A new algorithm for approximation of the number of linear extensions of a poset

Mark Huber

Departments of Mathematics and Statistical Science Duke University

10 Dec, 2008

Mark Huber (Duke University)

Approximating # of linear extensions

CASTA 2008 1 / 42

Example (Who is the best tennis player?)

Jelena, Serena, Dinara, or Elena?

Unfortunately, they only have time to play 3 games

- Jelena beats Dinara
- Serena beats Dinara
- Jelena beats Elena

Who is most likely to be number 1?

Prior distribution: All rankings equally likely Condition on $J \leq D$, $S \leq D$, $J \leq E$ Posterior distribution uniform on

- JSDE
- JSED
- JESD
- SJDE
- SJED

Posterior probability of being in first place:

•
$$\mathbb{P}(J = \text{first}) = 3/5, \mathbb{P}(S = \text{first}) = 2/5$$

•
$$\mathbb{P}(D = \text{first}) = \mathbb{P}(E = \text{first}) = 0$$

Posterior uniform over linear extensions of partial order

$$\mathbb{P}(A \text{ first}) = \frac{\# \text{ of lin. ext. } \sigma \text{ with } \sigma(1) = A}{\text{Total } \# \text{ of lin. ext. } x}$$

The bad news: counting linear extensions is # P-complete¹

Solution: develop approximation algorithms

¹Brightwell & Winkler 1991

Mark Huber (Duke University)

Two main results

- A new method for random generation of linear extensions
- A new method for turning samples into counting algorithm

Improvement

- Sampler: Can be much faster on sparse partial orders
- Counting: $\Theta(n/(\ln n)^2)$ faster

Outline

Applications of linear extensions

- Machine learning
- Convex rank tests

Previous work

- Approximating volume of convex bodies
- Perfect simulation
- The product estimator

The new algorithm

- Reducing # of levels in product estimator
- Retooling perfect sampler to handle new levels
- Results

Notation:

$$[n] = \{1, \dots, n\}$$

$$P = (\leq, [n]) \text{ is a partial order on } [n]$$

A partial order has three properties:

- Reflexive: $a \leq a$
- Antisymmetric: $a \leq b$ and $b \leq a$ implies a = b
- Transitive: $a \leq b$ and $b \leq c$ implies $a \leq c$

4 A N

Definition

A *linear extension* of a partial order is a permutation σ of [*n*] that respects the partial order, so

$$i < j
ightarrow \sigma(i) \preceq \sigma(j)$$
 or $\sigma(i), \sigma(j)$ unrelated

Example: Suppose $A \leq B$ then permutation must have the form:

$$\star \cdots \star A \star \cdots \star B \star \cdots \star$$

Goal: count Ω , the set of linear extensions of *P*

A ∰ ► A ≡ ► A

Problem:

- counting linear extensions is #P-complete
- #P complete problems are harder than NP-complete
- unlikely to find polynomial time algorithm

Solution:

- Develop Monte Carlo approximation algorithm
- Come within factor of $1 + \epsilon$ with probability at least 1δ
- Want run time $poly(n)[ln(1/\delta)]/\epsilon^2$

Learning a binary relation

- Example: Tennis example-ranked items with some order
- Example query: Does A outrank B?
- Goal is to predict answers from a few queries
- Step 1: Use queries to create partial order
- Step 2: Use random linear extension to make predictions

The problem here is to sample linear extensions

Nonparametric statistical model: all permutations equally likely

- Rank tests used for ordered data
- Tests can be viewed as partition of symmetric group S_n
- Find *p*-values by counting size of equivalence classes
- Each equivalence class is set of linear extensions for a partial order

The problem here is to count linear extensions

³Morton, Pachet, Shiu, Sturmfels, & Wienand 2008

Approximating # of linear extensions

Outline

Applications of linear extensions

- Machine learning
- Convex rank tests

Previous work

- Approximating volume of convex bodies
- Perfect simulation
- The product estimator

The new algorithm

- Reducing # of levels in product estimator
- Retooling perfect sampler to handle new levels
- Results

< ∃ ►

Example: embedding linear extensions in continuous space

$$(x_S, x_j, x_e, x_d) \in [0, 1]^4$$

Enforce $A \leq B$ with $x_A \leq x_B$

Alternate encodings

Mark Huber (Duke University)

Approximating # of linear extensions

CASTA 2008 13 / 42

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hit and run chain

- Choose random direction
- Choose random point inside convex body

For any convex body:4

- Steps per sample (amortized): $O(n^3(\ln n)^3)$
- Steps for approximately counting: $O(n^4(\ln n)^7)$
- Each step: Θ(#relations in partial order)
- Total time: $\Theta(n^6(\ln n)^7)$
- Impractical: $O(\cdot)$ hides large constant (at least 1000)

⁴Lovász and Vempala 2006

Mark Huber (Duke University)

Bounding chains and coupling from the past (CFTP)

CFTP⁵ is a perfect simulation protocol

- Draws samples exactly from uniform distribution
- Running time is a random variable
- Requires extra construction such as: monotonicity, bounding chains⁶

Bounding chain for linear extensions⁷

- Uses adjacent transposition chain
- $O(n^3 \ln n)$ steps for sparse problems

⁵Propp & Wilson 1996 ⁶H. 2004 ⁷H. 2006

Mark Huber (Duke University)

One step in chain

- Stay at same state with probability 1/2
- Otherwise choose *i* uniformly from {1,..., *n*} swap items at position *i* and *i* + 1

Examples

$$SJDE + position 1 + move = JSDE$$

 $SJDE + position 3 + stay = SJDE$
 $SJDE + position 2 + move = SJDE (since J \leq D)$

Product Estimator

Know: #A Want: #D $\widehat{\#D} = \widehat{\left(\frac{\#D}{\#C}\right)} \widehat{\left(\frac{\#C}{\#B}\right)} \widehat{\left(\frac{\#B}{\#A}\right)} \#A$

Total # of samples needed: Ck^2/ϵ^2

General procedure

At each level *fix* one element of permutation Example (* = wildcard)

- **** • J***
- JS**
- JSD* = JSDE

Parameters:

- Number of levels: n
- *C* = *n*
- Total # of samples: $O(n^3)$

< 🗇 🕨 < 🖻 🕨 <

Previous work versus today

Mark Huber (Duke University)

Approximating # of linear extensions

CASTA 2008 19 / 42

4 A N

Outline

- Applications of linear extensions
 - Machine learning
 - Convex rank tests

Previous work

- Approximating volume of convex bodies
- Perfect simulation
- The product estimator

The new algorithm

- Reducing # of levels in product estimator
- Retooling perfect sampler to handle new levels
- Results

∃ >

Previously

- Ratio between levels: *C* = *n*
- Number of levels: k = n

Today

- Ratio between levels: C = 2
- Number of levels: $k = n \log_2 n$

Distribution of a maximal element

Stationary update function

- Remove item A from permutation
- Reinsert item A uniformly among available positions

Example: $A \leq B, A \leq C$

Probability max element in left half at least 1/2

In general

- If no element precedes A
- $\mathbb{P}(\sigma^{-1}(A) \leq \lceil n/2 \rceil) \geq 1/2$

< 🗇 🕨 < 🖃 🕨

Restricted linear extensions

- Start with upper bound $\sigma^{-1}(A) = n_1, n_1 = n_2$
- Next $\sigma^{-1}(A) = n_2, n_2 = \lceil n_1/2 \rceil$
- Continues until $n_j = 1$

Example

- $A \preceq B, A \preceq C$
- Current state * * * A * * B * * C
- If A chosen, after one step A equally likely to be in first 6 positions

In general

- If no element precedes A
- $\mathbb{P}(\sigma^{-1}(A) \leq \lceil n/2 \rceil) \geq 1/2$

function n = product_estimator(A, epsilon, delta)

```
n = size(A); n = n(1); % Find side length of matrix A;
k = ceil(log(n)/log(2));
est = zeros(n-1,k);
num per level = 4 \times (n - 1) \times k / epsilon<sup>2</sup> * log(1/delta);
for move item = 1:(n-1)
    move from loc = n;
    move to = 0;
    while (move_from_loc > move_item)
        move to = move to + 1;
        move to loc = max(move item, ceil(move from loc / 2));
        for samples = 1:num per level
            x = gler(A, move_item - 1, move_item, move_from_loc);
            est (move item, move to) = est (move item, move to) + ...
                (sum(x(1:move_to_loc) == move_item) > 0);
        end
        move from loc = move to loc:
        est (move_item, move_to) = log (est (move_item, move_to) / num_per_level);
    end
end
n = \exp(-sum(sum(est)));
```

CASTA 2008 25 / 42

Mark Huber (Duke University)

Approximating # of linear extensions

CASTA 2008 26 / 42

Mark Huber (Duke University)

Approximating # of linear extensions

CASTA 2008 27 / 42

Mark Huber (Duke University)

Approximating # of linear extensions

► < 클 ► 클 ∽ Q C</p>
CASTA 2008 28 / 42

Mark Huber (Duke University)

Approximating # of linear extensions

► < 클 ► 클 ∽ Q C</p>
CASTA 2008 29 / 42

Mark Huber (Duke University)

Approximating # of linear extensions

CASTA 2008 30 / 42

Key line in earlier code:

x = gler(A, move_item - 1, move_item, move_from_loc);

Need function gler to generate restricted linear extensions

- Need $A \leq B \Rightarrow \sigma^{-1}(A) < \sigma^{-1}(B)$
- For all items α , $\sigma^{-1}(\alpha) \leq r(\alpha)$

How to get samples

Perfect simulation = draws exactly uniform over linear extensions

- Technique similar to [H. 2004]
- Bounding chain needs modification
- Running time same as for unrestricted
- Still $O(n^3 \ln n)$

< A > < > >

Bounding chains⁸

Bounding state tells what positions can be occupied

- Similar to levels in product estimator
- When upper bounds different, unique permutation bounded
- Modification to handle levels straightforward

Example of bounding state:

 $x = ACBD \qquad \qquad y = (2, 4, 2, 4)$ $AC \quad BD$ $A \quad C \quad B \quad D$

⁸H. 2004, H. 2006

Mark Huber (Duke University)

Approximating # of linear extensions

CASTA 2008 33 / 42

< /₽ > < ∃ > <

Other perfect simulation methods

- Monotonic Markov chain
- Embed permutations in [0, 1]ⁿ
- Delete-reinsert Step 1: Choose an item
- Delete-reinsert Step 2: Remove item
- Delete-reinsert Step 3: Uniformly place item back in

Can be faster for sparse partial orders:

 $O(n \ln n)$ for empty P

Advanced product estimator

Linear extensions arise in several statistical applications

- Counting exactly is difficult
- Fully polynomial randomized approximation scheme (fpras)

New product estimator, new perfect simulator

- Product estimator fewer levels
- Perfect simulator same speed as old
- Needs $3n^5(\ln n)^3 \epsilon^{-2} \ln(1/\delta)$ expected number of uniforms
- Beats previous $1000n^6(\ln n/\epsilon^2)^9\epsilon^{-2}\ln(1/\delta)$

G. Brightwell and P. Winkler. Counting linear extensions. *Order*, 8(3):225–242, 1991.

M. Huber.

Fast perfect sampling from linear extensions. *Discrete Mathematics*, 306:420–428, 2006.

P. Mathews.

Generating a random linear extension of a partial order. *Ann. Probab.*, 19(3):1367–1392, 1991.

J. Morton, L. Pachter, A. Shiu, B. Sturmfels, and O. Wienand. Convex rank tests and semigraphoids, *arXiv:math/0702564v2[math.CO]*, 2008.

→ ∃ →

Mathews9 used

$$\Omega = \{ x \in \mathbb{R}^d : x_1^2 + x_2^2 + \cdots x_d^2 \le 1 \}$$

Again, enforce partial order via half-space constraints:

$$A \preceq B \Rightarrow x_A \leq x_B$$

Mathews devised Markov chain step specialized to this space

⁹Mathews1991 Mark Huber (Duke University)

Given sets $A_1 \subset \cdots \subset A_k$

- k levels
- Create enough levels so $#A_i/#A_{i-1} \leq C$ for all *i*
- Estimate $#A_{i-1}/#A_i$ using N samples from A_i
- Estimate $#A_k$ with telescoping product
- Call final estimate p̂
- $\mathbb{E}[p] = \#A_k$
- For SD(p) = $\epsilon \mathbb{E}[p]$, set $N = Ck/\epsilon^2$

Total # of samples needed: Ck^2/ϵ^2

Want to minimize C and minimize number of levels k

・ 何 ト ・ ヨ ト ・ ヨ

Bounding chains for adjacent transpositions¹⁰

Upper bounds positions

- Permuting items A_1, \ldots, A_n
- $x^{-1}(A_i) \leq y(A_i)$ for all items A_i
- Trick is to update (*x*, *y*) to next state (*x*', *y*') so that:

$$(\forall i)(x^{-1}(A_i) \leq y(A_i)) \rightarrow (\forall i)(x'^{-1}(A_i) \leq y'(A_i))$$

Example of bounding state:

$$x = ACBD, x^{-1}(A) = 1, x^{-1}(B) = 3, x^{-1}(C) = 2, x^{-1}(D) = 4$$

 $y = (2, 4, 2, 4)$

¹⁰H. 2006

Mark Huber (Duke University)

When only a single *x* for *y*:

- Say $y(i) \neq y(j)$ for all $i \neq j$
- Then $x^{-1} = y$ only state bounded by chain

Example:

$$y = (2, 4, 2, 4)$$

$$x^{-1} = (1, 3, 2, 4) \text{ or }$$

$$x^{-1} = (2, 3, 1, 4) \text{ or }$$

$$x^{-1} = (1, 4, 2, 3) \text{ or }$$

$$x^{-1} = (2, 4, 1, 3)$$

$$y = (1,3,2,4)$$

$$x^{-1} = (1,3,2,4)$$

A C B D
A C B D

< 🗇 🕨 < 🖃 >

Take a fixed number *T* of bounding chain steps:

y = (4, 4, 4, 4)(bounds everything) y = (2, 4, 2, 4)(bad outcome-many bounded states)

Mark Huber (Duke University)

Approximating # of linear extensions

CASTA 2008 41 / 42

Two uses for bounding chains

- Expected time to bound single state gives an upper bound on mixing time of chain
- Together with coupling from the past, can generate samples exactly from uniform distribution

• □ > • # # > • = > •