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Example

Example (Who is the best tennis player?)
Jelena, Serena, Dinara, or Elena?

Unfortunately, they only have time to play 3 games
Jelena beats Dinara
Serena beats Dinara
Jelena beats Elena

Who is most likely to be number 1?
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A simple model

Prior distribution: All rankings equally likely
Condition on J � D, S � D, J � E
Posterior distribution uniform on

JSDE
JSED
JESD
SJDE
SJED

Posterior probability of being in first place:
P(J = first) = 3/5,P(S = first) = 2/5
P(D = first) = P(E = first) = 0
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The problem

Posterior uniform over linear extensions of partial order

P(A first) =
# of lin. ext. σ with σ(1) = A

Total #of lin. ext. x

The bad news: counting linear extensions is # P-complete1

Solution: develop approximation algorithms

1Brightwell & Winkler 1991
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The results

Two main results
A new method for random generation of linear extensions
A new method for turning samples into counting algorithm

Improvement
Sampler: Can be much faster on sparse partial orders
Counting: Θ(n/(ln n)2) faster
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Partial orders

Notation:

[n] = {1, . . . ,n}
P = (�, [n]) is a partial order on [n]

A partial order has three properties:
Reflexive: a � a
Antisymmetric: a � b and b � a implies a = b
Transitive: a � b and b � c implies a � c
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Linear extensions

Definition
A linear extension of a partial order is a permutation σ of [n] that
respects the partial order, so

i < j → σ(i) � σ(j) or σ(i), σ(j) unrelated

Example: Suppose A � B then permutation must have the form:

? · · · ? A ? · · · ? B ? · · · ?

Goal: count Ω, the set of linear extensions of P

Mark Huber (Duke University) Approximating # of linear extensions CASTA 2008 8 / 42



Challenges

Problem:
counting linear extensions is #P-complete
#P complete problems are harder than NP-complete
unlikely to find polynomial time algorithm

Solution:
Develop Monte Carlo approximation algorithm
Come within factor of 1 + ε with probability at least 1− δ
Want run time poly(n)[ln(1/δ)]/ε2
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Machine learning2

Learning a binary relation
Example: Tennis example–ranked items with some order
Example query: Does A outrank B?
Goal is to predict answers from a few queries
Step 1: Use queries to create partial order
Step 2: Use random linear extension to make predictions

The problem here is to sample linear extensions

2Goldman, Rivest, & Shapire 1989
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Convex rank tests3

Nonparametric statistical model: all permutations equally likely
Rank tests used for ordered data
Tests can be viewed as partition of symmetric group Sn

Find p-values by counting size of equivalence classes
Each equivalence class is set of linear extensions for a partial
order

The problem here is to count linear extensions

3Morton, Pachet, Shiu, Sturmfels, & Wienand 2008
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Linear extensions as convex bodies

Example: embedding linear extensions in continuous space

(xS, xj , xe, xd ) ∈ [0,1]4

-� t t t t
0 1

xS xJ xE xD

SJED

Enforce A � B with xA ≤ xB
Alternate encodings
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Hit and run chain + fast product estimator

Hit and run chain
Choose random direction
Choose random point inside convex body

For any convex body:4

Steps per sample (amortized): O(n3(ln n)3)

Steps for approximately counting: O(n4(ln n)7)

Each step: Θ(#relations in partial order)
Total time: Θ(n6(ln n)7)

Impractical: O(·) hides large constant (at least 1000)

4Lovász and Vempala 2006
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Bounding chains and coupling from the past (CFTP)

CFTP5 is a perfect simulation protocol
Draws samples exactly from uniform distribution
Running time is a random variable
Requires extra construction such as: monotonicity, bounding
chains6

Bounding chain for linear extensions7

Uses adjacent transposition chain
O(n3 ln n) steps for sparse problems

5Propp & Wilson 1996
6H. 2004
7H. 2006
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Adjacent transposition chain

One step in chain
Stay at same state with probability 1/2
Otherwise choose i uniformly from {1, . . . ,n}
swap items at position i and i + 1

Examples

SJDE + position 1 + move = JSDE
SJDE + position 3 + stay = SJDE

SJDE + position 2 + move = SJDE (since J � D)
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Product Estimator

A
B

C
D

Know: #A
Want: #D #̂D =

(̂
#D
#C

)(̂
#C
#B

)(̂
#B
#A

)
#A

Total # of samples needed: Ck2/ε2

General procedure
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Naive Product Estimator

At each level fix one element of permutation

Example (* = wildcard)
****
J***
JS**
JSD* = JSDE

Parameters:
Number of levels: n
C = n
Total # of samples: O(n3)
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Previous work versus today

Convex 
Bodies

Sampling

Counting

Hit and run

O n5 ln n3

O n6 ln n9

Advanced 
prod. est.

Discrete

Adjacent 
Trans.

O n3 ln n

O n6 ln n

Naive prod. 
estimator

 Adj. Trans. 
Plus 

restrictions

O n5 ln n3

Improved 
prod. est.

Today

O n3 ln n
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Slicing state space more efficiently

Previously
Ratio between levels: C = n
Number of levels: k = n

Today
Ratio between levels: C = 2
Number of levels: k = n log2 n
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Distribution of a maximal element

Stationary update function
Remove item A from permutation
Reinsert item A uniformly among available positions

Example: A � B, A � C

C B

A

A

C B

C BA
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Probability max element in left half at least 1/2

In general
If no element precedes A
P(σ−1(A) ≤ dn/2e) ≥ 1/2

A
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How to slice the state space in half

Restricted linear extensions
Start with upper bound σ−1(A) = n1, n1 = n
Next σ−1(A) = n2, n2 = dn1/2e
Continues until nj = 1

Example
A � B, A � C
Current state ∗ ∗ ∗A ∗ ∗B ∗ ∗C
If A chosen, after one step A equally likely to be in first 6 positions

In general
If no element precedes A
P(σ−1(A) ≤ dn/2e) ≥ 1/2
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function n = product_estimator(A,epsilon,delta)

n = size(A); n = n(1); % Find side length of matrix A;
k = ceil(log(n)/log(2));
est = zeros(n-1,k);
num_per_level = 4*(n - 1)*k / epsilon^2 * log(1/delta);
for move_item = 1:(n-1)

move_from_loc = n;
move_to = 0;
while (move_from_loc > move_item)

move_to = move_to + 1;
move_to_loc = max(move_item,ceil(move_from_loc / 2));
for samples = 1:num_per_level

x = gler(A,move_item - 1,move_item,move_from_loc);
est(move_item,move_to) = est(move_item,move_to) + ...

(sum(x(1:move_to_loc) == move_item) > 0);
end
move_from_loc = move_to_loc;
est(move_item,move_to)=log(est(move_item,move_to)/num_per_level);

end
end
n = exp(-sum(sum(est)));
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Levels with 4 states...

AABC BCD D
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Levels with 4 states...

A

A BC BCD D
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Levels with 4 states...

AA

BC B CD D
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Levels with 4 states...

AA

B C

B

CD D
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Levels with 4 states...

AA B

C

B C

D

D

Mark Huber (Duke University) Approximating # of linear extensions CASTA 2008 30 / 42



To generate samples

Key line in earlier code:

x = gler(A,move_item - 1,move_item,move_from_loc);

Need function gler to generate restricted linear extensions
Need A � B ⇒ σ−1(A) < σ−1(B)

For all items α, σ−1(α) ≤ r(α)
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How to get samples

Bounding 
chains

Couping 
From
the

Past

Perfect
Simulation+ =

Perfect simulation = draws exactly uniform over linear extensions
Technique similar to [H. 2004]
Bounding chain needs modification
Running time same as for unrestricted
Still O(n3 ln n)
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Bounding chains8

Bounding state tells what positions can be occupied
Similar to levels in product estimator
When upper bounds different, unique permutation bounded
Modification to handle levels straightforward

Example of bounding state:

x = ACBD y = (2,4,2,4)

A BC D

A C B D

More details

8H. 2004, H. 2006
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Further work

Other perfect simulation methods
Monotonic Markov chain
Embed permutations in [0,1]n

Delete-reinsert Step 1: Choose an item
Delete-reinsert Step 2: Remove item
Delete-reinsert Step 3: Uniformly place item back in

Can be faster for sparse partial orders:

O(n ln n) for empty P

Advanced product estimator
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Summary

Linear extensions arise in several statistical applications
Counting exactly is difficult
Fully polynomial randomized approximation scheme (fpras)

New product estimator, new perfect simulator
Product estimator fewer levels
Perfect simulator same speed as old
Needs 3n5(ln n)3ε−2 ln(1/δ) expected number of uniforms
Beats previous 1000n6(ln n/ε2)9ε−2 ln(1/δ)
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Many ways to create convex body

Mathews9 used

Ω = {x ∈ Rd : x2
1 + x2

2 + · · · x2
d ≤ 1}

Again, enforce partial order via half-space constraints:

A � B ⇒ xA ≤ xB

Mathews devised Markov chain step specialized to this space

Go back

9Mathews1991
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General procedure

Given sets A1 ⊂ · · · ⊂ Ak

k levels
Create enough levels so #Ai/#Ai−1 ≤ C for all i
Estimate #Ai−1/#Ai using N samples from Ai

Estimate #Ak with telescoping product
Call final estimate p̂
E[p] = #Ak

For SD(p) = εE[p], set N = Ck/ε2

Total # of samples needed: Ck2/ε2

Want to minimize C and minimize number of levels k

Go back
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Bounding chains for adjacent transpositions10

Upper bounds positions

Permuting items A1, . . . ,An

x−1(Ai) ≤ y(Ai) for all items Ai

Trick is to update (x , y) to next state (x ′, y ′) so that:

(∀i)(x−1(Ai) ≤ y(Ai))→ (∀i)(x ′−1(Ai) ≤ y ′(Ai))

Example of bounding state:
x = ACBD, x−1(A) = 1, x−1(B) = 3, x−1(C) = 2, x−1(D) = 4
y = (2,4,2,4)

A BC D

A C B D

10H. 2006
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Bounding a single permutation

When only a single x for y :
Say y(i) 6= y(j) for all i 6= j
Then x−1 = y only state bounded by chain

Example:

y = (2,4,2,4)

x−1 = (1,3,2,4) or
x−1 = (2,3,1,4) or
x−1 = (1,4,2,3) or
x−1 = (2,4,1,3)

y = (1,3,2,4)

x−1 = (1,3,2,4)

A BC D

A C B D
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Typical run

Take a fixed number T of bounding chain steps:

y = (4,4,4,4)

(bounds everything)
��

��
��

��1

PPPPPPPPq

y = (4,4,4,4)

(bounds everything)

y = (1,3,2,4)

(good outcome–one bounded state)

y = (2,4,2,4)

(bad outcome–many bounded states)
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What is it good for?

Two uses for bounding chains
Expected time to bound single state gives an upper bound on
mixing time of chain
Together with coupling from the past, can generate samples
exactly from uniform distribution

Go back
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