_from_loc = move_to_loc;
est (move_item, move_to)=1log (est (move_item, move_to) /num_per_level);
end
end
n = exp(-sum(sum(est)));
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Levels with 4 states...

ABCD A BCD
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Levels with 4 states...

A BCD BCD
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Levels with 4 states...

BCD B CD
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Levels with 4 states...
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Levels with 4 states...

CD
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To generate samples

Key line in earlier code:

x = gler (A,move_item - 1,move_item,move_from_ loc);

Need function gler to generate restricted linear extensions
@ Need A< B=0o""A) <o '(B)
@ For allitems a, o~ "(a) < r(a)
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How to get samples

Couping
Bounding From Perfect
chains | + the — | Simulation
Past

Perfect simulation = draws exactly uniform over linear extensions
@ Technique similar to [H. 2004]
@ Bounding chain needs modification
@ Running time same as for unrestricted
@ Still O(n®Inn)
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Bounding chains?®

Bounding state tells what positions can be occupied
@ Similar to levels in product estimator
@ When upper bounds different, unique permutation bounded
@ Modification to handle levels straightforward

Example of bounding state:

x = ACBD y=(2,4,2,4)
AC BD

A|C|B|D

8H. 2004, H. 2006
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Further work

Other perfect simulation methods

@ Monotonic Markov chain

@ Embed permutations in [0, 1]"

@ Delete-reinsert Step 1: Choose an item

@ Delete-reinsert Step 2: Remove item

@ Delete-reinsert Step 3: Uniformly place item back in
Can be faster for sparse partial orders:

O(nIn n) for empty P

Advanced product estimator
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Linear extensions arise in several statistical applications

@ Counting exactly is difficult

@ Fully polynomial randomized approximation scheme (fpras)
New product estimator, new perfect simulator

@ Product estimator fewer levels

@ Perfect simulator same speed as old

@ Needs 3n°(In n)3¢=21In(1/6) expected number of uniforms

@ Beats previous 1000n®(In n/e?)%=21In(1/4)
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Many ways to create convex body

Mathews® used
Q={xeRY: X2+ X2+ - x5 <1}
Again, enforce partial order via half-space constraints:

A=<B= x4<xp

Mathews devised Markov chain step specialized to this space

®Mathews1991
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General procedure

Given sets Ay C --- C A,
@ klevels
@ Create enough levels so #A;/#A;_1 < Cforall |
@ Estimate #A;_1/#A; using N samples from A;
@ Estimate #Ax with telescoping product
@ Call final estimate p
® E[p] = #A«
@ For SD(p) = ¢E[p], set N = Ck/¢?
Total # of samples needed: Ck?/¢?
Want to minimize C and minimize number of levels k
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Bounding chains for adjacent transpositions®

Upper bounds positions
@ Permuting items A4, ..., Ap
@ x'(A) < y(A)) for all items A;
@ Trick is to update (x, y) to next state (x’, y’) so that:

(V)(x(A) < y(A)) — (FD)(xX T (A) < ¥'(A))

Example of bounding state:
x=ACBD, x '(A)=1,x""1(B)=3,x1(C)=2,x""(D) =4
y=(2,4,2,4)

AC BD

A|C|B|D

0H. 2006
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Bounding a single permutation

When only a single x for y:

@ Say y(i) # y(j) forall i #j
@ Then x~! = y only state bounded by chain

Example:
y:(2747274) y:(173?274)
x1=(1,3,2,4) or x1=(1,3,2,4)
-1 _
x_1_(2,3,1,4)or ACBD
x'=(1,4,2,3) or
x1=(2,4,1,3) Alc|B|D
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Typical run

Take a fixed number T of bounding chain steps:

y=0»1,3,24)

(good outcome—one bounded state)
y=(4,4,4,4)

(bounds everything)
y=(2,4,2,4)
(bad outcome—many bounded states)
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What is it good for?

Two uses for bounding chains

@ Expected time to bound single state gives an upper bound on
mixing time of chain

@ Together with coupling from the past, can generate samples
exactly from uniform distribution
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