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1. The Randomness Recycler versus Markov chains

At the heart of the Monte Carlo approach is the ability to sample from distributions
that are in general very difficult to describe completely. For instance, the distribution might
have an unknown normalizing constant which might require exponential time to compute. In
these situations, in lieu of an exact approach, Markov chains are often employed to obtain
approximately random samples. The primary drawback to Markov chain methods is that the
mixing time of the chain is usually unknown, which makes it impossible to determine how close
the output samples are to the target distribution.

Here we present the randomness recycler (RR) protocol, which overcomes this difficulty
for several problems of interest. In contrast to traditional Markov chain approaches, an RR-
based algorithm creates samples that are drawn exactly from the desired distribution. Other
perfect sampling methods such as coupling from the past use existing Markov chains, but RR
does not use the traditional Markov chain at all. While not universal, RR does apply to a
wide variety of problems. In restricted instances of these problems, it gives the first expected
linear time algorithms for generating samples. Here we present RR-type algorithms for self-
organizing lists, the Ising model, random independent sets, random colorings, and the random
cluster model.

In Markov chain approaches, small random changes are made in the observation until
the entire observation has nearly the stationary distribution of the chain. The Metropolis [4]
and heat bath algorithms utilize the idea of reversibility to design chains with a stationary
distribution matching the desired distribution. Unfortunately, samples from the Markov chain
approach are only approximately, not exactly, drawn from the stationary distribution of the
chain. Moreover, they will not be close to the stationary distribution until a number of steps
larger than the mixing time of the chain have been taken. Often the mixing time is unknown,
and so the quality of the sample is suspect.

Propp and Wilson have shown how to avoid these problems using techniques such as
coupling from the past (CFTP) [5]. For some chains, CFTP provides a procedure that allows
perfect samples to be drawn from the stationary distribution of the chain, without knowledge of
the mixing time. However, CFTP and related approaches have drawbacks of their own. These
algorithms are noninterruptible, which means that the user must commit to running such an



algorithm for its entire (random) running time even though that time is not known ahead of
time. Failure to do so can introduce bias into the sample. Other algorithms, such as FMMR [1],
are interruptible, but require storage of random bits used by the algorithm. Because FMMR
needs to read these bits twice, it is a read-twice algorithm. The method we present will be
both interruptible and read-once, with no storage of random bits needed.

In addition, algorithms like CFTP and FMMR require an underlying Markov chain, and
can never be faster than the mixing time of this underlying chain. Often these chains make
changes to the state where the sample has already been randomized. This leads to wasted effort
when running the algorithm that often adds a log factor to the running time of the algorithm.

The randomness recycler (RR) is not like any of these perfect sampling algorithms. In
fact, the RR approach abandons the traditional Markov chain entirely. This is what allows the
algorithm in restricted cases to reach an expected running time that is linear, the first such
interruptible algorithm for several problems of interest.

2. The problems

In situations where Markov chains are commonly used, the state space is often of the
form Ω ⊆ CD and so consists of colorings of the elements of D with colors in C. For example,
permutations form a subset of {1, . . . , n}{1,...,n}. We will call a coloring x ∈ Ω a configuration,
and we assign a weight w(x) to each configuration. Let Z :=

∑
x∈Ω w(x); then our goal is to

sample from Ω, where the probability of choosing x is w(x)/Z. The table below lists several
such examples where the Randomness Recycler can be employed instead of Markov chains. The
first four models of the table use a graph (V, E); the fifth deals with permutations x.

example D C parameter(s) w(x)

Ising/Potts V {1, . . . , Q} T , Q exp( 1
T

∑
{v,w}∈E x(v)x(w))

Random cluster E {0, 1} p, Q p
∑

e
x(e)(1− p)|E|−

∑
e

x(e)Qc(x)

Hard core gas V {0, 1} λ
(
λ

∑
v∈V

x(v)
)

1(∀{v,w}∈E: x(v)x(w)=0)

Proper colorings V {1, . . . , k} k 1(∀{v,w}∈E: x(v) 6=x(w))

Move ahead 1 {1, . . . , n} {1, . . . , n} p1, . . . , pn

(∏n
i=1 pn−i

x(i)

)
1(∀i6=j: x(i) 6=x(j))

Note that the weight of a random cluster configuration includes a factor Qc(x). If we
let A be the edge set A := {e : x(e) = 1}, then c(x) is defined as the number of connected
components in the graph (V, A).

3. The Randomness Recycler technique

We now describe the Randomness Recycler technique. At each time step t, we keep track
of a configuration Xt and a set Dt. On elements of D \ Dt, the values of Xt are fixed, but
on elements of Dt, the values of Xt are random. Specifically, we let X∗

t = (Dt, Xt|D\Dt) and

πX∗
t
(·) = π

(
·

∣∣∣ Xt|D\Dt

)
. At each time step, we want the observation Xt to come from the

restricted distribution, regardless of the history of X∗. More precisely, we want to maintain

P (Xt = xt | X∗
0 = x∗0, . . . , X

∗
t = x∗

t ) = πx∗t
(xt). (1)

In particular, if τ is the (random) first time t that Dt = D, then P (Xτ = x |τ = t) ≡ π(x), and
our sample Xτ comes exactly from the desired distribution; further, τ and Xτ are independent.

Rather than working with the traditional Markov chain, we rely on a bivariate Markov
chain that moves from state (X∗

t , Xt) to (X∗
t+1, Xt+1) at time t + 1. If the bivariate chain

preserves (1) from each time t to the next (t + 1), we call it π-preserving .



The following lemma provides a framework for creating π-preserving bivariate chains with
a minimum of effort.

Lemma 3..1 Let P ((x∗t , xt), (x
∗
t+1, xt+1)) denote the probability that the bivariate Markov chain

moves in one step from (x∗t , xt) to (x∗t+1, xt+1). If for every x∗t , x∗t+1 there exists C(x∗t , x
∗
t+1)

such that ∑
xt

πx∗t
(xt)P ((x∗t , xt), (x

∗
t+1, xt+1)) = πx∗t+1

(xt+1)C(x∗t , x
∗
t+1)

for every xt+1, then the procedure is π-preserving.

We now apply the lemma to construct an RR-type algorithm for the random cluster
model. Here D = E, the edge set of a graph, and each edge is colored either 0 or 1. The
following pseudocode describes the RR algorithm for this problem; below we discuss how the
lemma led us to each key step. Recall that c(x) is the number of connected components in
A := {e : x(e) = 1}.

Randomness Recycler for random cluster model

1: Set t← 0, d0 ← ∅, x0(e)← 0 for all e ∈ E, c(x0) = |V |
2: While dt 6= E do
3: Set xt+1 ← xt

4: Choose an oriented edge e = (v, w) ∈ E \ dt

5: Set xt+1(e)← 1 with probability p, xt+1(e)← 0 with probability 1− p
6: Set ACCEPT ← TRUE
7: If c(xt+1) = c(xt)− 1 then with probability 1− (1/Q) set ACCEPT ← FALSE
8: If ACCEPT = TRUE then set dt+1 ← dt ∪ {e}, t← t + 1
9: Else set Erej ← (component C in xt containing w) ∪ {edges adjacent to C in dt}

and set xt+1(e)← 0 ∀e ∈ Erej, dt+1 ← dt \ Erej, t← t + 1

Roughly speaking, coloring an edge 1 multiplies the weight by p, while coloring the same
edge 0 multiplies the weight by 1− p. Hence our initial proposed color for e in line 5 uses these
probabilities.

If the edge is colored 1, then c(x) might be reduced by 1 as two formerly unconnected
components are connected. By accepting in that case only with probability 1/Q, we multiply the
weight of x by 1/Q, exactly making up for the change in the number of connected components.

Line 9 requires some explanation. We begin the While loop with an observation xt

distributed according to πx∗t
. If however, we make it to ACCEPT ← FALSE in line 7, then

we know that v and w are not connected via edges colored 1 in xt. Thus by this stage xt is
(conditionally) distributed according to πx∗t

(· | v, w unconnected). The fact that v and w are
not connected can be expressed equivalently as the fact that the component C in xt containing w
does not contain v. To “undo” our knowledge of what constitutes C, in line 9 we remove from dt

all edges in or adjacent to C (and “freeze” their x-values at 0).
These are rough intuitive statements, but use of the lemma can make these arguments

precise and show that the bivariate chain actually does preserve π. We do not have space here
to present the computations, but they are straightforward.

4. Conclusions

We now tabulate some results on running time for our RR procedure. The column “ap-
proximate” contains what is known about the mixing time of the traditional Markov chain
Monte Carlo approach. The column “CFTP” refers to the coupling from the past methodology



for obtaining exact samples due to Propp and Wilson, and indicates when CFTP is known to
run in time of order |D| ln |D|. The run-time bound can be improved to linear time [2], but
the restrictions on the parameters are stronger. The final column refers to the RR procedure,
which in cases satisfying the listed parameter restrictions runs in linear time. The value ∆
refers to the maximum degree of the graph, and for the move-ahead-1 model we have restricted
attention to the geometric case pi ≡ ri−1(1 − r)/(1 − rn). Space limitations prevent us from
giving more careful descriptions of the parameter restrictions here.

example approximate CFTP [5, 3] RR

Ising/Potts T > Tcrit T > Tcrit T = Ω(∆)
Random cluster unknown unknown p = O(1/∆)
Hard core gas λ < 2/(∆− 2) λ < 2/(∆− 2) λ < 4/(3∆− 4)
Proper colorings k > 11∆/6 k = Ω(∆2) k = Ω(∆4)
Move ahead 1 r < 0.2 r < 0.2 unknown

One attractive feature of RR procedures is that they may be run even if the order of
magnitude of the time until Dt = D is not known in advance. For instance, in the case of
the move-ahead-1 permutation chain with pi ∝ ri, experiments indicate that the RR procedure
takes linear time for fixed r at least up to r = 0.99, although no a priori run-time bounds are
known.

Again we point out that unlike CFTP, our RR algorithm is interruptible, meaning that
the algorithm can be aborted without generating bias in the sample. Therefore our Randomness
Recycler approach gives the first interruptible linear time algorithms for several problems of
interest.
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[2] Olle Häggström and Jeff Steif. Propp-Wilson algorithms and finitary codings for high noise
markov random fields. Combin. Probab. Computing, 9:425–439, 2000.

[3] Mark L. Huber. Perfect Sampling with Bounding Chains. PhD thesis, Cornell University,
1999.

[4] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equation of
state calculation by fast computing machines. Journal of Chemical Physics, 21:1087–1092,
1953.

[5] James G. Propp and David B. Wilson. Exact sampling with coupled Markov chains and
applications to statistical mechanics. Random Structures & Algorithms, 9(1–2):223–252,
1996.

RESUME

L’approche de Recycler d’aspect aléatoire pour obtenir des échantillons provenant des
distributions dimensionnelles élevés évite le problème de savoir la période de mélange d’une
châıne de Markov traditionelle, au lieu de cela garantissant que l’échantillon vient exactement
de la distribution désirée.


