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Lattice points, contingency tables, and sampling
" Yuguo Chen, Ian Dinwoo.die, Adrian Dobra, and Mark Huber

ABSTRACT. Markov chains and sequential importance sampling (SIS) are de-
scribed as two leading sarnpling methods for Momte Carlo computations in .
exact conditional inference on discrete data in contingency tables. Examples
are explained from genotype data analysis, graphical models, and logistic re-
gression. A new Markov chain and implementation of SIS are described for
logistic regression. ’

1. Imtroduction

This paper is partly a survey of some recent theory on statistical problems
of discrete data, and partly a description of new results for problems of sparse
contingency tables where existing theory is not adequate. .

Counts from statistical experiments are put in contingency tables that may
be considered vectors of nonnegative integers. These are typically frequencies of
events from an experiment where two or more outcomes are possible in a series
of trials. Algebraic and geometric theory of lattice points and polytopes become
useful when one wants to make ‘inferences about the statistical model in place
during the sampling and the data is multidimensional. One is led to computations
over a collection of tables with certain constraints that are often linear and define
a polytope Sy whose elements correspond to constrained tables of integers where
each cell in a table is a dimension in the space containing the polytope. '

The statistical ideas of conditional inference that make polytopes an essential
sample space were developed by Ronald Fisher to deal with two fundamental sta-
tistical issues: ‘to determine if a family of ‘probabilities {a model) could include
the prevailing probability distribution when the family involves several unknown
parameters; and to compute measures of distance from the observed data to the
collection of tables consistent with the model without using asymptotic approxima-
tions. Conditional inference is described in Agresti (1990). The number of lattice
points in the polytope Sy representing tables of interest may be 10%° or larger, and
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over this set we will want to compute expectations E,(f{n)) for certain functions
© f: Sy — R, and distributions 7 that may be uniform or conditional on sufficient
statistics, often the hypergeometric distribution. Sometimes there are formulas
or ad hoc sampling methods for efficient Monte Carlo computation, but this only
happens for certain distributions 7 and special polytopes Sp. In general it is not
efficient or not possible to list all the elements of S for further exact computation.

"~ All expectations of interest can be computed as accurately as desired with a,
random sample from S from a known probability distribution that is positive over
all elements of Sy. Generating the random sample is the goal. To this end we discuss
two particularly useful methods for sampling from polytopes: Markov chains and
sequexntial importance sampling (SIS).

Markov chains are usually easy to program and memory eﬂiment and have been
used for Monte Carlo computations for decades. They require a “Markov basis”
to make them irreducible—to run through all tables so time averages approximate
space averages. The basis can be described as a generating set for a toric ideal,
which is one of the fundamental resulés of Diaconis and Sturmfels (1998). With
an irreducible and aperiodic Markov chain in Sy one has the ergodic theorem that
. allows us to approximate expectations with sample averages:

1l
Eq(f) = ?g@ma;f(ni)

where n; are random tables with stationary distribution 7. The size of m for a good
approximation is usually not clear. Theoretical results on the time to stationarity
are hard to prove and hard to apply. Perfect sampling methods such as coupling-
from-the-past that make unnecessary the analysis of convergence have not yet been
found for most applications of conditional inference.

In some cases the Markov basis is very hard or impossible to compute com-
pletely. Odds-ratio models such as logistic regression are hard cases like this, and
these are the examples we focus on here, beginning in §3. The constraints defining
the polytope are Lawrence liftings, and the generators of the toric ideal are hard
to enumerate and can have high total degree. We show that slightly larger sets
of tables 51, suggested by intuition, saturation, or primary decomposition, may be
much easier to sample, and the set Sy C 51 can be studied by “conditioning.” This
idea is not new, but designing S} so it is not much larger than S can use new tech-

" nology from algebra. Our main new result is Theorem 3.1, which gives an efficient
relaxation of the logistic regression problem that allows easy computations. The
relaxation uses ideas of primary decomposition from work of Diaconis, Eisenbud,
and Sturmfels (1998) and illustrates results of Hosten and Shapiro {2000).

In §4 we describe sequential importance sampling, with specific application to
logistic regression. SIS has proven to be much more efficient than Markov chains
for sampling from the uniform distribution from rectangular tables with fixed row
and column sums. This has been shown in Chen, Diaconis et el (2003) and in
follow-up work. To run the Markov chain for this application, one increments the
present table with a random increment of the form
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and it can be shown that the resulting sequence of tables will visit all tables even-
tually. But the time to stationarity is long compared to the time required by SIS
to go through the cells in sequence, sampling uniformly from an interval of possible
values for each cell computed with up-to-date Fréchet bounds, and keeping track

- of weights to measure the variation from the uniform distribution. We make some

informal connections between SIS and commutative algebra that could be further

developed.

2.7 Notation and Examples

A family of positive probabilities (16)ocr» on nonnegative integer vectors n €
ij_, whose entries sum to a known sample size 77 and may have other constraints,
is given by :

ee’Aon

tie(n) = h(n) o

where Ayg is & p X d nonnegative integer matrix, z¢ is a normalizing constant, 8 ¢ R?
is a real parameter, and A(n) > 0 may involve multinomial coefficients, The set of
integers will be denoted Z, and the nonnegative integers in dimension d are denoted
Z%. The conditional distribution given statistics Agn = t is parameter free:

te(n | Agn = t) o h(n),

defined on tables or lattice points n € Z_‘f_ that satisfy Agn =t and that may also
satisfy a priori constraints that combine into & single constraint matrix A, say

Soi={ne z}:An= [z]}

Our main goal is to sample from S according to the conditional probability distri-
bution proportional to A{n), in order to compute expectations for tests of goodness-
of-fit and parameter significance based on the theory of exact conditional inference.

A general method for constructing an irreducible chain was described in Dia-
conis and Sturmfels(1998). Suppose

G = {x" —xP1, .. x% —xPe}
is a Grobner basis of monomial differences for the toric ideal
Lo = {x"—x™: An = Am)
in Q[x]. The vector increments represented by the differences of the exponents
Mg :={a; -by,...,a, — by}

chosen randomly with random signs will connect all points of the set Sy, eventually,
s0 the process is an irreducible Markov chain. A generating set of binomials is
sufficient for irreducibility (Diaconis and Sturmfels (1998), p. 375} , but anything
less than a generating set could have two or more connected components within
So, depending on the actual values of the constraints defining the polytope. A
fundamental and useful result of Diaconis, Eisenbud, and Sturmfels (see Sturmfels
(2002}, p. 110) is that two tables n and m in the polytope Sy will be connected by
the Markov chain based on moves in some collection ¢ whose corresponding ideal
I C I, if the binomial x® — x™ ¢ I, If the collection C is a Gribner basis,
the path between n and m can be constructed by long division. The theory of
toric ideals, lattice bases, and the cornection with Markov chains is explained in
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Sturmfels (1996), and Diaconis and Sturmfels (1998). Some aspects of the theory
are in Pistone, Riccomagno, and Wynn {2000). The algebra for Markov chains
can be quite useful for understanding SIS— arguments in §4 will use notions of
square-free lead terms and adjacent minors for establishing implementation details
of SIS.

These Markov chains are similar to reflecting random walks, although tight
corners of the polytope make a precise analogy difficult. Their convergence rates
in simple cases can be estimated based on eigenvalue computations. The strongest
results for random walks in lattice points are in Diaconis and Saloff-Coste (1998).

ExaMPLE 2.1 (Genotype Data). Genotype data is a table of counts of un-
ordered pairs of alleles, like the following experimental data on Gaucher disease
from a paper of Le Coutre et al. (1997). It is known that the genotype pair
IVS2+1/IVS2+1 is lethal, and therefore constitutes a structural zero in the tri-
angular table of genotypes {or possibly a missing entry, whose analysis is slightly
different, but we will assume a structural zero). The table rows and columns nor-
mally are labelled with the allele names, but we omit these since they are not needed
here.

0 5 2 1 00 10
20 0 0 1 2
0 0 00 0
- 00 0
00 1

0 0

1

The probability model for Hardy-Weinberg equilibrium postulates that the cell
probabilities are the result of independent combination of alleles. For parameters
p = (p1....,p7) that give the population proportions of each allele, the (uncondi-
tional) probability up on upper triangular tables 1 = (n;;)1<i<;j<7 with fixed total
sum of n is given by the multinomial formula

n 7 i< i g
i

where f; is the number of times allele ¢ appears in the table. f; for example is
2x04+5+2+4+1+0+4+0+4 10 = 18, a sum over the genetic pairs that contain
allele 1. These frequency counts are called sufficient statistics. The conditional
probability distribution on tables with the same allele frequencies f = (f; = 18, fo =
12,..., fr = 15), ignoring the structural zero, is given by

((1’:;,‘)) 22ics i

2 k]

o
where n is defined by 2n = f1 + fo + - - - + fr and can be interpreied as the number
of individuals in the sample, who contribute a total of 2n alleles of 7 types. This
model cannot hold with the structural zero as in the data above, which complicates

both the model and the analysis. We show how to modify the analysis to handle
. the structural zero. .

pe(n) =
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The constraints that come from fixing the sufficient statistics for Hardy-Weinberg
proportions are entry-wise dot products with 7 “row vectors™ in A like

0100 0
21 1
0 0

[ R an B el L R an]
Do C OO
o i v B e B o TS 2

0

which counts the number of alleles of type 2 in the table. We also force entry (4, 4)
to be zero. With f = (fi = 18, fo = 12,..., fr = 15) the allele counts, our pelytope
Sp for the exact analysis with structural zero is the set of triangular tables that have
these same allele counts and satisfy the additional linear constraint ny 4 = 0. The
conditional probability distribution on S, is defined by pe(n) o ((nfj)) PYNPILTE
The Markov chain of Guo and Thompson (1992) for the original test of Hardy-
Weinberg equilibrium can be described as the collection of moves that arise by

folding the traditional _*__ _T_ minors over the diagonal: g(n);; = ny; +nj, 4 < 7,

_ g(n)i‘i = Nyt

+ 0
g 0

—

+
0

oo o

0
0
0

o4+ o |
[ = |
o4+ o |

T11234 — F14T31 = = ZT11X34 — T13%14-

o
[}

0

To handle the structural zero at entry (4,4) we can use a Lawrence lifting to get
a larger collection of Markov moves. The folded images under g of the well-known
“circuit moves” that are the universal Grébner basis for the independence model
(fixed row and column sums) give an irreducible chain in the upper triangular tables
with the given constraints, with arbitrarily placed zeros. These moves described
differently appear in Takemura and Acki (2002), but a proof of irreducibility can
be made quite simple by using the algebraic description above. '

Computationally, it is easiest for this example to just produce the binomials
corresponding to the Markov basis from the constraint matrix by using a saturation
algorithm, such as the one implemented in Cocosa, because there are fewer than 200
total moves. The calculation requires simply typing the constraint matrix A, with
49 = 7 x 7 columns and with 7 rows for the allele constraints, one row for forcing
the lower triangle to be zeros, and one for forcing entry n44 to be zero:

Use R::=Q[x[1..7,1..7]11;
Toric(A);

'The work of De Loera, Haws et al. (2003) and the Latte software can be used to
enumerate the elements of the polytope Sp. The value for statistics of enumeration
is significant. It can be used to benchmark sequential importance sampling, which
requires some fine tuning usually that can be done with an enumeration step. Enu-
meration can help understand convergence to stationarity of Markov chains, which
depends partly on the number of points in the polytope as well as other geometric
features such as diameter and shape. And enumeration can show the dependence
of the size of the polytope on variations in the constraint matrix and constraint
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values. A typical problem of this type is feasibility, or whether the polytope Sy is
nonempty for a particular constraint vector t. This is important for applications
in SIS and disclosure limitation.

There is an efficient sequential method that fills in entries successively with
conditional distributions, which can also handle one diagonal zero. This is described
in Huber, Chen et al. (2003), and has the advantage that its complexity does not
depend on the sizes of the table entries, but only the number of cells. Lazzeroni
and Lange (1997) have extensions to multi-locus data and stopping times for exact
sampling. ‘

ExampLE 2.2 (Graphical Model). We illustrate with an example from the
monograph of Sturmfels (2002) which describes many new results on graphical
models. Consider the notation Xy — —Xg — —X3 — —X,, where X; is a random
variable that takes values in {0,1}. The notation is meant to suggest that X; is
independent of { X3, X4} given Xy, and {X;, X,} are independent of X given Xs.
The data would be a four-way table n = (nijr) with 2% = 16 cells each containing
a count. The notation ny; o) used by statisticians is the 2-way table that is the
projection onto dimensions 1 and 2, with ng 23 {00} = 3, nogks, called a margin.

The family of positive probabilities (pg(ijkl)) semiz < R'® on the space of
2% outcomes that satisfy these independence conditions is parameterized by an

exponential map
3(912|923 [834YA (. e5m1)

polight) = -

where #12 is a real vector of four components, zg is a normalizing constant, and A
is the 12 x 16 matrix with columns indexed by 0000, 0001, 0010,...,1111 and rows
indexed by 2-way margin summaries for each of the 3 cliques {1,2},{2,3}, {3,4}
written by statisticians as Ny 9}, D23}, N34}

0600 0001 0010 _ i

S

n{1,2} (UO)
n{]_,,z} (01)
n{l,g)(lﬂ)
n{llg} (11)
1’1{2|3} (00)
nifz 3} (o1
n{2,3}(10)
1’1{2,3}(11)
3,4} (00)
N3 43 (01)
ny3,4)(10)
11{3‘4} (11)

OO OoO R OO OROOO—
DO OO0 OO0
OCE OO0 OO0 O O
H OO OoOC OO0 M
SO O OO D
OO OO R OO0 O RO
oMo o CcCOoOO0OO R~
= O OO OOO OO MmO
OO0 OO QIRKROD
COR OO HFOROO
DM OO0 OO0 ~=DOoO OO
HOOOODOKHECOMMIOD
S OO OMMOQ=IDOO
SO OO OO~ OO0
N N i = = S Y
HOOO=ODOoORF,OD

Each probability point in R® in the parameterization lies in the toric variety
of the toric ideal T4 C Q[zop0o,--.;x1111)- The parameterization seems at first
to have 12 parameters, but there are in fact only 7 free parameters which is the -
dimension of the projective variety. To sample from tables with fixed margins
ny1,9}, D23}, (3,4}, One can run a uniform Markov chain with vector increments
that are the differences of the exponents in a generating set of binomials for the
toric ideal 7,4. An important result of Sturmfels says one can obtain the toric ideal
with 20 generators by saturating the smaller ideal of 12 “pairwise independence
relations.” These are obtained by fixing the values of variables {2,4} in 4 ways for
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specifying conditional independence of variables {1,3}, then considering variables
{1,4} ﬁxmg {2,3} and finally con51der1ng variables {2,4} fixing {1,3}. Then I4 =
IP :p® where IP =

(560000 £1010 — %0010 L1000, L0001 ¥1011 — Tooii L1001, Fo100 L1110 — L0110 L1100,

20101 1111 — T1101 L0111, L0000 £1001 — £0001 £1000, L0010 L1011 — L1010 L0011,

Z0100 £1101 — L0101 £1100, L0110 1111 — L0111 £1110, L0000 T010L — F0001 L0100,

Tooro o111l — Tool1l L0110, L1000 L1101 — F1001 1100, 1010 L1111 — 1011 931110)

and p= H‘Lj ki Tijkt-

An efficient way to build the Markov chain for a large class of graphical models
is described in Dobra and Sullivant (2003). Applications of the Markov chains for
graphical and more general log-linear models are in conditional statistical inference,
and in the developing area of disclosure limitation (Duncan, Fienberg et al. (2001)).
This area will provide some computational challenges since some applications in-
volve tables of more than ten factors, resulting in at least 2'° indeterminates in the
polynomial ring for simple two-level factors.

3. Logistic Regression

Hosmer and Lemeshow (1989, p. 3) present data that relates presence or ab-
sence of coronary heart disease of 100 patients to age. The age covariate extends

- from year 20 to year 69. The data can be summarized in a table that looks like

Age:| 1 2 3 4 L. c
yes: | Tyl 12 M3 P4 --e-.- N,e
na | Ny 2.2 12,3 a4 covinn N3¢
Nyl Ngp2 N3 Npd oo g e

The data of Hosmer and Lemeshow has ¢ = 50 columns, one for each age level,
some of which have 0 counts in both the rows, meaning no one in the study had
that age Ievel. A simple statistical model for evaluating the effect of age on the
presence of coronary heart disease is the logistic regression model, which specifies
that g, ps(n) o et Ao (m.) where Ay = } ; S
row of data as a column vector. The constraints for conditional inference are: the
total number of successes T31(n) := n1,4. (top row sum)} must be fixed at integer
t; > 0; and the weighted sum T5(n) = (1,2,...,¢) - {ny,.) = ¥ 5, i - ny,; must be
fixed at integer £3 > (; and the column sums n. ; must be fixed at integers ¢; > 0,
which comes either from a design constraint on the rniumber of subjects at each
age, or a conditioning constraint in an odds-ratio model. With the data ordered

and (n,.) is the _to.p.

n= (N1,...,M1,M21,...,N2,) these can be built into a single constraint matrix
Ay 0
1 A= .
( ) (chc chc)

The Markov chains for computing in the set Sp of nonnegative tables with con--
straints from A have been studied in Diaconis, Graham, and Sturmfels (1996). Their
conclusion is that an irreducible chain in the collection of tables with arbitrary fixed
column sums (possibly zero}, and arbitrary fixed n1 4, Y ;_; i 71 consists of vector
increments that correspond to homogeneous primitive partition identities (hppi’s),
such as 2 + 2 = 14 3. Computing these moves is difficult because their number
grows in ¢ faster than any polynomial, and their degree (the total number of +’s in
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the vector increment) grows linearly in ¢. The number of moves corresponding to
hppi’s as a function of ¢ = 3,4, 5,...is 1,5, 16, 51,127, 340,798, . . . and this number
has only been computed up to ¢ = 20 using software 4ti2 of Ralf and Raymond
Hemmecke. This will not help with a data set of 50 columns. The network method
of Mehta, Patel, and Senchaudhuri {2000) will handle this data set, but the mem-
ory requirements are large compared to the Markov chain described below, and it
is likely that some larger, more complex data sets may not be possible with the
network method. :

Consider the following collection M of ( 5 ) vector increments, which together
with their negative images form moves for a, Markov chain in tables (nonnegatlve
integer lattice points) with the above constraints.

¢ Choose an ordered pair of columns 1 <¢i < j <e.

* Put a + in the top row in columns 4,7 and put a — in adjacent columns
i+landj—~1.

e Put the opposite signs in the bottom row.

With ¢ = 6, there are 10 such moves like

[ -- [+[0T0T0] [o]+[-ToT-T=
“F+ |- [ojoj0" [of-IF[ol+1-

etc. These moves can be scen as differences of adjacent minors, and also as 4
subset of the partition identities. The first table above corresponds to the hppi
1+ 3 =2+2, and the second corresponds to 2 + 6 = 3 + 5. The collection M is
generally a strict subset of hppi’s of degree four, because the adjacent +, — changes
do not include three degree 4 hppi’s (1+6 = 3+ 4,2 + 6. = 4 + 4, 14+5=3+3).
The collection M does not include thirty-eight other hppi’s of higher degree.
.- Let Ip denote the ideal in Q[z1,...,Z¢,¥1,---, ¥ generated by the mono-
mlal differences corresponding to the moves described above: Iy = = (712398 —
313, - HE

T hese vectors M are a lattice basis for the kernel of the constra.mt matrix A,
so the ideal Iy saturates to the toric ideal T4. Also, note that if we leave off the
bottom row corresponding to-the y-variables and work in Qfzi,...,z,], then the
collection of moves on the top row corresponds in fact to a Grébner basis for lex
1 11

1y .
1 2 3 C)Wlth square—fre(_e‘

order for the toric ideal corresponding to Ag = (

exponent 6n:the lead indeterminate.

PROPOSITION 31 Let Sy ={ne Zd An = '(tl,tg, )’} be the set of nonneg-
ative integer tables with fixed row sum +: fixed weighted sum Eznl ; and fixed
column sums n ;. Let Sy = {z € Z%: Az = (t1,%3,¢)’, 214, > 0,225 > —~1}. Then

the Markov chain with moves M connects any two tables in Sp through Ss.

The result is a corollary of Theorem 3.1 below, so a careful proof will not be
included. Although it appears to be very similar to the Theorem, its computational
value is less. ;

In the data set of Hosmer and Lemeshow with 50 colummns the set Sg is about
10° times as big as S, so calculations are- possible by conditioning on S;. The

" goodness-of-fit calculation required several hours of time on a 48-node Linux cluster.
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Proposition 3.1 also follows from a saturation property of the ideal In;. Since
Int : (2 ye) = I,

my n
and 2
ms iy

it follows that any two tables in S satisfy (g -ya-.. .-.yc)(xniynz -

1
Mo + 1
tables with 1 added to each cell in the bottom row) can be connected through

‘ -
no —+ 1
moves {that are also a lattice basis) of Bigatti et al. (1999) saturate slowly (with 5
columns, saturation occurs at step six}.

x™y™2) ¢ Iy implying by results of Sturmfels (1996) that (the two

. By comparison, the ideal for the Markov

nonnegative integer points to

A more careful look at the Markov chain with moves M above shows that it
is irreducible even when only the bottom row entries in columns whose sums are
fixed at 0 are allowed to drop down to -1, which is & significant computational
advantage. I S is this polytope that contains Sp for the data set with 50 columns,
we computed numerically by comparing time averages that |S;| = 10°%|Sy|, which is
a factor of 10 better than |Ss{/|Sp|.

THEOREM 3.1. Let
= {Z e Z_d 1Az = (t;{,tg,c)',zl,-,; Z0z; > -1ifc;=0,20; 20 if s > 1}

be the set of ihteger tables with the desired constraints, but allowing bottom row
entries to be -1 in columns ¢ where ¢; = (. Then the Markov chain with moves M

connects any two tables in 5y through Si. Tt is irreducible in Sy if all column sums

¢; are positive,

- PROOF. Assume for the moment the second assertion of irreducibility in Sp
if the column sums are positive. If this were true, and we wanted to connect
L N 0

I{i:c;#ﬂ}

nonnegative integer vectors n and m in 57, then we could connect n +

0 . . . . :
fom+ T as points in Sp with constraint values t1,%z,¢ + Ifi.0,—0y. Then
i:c_,-=0]- . |

the path from n to m is obtained by subtracting from each intermediate

I {i:e; =0}
table in the connecting path. Thus the firss assertmn about irreducibility in 5
follows from the second.

The second assertion is proved by showing that the L! distance between two

tables can always be reduced by using one of the moves. One can show that a path

between two tables is possible with length at most ¢? - #;.

There is an algorithm for constructing the connecting path, assuming q > 1.
The moves of adjacent minors {z;y;41 — ;11 } connect all 2x ¢ tables with positive
column sums-and the same row sums. Further, they are a Grobner basis for their
ideal in two term orders: lex order, reading left to right, and weighted term order
with weight vectorw = (1,2,...,¢,0,0,...,0), with lex for ties. Consider two tables
coded as a binomial with x™y®z — x™1y"™: The lead term of one of the adjacent
minors divides its lead term, in lex order. Do the division and save the adjacent

minor. Now, divide the lead term of the intermediate dividend in weighted term




T4 YUGUO CHEN, IAN DINWOODIE, ADRIAN DOBRA, AND MARK HUBER

order, to lower the weight that just increased by 1 using also an adjacent minor
with a “—” sign. The two divisions yield a pair of adjacent minors that leave the
weights fixed. The division will terminate by connecting the two tables. As an
example, consider connecting the two tables

[fT=2foToT3) {o]
1 1

1 2 1
[of1i3frjo] > yiJifojo]

[ETi]0].
7] .

The procedure is a sequence of pairs of divisions that proceeds as below, with the

divisors on the right: . :

0)lead 12002 lex 11102 weight ;3 0-+00, 000+-
00310 -» 01210 -> 0+-00 600+

1)lead 11111 lex 02111 weight ; -+000, O00+-0
01201 ~> 10201 -> +-000  00-+0

2)lead 02201 lex 01301 weight ; 0-+00, 000+-
: 10111 => 11011 -> 0+-00  000-+

v

3Jend 01310
11002

i

The result above can be seen in the primary decomposition of Jas as presented
(in edited form) by Singular (Greuel et al. {2001)) below for five columns. At this
time there do not appear to be general theorems that would give a proof based on the
primary decomposition, but for five columns it is clear. The primary decomposition
has four components, the toric part with 16 generators corresponding to the hppi’s,
and three others. Recall the basic result of Diaconis, Eisenbud, and Sturmfels: if the
S ' . n m :
binomial x™ y"2 — x™ y™2* corresponding to the two tables nl ) ml belongs
: S : : . 2 |} mg
to the ideal Ips generated by the moves M, then the moves in M connect the two
tables. If the column sum ¢; is positive for all 4, then either x; or y; is present in
each monomial, which implies membership in each of the primary components, -and
hence membership of the binomial in the ideal Iy.
;;[11‘=x<1)tx<4)ty(2)*y(3}—xc2m(a>*ycnsyc4)
112)=x(1)*x{5) +y (2) my (4} ~x (2}*x (4)»y(1}*y(5)
1[3]=x(2)#x(5) *y (3) ¥y (4} -x(B}»x (4} ¥y (2} *y (8}
afal=x(1)»x{3) %y (2) "2-x(2) " 24y (1) +y{3)
1[5]=x(2)#x(4) #y (3) "2-x(3) ~245(2) »3(4)
3 {6)=x(3)»x{5)xy (4) “2~x(4) 2%y (3) %y (5)

> primarydecompasition;
[1]:

_[11=x(3) x(5) #y (4} "2-x(4) “2+y (3)+y (5}
[2)=x (234 (5) #y (3) +y{2) ~x {3} #x {4} »5(2) &y (5)
_[3]1=x(2)#x(5) "2+y(4) "3—x(4) "3+y (2) *3 (5) "2
L [A1=x (20 4% (4) #y (3) ~2-x(3) "2+y (2} =y (4}
_[5)=x(2) " 2#x (5) %y (3) *3-x(3) ~34y (2) ~2+y{E)
_[6]=x(1)+x(8) #y (3} "2-x(3) "2+y (1)*y (5}
_[P)=x (1) #x(5) xy (2) #y(a) -x(2) %x {4} sy {1} 2y (5}
_{BI=x (1) %x(5) " 2ry (3) #y (4) ~2-x () #x(4) “xy (1) *y (5} 2
_[9)=x(1)#x (5) "3ey (4) "d-x(4) “d=y (1) #y (51 "3
_{103=x(1) #x(4) xy (2} =y (3) -x (2} 22 (3) #y (1) +y(4)
[113=x(1)#x(d) ~24y (3) "3-x(3) "B+y (1) ry () "2
_[123=-x (2} " 2%x (5)#y (1) #y (4) “24x (1} #x (1) ~2%y (2) 2%y (5)
L133=x (1) *x{3) *y (2) "2-x (2) " 2+y (1) 2y (3)
_[141=x2(1) "2#x(5) +y (2) " 205 (3) -x(2) “2%x(3) 4y (1) “2%y(5)
_[153=x{1) ~2#x {44y (2) ~3-2(2) "By (1) ~22y (4}
_[16)=x(1)"3+x(5) #y (2) “4-x(2) “4y (1) 34y (5)

[2]:
_Til=y(3)
_[2)=x(3) )
_[31=x 1y #x (B) «y (2) *y(4) -x{2) *x (&) *y (1) *y(5)




‘ER

acent minor
at leave the
oles. As an

w, With the

]

as presented
nons. At this
based on the
composition
2 the hppi’s,
‘mfels: if the

!
b belongs

1ect the two
is present in
yonents, -and

LATTICE POINTS, CONTINGENCY TABLES, AND SAMPLING 75

[31:
1=y
_[2]=x{a)
_[33=x (1) #x (3 +y (2) " 2-x(2} 2%y (1) +y (3)
-
_[3=y(2)
_[23=x(3) #x(5)*y (4) ~2-x(4) "2+y (3) *y (5)
_[31=x{2)
b qu.lt
Logistic regression is a spec1a1 type of odds-ratio model, a challenging class of
models for which the constraint ma,trlces are the higher Lawrence liftings of Santos

and Sturmfels (2002).

4. Sequential Importance Sampling

Consider the three 2 x 3 tables below with the same row and column sums. It .
is clear that the marginal distribution of the count in cell (1, 1} is not uniform when
the tables are equally likely.

0|01 01170 1100
1f1jo|"j1joj1('lof1]1

One can generate tables randomly from a known distribution as follows. First, recall
the well-known Fréchet bounds on entries: max{0,r; +¢; — n} < n;; < min{r;, c;}
where the row sums are r;, the column sums are ¢; and n is the total count over
all cells. In particular nyy € {0,1}. Choose uniformly from this interval to get a
0
. 1 .
the bounds applied to the remaining part of the table for entry (1,2) are ng; €
{1+1—2,min{1,1}], so 1 can be chosen with probability 3 to get a further partial
0!1

table BIANE The final column is then determined. The procedure generates the

three tables above with probabilities g1 = 1,92 = %, g3 = 1 respectively, and sample
averages can be reweighted with the reciprocals 1/g; for approximate expectations
with respect to the uniform distribution. A description of SIS can be found in Liu
(2001) with many applications.

Consider now the problem of sampling from the 2 ¢ tables for logistic regression
introduced in §3. Recall the set of tables

value for ny;, say 0, to get a partial table chosen with pfoba,bility % Now

So=={n = (n11, 12, ., N1, M1, ..., Nac) : An = (t1, 12, ¢)'}

. where A is the matrix of equation (1) of §3. SIS attempts to 1) choose ny; for the

first cell in a range of values, say an interval [I1, %], that allows ultimate completion
to.a table in Sp, then 2) choose n,,3 from a new updated interval [la(na1), u2(n; )]
that allows ultimate completion, etc. It is useful if these intervals can be accurately
computed during the sampling, and it is better if the range of values are intervals -
without gaps. That is, 4t each stage it is useful if the projection onto the next
dimension of the polytope, after having fixed the first coordinate values, is an
unbroken interval.

PROPOSITION 4.1. If the column sums ¢; are constrained to be positive, then
every integer in a submterval of the Fréchet bounds for n;; can yield a valid table
in Sg
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PRrOOF. With positive column sums, all tables in S are connected with the
moves in M, which correspond to a lex Grobner basis with square-free exponent
on first indeterminate. Since entries n1,; for cell (1,1) are incremented by 1in a
-connecting path between tables, the set of feasible values for cell (1,1) is an interval
of integers with no gaps. ‘ O

313|100 2]0(0]1

21070117 |10(31010
are no tables with the same constraint values and the value 1 m cell (1,1), but
these two tables are not in the same connected component of the Markov chain
built with the moves in M. The simplest example of this connectivity issue has

A= (1 3). The set Sg = {{n1,ny) : 4n = 3} includes points (0,1),(3,0) so
the first coordinate is not in a complete interval. Here the Grébner basis for Iy
is {z% — y} and does not have the square-free property . When structural zeros
are imposed on tables, the sequential-interval property may be lost, because the
Markov chain for irreducibility may no longer have the square-free property, which
occurs for example in the genotype data of §2. .

By comparison, consider the two tables . There

_ For logistic regression there is a recurring structure that reduces the problem of
determining sampling intervals {;, ;] to the case of [{1,%1], the first column. Recall
that we need to fix the row sum Ti(n) := n; » = {;, and the weighted row sum
Ty(n) :=3",i - n1; = ¢z, and the column sums ny ; = ¢;. The following diagram
illustrates how the problem of interval values recurs with different constraints after
the first column is filled: '

RN iz | Mg g |- | Bl Ti(n)=¢
c1 —{li,ug] { np2 [ mos [ maa | ... N2 | To(n) =ty

T [52.(3?),1*2(53)] mga|nial... M, Ti(ng ) =t —=
1+ || ey — [l_g(:c), ug(z)| | nos Nga |- | Nae T (n(,,z;o}') =ty —

Compu:ting the interval [I1,21] is made more efficient with the following feasibility
test.

PROPOSITION 4.2, Assume ¢; > 1. Let n = Y ¢_ ¢; be the table sum. For each
z € [0, ¢;] define tables np (z), ny(z) by

- (.’L‘) . X ‘ min{c2; 1 m} ’ miﬂ{63,7"1 e nlg}
£ Tile-z Co— M2 ; €3 —N13

ny(z) = z | max{cz+ri—z—n,0} | max{cs + rrl -z — 13 —~n,0}
T la == Ca—Mip ' c3—mgs

Then & honnegative integer « € [ly, u1) if and only if Th(nr(x)) < tp < Ta(ny(z)).

ProOF. The tables ny(z), ny () minimize and maximize the value of T} over
the collection of 2 x ¢ tables with top row sum #; and column sums c;. ny(z) puts
the largest values possible to the left in the upper row, consistent with the Fréchet
bounds for rectangular tables. Similarly, ny(z) puts the smallest values possible
to the left, and hence the largest on the right, consistent with the Fréchet bounds.
Then it is clear that both inequalities must hold if a value z is consistent with
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T, = tg. Conversely, if both inequalities hold, then there are two tables m and n
with the right row and column sums, but Tp(m) < t2,Ta(n) > £3. With column
sums positive the table m can be connected to n with a sequence of adjacent minor

moves (Sturmfels (2(}02), p. 64) °° + +

of Ty by £1. Therefore the mtermedla,te value theorem proves that some table will
have the right value 75 = tg ) 1

, each of which changes the value

ExaMpLE 4.1 (Cancer data from Sugiura and Otake (1974)). Binary data on
death from leukemia is classified by dose at 6-levels.
' 5 A 6 | 1L ]3] 6
5973 | 118111 2620 | 771 | 792 | 820
Tt took only a few seconds to obtain 10° samples with SIS, which gave an estimate
of 3053 with standard error 27.8 for the total number of tables with the same
constraints. Based on these samples, the exact p-value for goodness-of-fit can be
estimated at 0.0875 with standard error 0.005.

When some column sums are zero, SIS can still work without the sequential-
interval property. The results for the 50 column cancer data of Hosmer and
Lemeshow agreed closely with the Markov chain analysis.

For decomposable graphical models, it is known that there is a Markov basis
with squaré free initial terms (Dobra and Sullivant (2003)) , and there are sharp
bounds analogous to the Fréchet bounds {Dobra and Fienberg (2000))} so some of
the elements for SIS are in place and a general theory may be possible. The use of
algebra in SIS is relatively undeveloped compared to its use in des1gmng Markov

chains.
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